Nitrogen Fertilizer Efficiency Determined by the 15N Dilution Technique in Maize Followed or Not by a Cover Crop in Mediterranean Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experiment Management
2.3. Crop Fertilization
2.4. Plant Analysis
2.5. Analysis of Residual Nitrogen in the Soil
2.6. Nitrogen Leaching Analysis
2.7. Nitrogen Emission Intensity
2.8. Experimental Design and Statistical Analysis
3. Results
3.1. Environmental Measurements and Irrigation
3.2. Yield, Biomass, and Total N
3.3. Nitrogen Uptake from Fertilizer (Nadf) and Soil (Nads)
3.4. Nitrogen Fertilizer Efficiency
3.5. Residual N on the Soil, Recovered and Uncovered by the Crop
3.6. Dissolved Inorganic Nitrogen Leaching
3.7. Dissolved Inorganic N Emission Intensity
3.8. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy, 2014. [Google Scholar]
- Salazar, O.; Rojas, C.; Baginsky, C.; Boza, S.; Lankin, G.; Muñoz-Sáez, A.; Pérez-Quezada, J.F.; Pertuzé, R.; Renwick, L.L.; Székács, A.; et al. Challenges for agroecology development for the building of sustainable agri-food systems. Int. J. Agric. Nat. Resour. 2020, 47, 152–158. [Google Scholar] [CrossRef]
- FAO. Save and Grow in Practice: Maize, Rice and Wheat. A Guide to Sustainable; FAO: Rome, Italy, 2016. [Google Scholar]
- Struik, P.C.; Kuyper, T.W. Sustainable intensification in agriculture: The richer shade of green. A review. Agron. Sustain. Dev. 2017, 37, 39. [Google Scholar] [CrossRef]
- ODEPA. Boletín de Cereales; ODEPA: Santiago, Chile, 2021. [Google Scholar]
- Najera, F.; Tapia, Y.; Baginsky, C.; Figueroa, V.; Cabeza, R.; Salazar, O. Evaluation of soil fertility and fertilisation practices for irrigated maize (Zea mays L.) under Mediterranean conditions in Central Chile. J. Soil Sci. Plant Nutr. 2015, 15, 84–97. [Google Scholar] [CrossRef] [Green Version]
- Salazar, O.; Balboa, L.; Peralta, K.; Rossi, M.; Casanova, M.; Tapia, Y.; Singh, R.; Quemada, M. Effect of cover crops on leaching of dissolved organic nitrogen and carbon in a maize-cover crop rotation in Mediterranean Central Chile. Agric. Water Manag. 2019, 212, 399–406. [Google Scholar] [CrossRef]
- Lassaletta, L.; Billen, G.; Grizzetti, B.; Anglade, J.; Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 2014, 9, 105011. [Google Scholar] [CrossRef]
- Mahmud, K.; Panday, D.; Mergoum, A.; Missaoui, A. Nitrogen Losses and Potential Mitigation Strategies for a Sustainable Agroecosystem. Sustainability 2021, 13, 2400. [Google Scholar] [CrossRef]
- Salazar, O.; Fuentes, I.; Seguel, O.; Nájera, F.; Casanova, M. Assessment of Nitrogen and Phosphorus Pathways at the Profile of Over-fertilised Alluvial Soils. Implications for Best Management Practices. Water. Air. Soil Pollut. 2018, 229, 223. [Google Scholar] [CrossRef]
- Salazar, O.; Nájera, F.; Tapia, W.; Casanova, M. Evaluation of the DAISY model for predicting nitrogen leaching in coarse-textured soils cropped with maize in the Mediterranean zone of Chile. Agric. Water Manag. 2017, 182, 77–86. [Google Scholar] [CrossRef]
- Gabriel, J.; Alonso-Ayuso, M.; Gonzalez, I.G.; Hontoria, C.; Quemada, M. Nitrogen use efficiency and fertiliser fate in a long-term experiment with winter cover crops. Eur. J. Agron. 2016, 79, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Rees, R.M.; Ju, X. Cropping system design can improve nitrogen use efficiency in intensively managed agriculture. Environ. Pollut. 2021, 280, 116967. [Google Scholar] [CrossRef]
- Quemada, M.; Lassaletta, L.; Jensen, L.; Godinot, O.; Brentrup, F.; Buckley, C.; Foray, S.; Hvid, S.; Oenema, J.; Richards, K.; et al. Exploring nitrogen indicators of farm performance among farm types across several European case studies. Agric. Syst. 2020, 177, 102689. [Google Scholar] [CrossRef]
- Follett, R.F. Innovative15n microplot research techniques to study nitrogen use efficiency under different ecosystems. Commun. Soil Sci. Plant Anal. 2001, 32, 951–979. [Google Scholar] [CrossRef] [Green Version]
- Ladha, J.K. Contributions of Fertilizer Nitrogen in Global Cereal Production, Soil Organic Matter Status and Nitrogen Balance. In International Symposium on Managing Soils for Food Security and Climate Change Adaptation and Mitigation; FAO—IAEA: Rome, Italy, 2014; pp. 21–25. [Google Scholar]
- Quan, Z.; Li, S.; Zhang, X.; Zhu, F.; Li, P.; Sheng, R.; Chen, X.; Zhang, L.-M.; He, J.-Z.; Wei, W.; et al. Fertilizer nitrogen use efficiency and fates in maize cropping systems across China: Field 15N tracer studies. Soil Tillage Res. 2020, 197, 104498. [Google Scholar] [CrossRef]
- Grahmann, K.; Dittert, K.; Verhulst, N.; Govaerts, B.; Buerkert, A. 15 N Fertilizer recovery in different tillage–straw systems on a Vertisol in north-west Mexico. Soil Use Manag. 2019, 35, 482–491. [Google Scholar] [CrossRef]
- Quan, Z.; Zhang, X.; Davidson, E.A.; Zhu, F.; Li, S.; Zhao, X.; Chen, X.; Zhang, L.; He, J.; Wei, W.; et al. Fates and Use Efficiency of Nitrogen Fertilizer in Maize Cropping Systems and Their Responses to Technologies and Management Practices: A Global Analysis on Field 15 N Tracer Studies. Earth’s Fut. 2021, 9, e2020EF001514. [Google Scholar] [CrossRef]
- Radicetti, E.; Mancinelli, R.; Moscetti, R.; Campiglia, E. Management of winter cover crop residues under different tillage conditions affects nitrogen utilization efficiency and yield of eggplant (Solanum melanogena L.) in Mediterranean environment. Soil Tillage Res. 2016, 155, 329–338. [Google Scholar] [CrossRef]
- Muscas, E.; Cocco, A.; Mercenaro, L.; Cabras, M.; Lentini, A.; Porqueddu, C.; Nieddu, G. Effects of vineyard floor cover crops on grapevine vigor, yield, and fruit quality, and the development of the vine mealybug under a Mediterranean climate. Agric. Ecosyst. Environ. 2017, 237, 203–212. [Google Scholar] [CrossRef]
- Novara, A.; Cerda, A.; Barone, E.; Gristina, L. Cover crop management and water conservation in vineyard and olive orchards. Soil Tillage Res. 2021, 208, 104896. [Google Scholar] [CrossRef]
- Kaye, J.P.; Quemada, M. Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain. Dev. 2017, 37, 4. [Google Scholar] [CrossRef]
- Salazar, O.; Casanova, M.; Nájera, F.; Contreras, A.; Tapia, Y. Net Nitrogen Mineralisation in Maize-Cover Crop Rotations in Mediterranean Central Chile. J. Soil Sci. Plant Nutr. 2020, 20, 1042–1050. [Google Scholar] [CrossRef]
- Behnke, G.; Villamil, M.B. Cover crop rotations affect greenhouse gas emissions and crop production in Illinois, USA. Field Crop. Res. 2019, 241, 107580. [Google Scholar] [CrossRef]
- Salazar, O.; Rojas, C.; Avendaño, F.; Realini, P.; Nájera, F.; Tapia, Y. Inorganic nitrogen losses from irrigated maize fields with narrow buffer strips. Nutr. Cycl. Agroecosyst. 2015, 102, 359–370. [Google Scholar] [CrossRef]
- Daryanto, S.; Fu, B.; Wang, L.; Jacinthe, P.-A.; Zhao, W. Quantitative synthesis on the ecosystem services of cover crops. Earth Sci. Rev. 2018, 185, 357–373. [Google Scholar] [CrossRef]
- Santibáñez, F.; Santibáñez, P.; Caroca, C.; González, P. Atlas Agroclimático de Chile. Tomo III: Regiones de Valparaíso, Metropolitana; O’Higgins y Del Maule; AGRIMED y FIA: Santiago, Chile, 2017. [Google Scholar]
- Casanova, M.; Salazar, O.; Seguel, O.; Luzio, W. The Soils of Chile; Hartemink, A.E., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Sadzawka, A.; Carrasco, M.A.; Grez, R.; Mora, M. Métodos de Análisis Recomendados para los Suelos Chilenos; Comisión de Normalización y Acreditación, Sociedad Chilena de la Ciencia del Suelo: Santiago, Chile, 2004. [Google Scholar]
- Sandoval, M.; Dörner, J.; Seguel, O.; Cuevas, J.; Rivera, D. Métodos de Análisis Físico de Suelos; Sociedad Chilena de las Ciencias del Suelo: Santiago, Chile, 2011. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56: Rome, Italy, 1998. [Google Scholar]
- IAEA. Applications of Nuclear Techniques in Soil Fertility and Plant Nutrition Studies. In Applications of Nuclear Techniques in Soil Fertility and Plant Nutrition Studies; International Atomic Energy Agency (IAEA): Vienna, Austria, 2001; pp. 21–103. [Google Scholar]
- Sadzawka, A.; Carrasco, A.; Grez, R.; Mora, M.; Flores, H.; Neaman, A. Métodos de Análsis de Tejidos Vegetales, Serie Acta; Instituto de Investigaciones Agropecuarias (INIA): Santiago, Chile, 2007. [Google Scholar]
- Reinhardt, R.; Russow, R. Use of the 15N Isotope Dilution Technique to Study the Effect of Mineral Nitrogen on Biological Nitrogen Fixation in Red Clover. In Stable Isotopes in Plant Nutrition, Soil Fertility and Environmental Studies; IAEA: Vienna, Austria, 1990; pp. 193–200. [Google Scholar]
- Gabriel, J.L.; Quemada, M. Replacing bare fallow with cover crops in a maize cropping system: Yield, N uptake and fertiliser fate. Eur. J. Agron. 2011, 34, 133–143. [Google Scholar] [CrossRef]
- Snyder, C.; Bruulsema, T.; Jensen, T.; Fixen, P. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosyst. Environ. 2009, 133, 247–266. [Google Scholar] [CrossRef]
- Van Groenigen, J.W.; Velthof, G.; Oenema, O.; van Groenigen, K.J.; Van Kessel, C. Towards an agronomic assessment of N2O emissions: A case study for arable crops. Eur. J. Soil Sci. 2010, 61, 903–913. [Google Scholar] [CrossRef]
- O’Reilly, K.A.; Lauzon, J.D.; Vyn, R.J.; Van Eerd, L.L. Nitrogen cycling, profit margins and sweet corn yield under fall cover crop systems. Can. J. Soil Sci. 2012, 92, 353–365. [Google Scholar] [CrossRef] [Green Version]
- Paré, T.; Gregorich, E.G.; Nelson, S.D. Mineralization of Nitrogen from Crop Residues and N Recovery by Maize Inocu-lated with Vesicular-Arbuscular Mycorrhizal Fungi. Plant Soil 2000, 218, 11–20. [Google Scholar] [CrossRef]
- Havlin, J.L.; Tisdale, S.L.; Nelson, W.L.; Beaton, J.D. Soil Fertility and Nutrient Management: An Introduction to Nutrient Management; Pearson: Upper Saddle River, NJ, USA, 2014. [Google Scholar]
- Coombs, C.; Lauzon, J.D.; Deen, B.; Van Eerd, L.L. Legume cover crop management on nitrogen dynamics and yield in grain corn systems. Field Crop. Res. 2017, 201, 75–85. [Google Scholar] [CrossRef]
- Nario, A.; Parada, A.M.; Videla, X.; Casanova, M.; Seguel, O. 15N Fertilizer Efficiency in Maize Cropped by Small Farmers at the VI Region of Chile. In International Symposium on Managing Soils for Food Security and Climate Change Adaptation and mit-igation; FAO—IAEA: Vienna, Aystria, 2012; pp. 89–90. [Google Scholar]
- Alonso-Ayuso, M.; Gabriel, J.L.; Quemada, M. The Kill Date as a Management Tool for Cover Cropping Success. PLoS ONE 2014, 9, e109587. [Google Scholar] [CrossRef]
- Snapp, S.; Surapur, S. Rye cover crop retains nitrogen and doesn’t reduce corn yields. Soil Tillage Res. 2018, 180, 107–115. [Google Scholar] [CrossRef]
- Ciampitti, I.A.; Murrell, T.; Camberato, J.J.; Tuinstra, M.; Xia, Y.; Friedemann, P.; Vyn, T.J. Physiological Dynamics of Maize Nitrogen Uptake and Partitioning in Response to Plant Density and Nitrogen Stress Factors: II. Reproductive Phase. Crop. Sci. 2013, 53, 2588–2602. [Google Scholar] [CrossRef]
- Di Paolo, E.; Rinaldi, M. Yield response of corn to irrigation and nitrogen fertilization in a Mediterranean environment. Field Crop. Res. 2008, 105, 202–210. [Google Scholar] [CrossRef]
- Corradini, F.; Nájera, F.; Casanova, M.; Tapia, Y.; Singh, R.; Salazar, O.D. Effects of maize cultivation on nitrogen and phosphorus loadings to drainage channels in Central Chile. Environ. Monit. Assess. 2015, 187, 697. [Google Scholar] [CrossRef]
- Pino, I.; Rouanet, J.L.; Zapata, F.; Parada, A.M.; Nario, A. Eficiencia de recuperación del nitrógeno en el sistema planta- suelo en un cultivo de trigo bajo manejos de suelo alternativos en un ultisol de la ix región. Agric. Técnica 2002, 62, 275–283. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Abdul-Baki, A.A.; Park, Y.B. Sweet corn production and efficiency of nitrogen use in high cover crop residue. Agron. Sustain. Dev. 2008, 28, 559–565. [Google Scholar] [CrossRef] [Green Version]
- Zagal, E.; Rodríguez, N.; Vidal, I.; Hofmann, G. Eficiencia de uso y dinamica del nitrógeno en una rotacion con y sin uso de residuos. Agric. Técnica 2003, 63, 298–310. [Google Scholar] [CrossRef]
- Johnston, A.; Bruulsema, T. 4R Nutrient Stewardship for Improved Nutrient Use Efficiency. Procedia Eng. 2014, 83, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Quemada, M.; Alonso-Ayuso, M.; Castellano-Hinojosa, A.; Bedmar, E.J.; Gabriel, J.L.; González, I.G.; Valentín, F.; Calvo, M. Residual effect of synthetic nitrogen fertilizers and impact on Soil Nitrifiers. Eur. J. Agron. 2019, 109, 125917. [Google Scholar] [CrossRef]
- Basir, A.; Jan, M.T.; Alam, M.; Shah, A.S.; Afridi, K.; Adnan, M.; Ali, K.; Mian, I.A. Impacts of tillage, stubble management and nitrogen on wheat production and soil properties. Can. J. Soil Sci. 2016, 97, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Quemada, M.; Baranski, M.; Lange, M.N.-D.; Vallejo, A.; Cooper, J. Meta-analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yield. Agric. Ecosyst. Environ. 2013, 174, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lindquist, J.L.; Evans, S.P.; Shapiro, C.A.; Knezevic, S.Z. Effect of Nitrogen Addition and Weed Interference on Soil Nitrogen and Corn Nitrogen Nutrition. Weed Technol. 2010, 24, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Salazar, O.; Wesström, I.; Youssef, M.A.; Skaggs, R.W.; Joel, A. Evaluation of the DRAINMOD–N II model for predicting nitrogen losses in a loamy sand under cultivation in south-east Sweden. Agric. Water Manag. 2009, 96, 267–281. [Google Scholar] [CrossRef]
- Vázquez, N.; Pardo, A.; Suso, M.; Quemada, M. Drainage and nitrate leaching under processing tomato growth with drip irrigation and plastic mulching. Agric. Ecosyst. Environ. 2006, 112, 313–323. [Google Scholar] [CrossRef]
- Bortolotto, R.P.; Bruno, I.P.; Reichardt, K.; Timm, L.C.; Amado, T.J.C.; Ferreira, A.D.O. Nitrogen fertilizer (15N) leaching in a central pivot fertigated coffee crop. Rev. Ceres 2012, 59, 466–475. [Google Scholar] [CrossRef] [Green Version]
- Quemada, M.; Cabrera, M.L.; McCracken, D.V. Nitrogen Release from Surface-Applied Cover Crop Residues: Evaluating the CERES-N Submodel. Agron. J. 1997, 89, 723–729. [Google Scholar] [CrossRef]
- Alonso-Ayuso, M.; Gabriel, J.L.; Pancorbo, J.L.; Quemada, M. Interseeding cover crops into maize: Characterization of species performance under Mediterranean conditions. Field Crop. Res. 2020, 249, 107762. [Google Scholar] [CrossRef]
- Terrada, M.M.; Benavides, L.; López, S.C. Ammonia Volatilization Losses from Urea Fertilizer Applied on Wheat. In International Symposium on Managing Soils for Food Security and Climate Change Adaptation and Mitigation; FAO—IAEA: Rome, Italy, 2014; pp. 25–29. [Google Scholar]
- Fuentes, I.; Casanova, M.; Seguel, O.; Padarian, J.; Nájera, F.; Salazar, O. Preferential flow paths in two alluvial soils with long-term additions of pig slurry in the Mediterranean zone of Chile. Soil Res. 2015, 53, 433–447. [Google Scholar] [CrossRef]
- Civeira, G.; Rodríguez, M.B. Residual and leached nitrogen in soil plant zeolite systems nitrógeno residual y lixivia-do del fertilizante en el sistema suelo-planta-zeolitas. Cienc. Suelo 2011, 29, 2. [Google Scholar]
Horizon (Depth) | Soil Properties 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|
pHwater | ECe | SOM | Db | AWC | Clay | Silt | Sand | Textural Class | |
- | dS m−1 | % | t m−3 | ----------------------% ---------------------- | - | ||||
Ap (0–42 cm) | 8.99 | 0.97 | 1.12 | 1.42 | 15 | 20.9 | 44.7 | 34.4 | Loam |
C (42–50 cm) | 8.10 | 1.10 | 0.19 | 1.38 | 14 | 5.3 | 26.9 | 77.8 | Loamy sand |
Factor | Biomass 1 | Yield 1 | N Content 1 | ||||
---|---|---|---|---|---|---|---|
Aboveground | Root | Grain | Aboveground | Root | Grain | ||
----------- t ha−1 ----------- | ----------- kg ha−1 ----------- | ||||||
Crop rotation | Zm–Lm | 25.02 ± 1.27 | 4.19 ± 0.51 | 17.98 ± 0.28 | 141.31 ± 7.36 | 22.70 ± 3.34 | 232.32 ± 11.05 |
Zm–F | 25.26 ± 1.36 | 4.04 ± 0.58 | 17.82 ± 0.89 | 151.67 ± 9.07 | 21.90 ± 2.31 | 239.32 ± 11.98 | |
N rate (kg N ha−1) | 400 | 27.54 ± 1.05 a | 4.24 ± 0.50 | 19.14 ± 0.53 | 161.48 ± 6.38 a | 22.62 ± 2.59 | 253.04 ± 9.32 a |
250 | 22.74 ± 0.57 b | 3.99 ± 0.58 | 16.66 ± 0.41 | 131.50 ± 3.89 b | 21.98 ± 3.13 | 218.87 ± 8.62 b | |
Crop rotation 2 | 0.863 | 0.802 | 0.644 | 0.235 | 0.831 | 0.283 | |
N rate 2 | 0.011 | 0.699 | 0.001 | 0.006 | 0.864 | 0.002 | |
Crop rotation × N rate 2 | 0.972 | 0.028 | 0.020 | 0.425 | 0.072 | 0.124 |
Factor | Nadf 1 | Nads 1 | |||||
---|---|---|---|---|---|---|---|
Aboveground | Root | Grain | Aboveground | Root | Grain | ||
kg ha−1 | |||||||
Crop rotation | Zm–Lm | 34.33 ± 2.03 | 4.47 ± 0.47 | 62.17 ± 2.20 | 118.76 ± 5.96 | 17.44 ± 2.93 | 170.14 ± 9.32 |
Zm–F | 32.55 ± 3.22 | 4.81 ± 0.59 | 57.49 ± 3.67 | 107.34 ± 6.04 | 17.90 ± 1.72 | 182.10 ± 8.48 | |
N rate (kg N ha−1) | 400 | 37.69 ± 1.96 a | 4.89 ± 0.61 | 65.17 ± 1.42 | 123.79 ± 5.27 a | 18.24 ± 2.00 | 187.87 ± 8.51 a |
250 | 29.19 ± 1.94 b | 4.39 ± 0.43 | 54.49 ± 2.69 | 102.31± 3.33 b | 17.10 ± 2.72 | 164.37 ± 7.03 b | |
Crop rotation 2 | 0.558 | 0.632 | 0.036 | 0.085 | 0.883 | 0.076 | |
N rate 2 | 0.026 | 0.490 | 0.001 | 0.008 | 0.715 | 0.006 | |
Crop rotation × N rate 2 | 0.400 | 0.099 | 0.036 | 0.536 | 0.072 | 0.298 |
Factor | NFE 1 | ||||
---|---|---|---|---|---|
Aboveground | Root | Grain | Total | ||
(%) | |||||
Crop rotation | Zm–Lm | 10.94 ± 0.88 | 1.49 ± 0.26 a | 19.98 ± 1.81 | 32.40 ± 2.70 |
Zm–F | 10.16 ± 0.72 | 1.49 ± 0.12 a | 18.11 ± 1.72 | 29.77 ± 1.28 | |
N rate (kg N ha−1) | 400 | 11.68 ± 0.49 | 1.22 ± 0.15 b | 16.29 ± 2.00 | 26.94 ± 0.83 |
250 | 9.42 ± 0.78 | 1.76 ± 0.17 a | 21.80 ± 2.72 | 35.23 ± 1.45 | |
Crop rotation 2 | 0.437 | 0.970 | 0.012 | 0.075 | |
N rate 2 | 0.051 | 0.046 | 0.001 | 0.005 | |
Crop rotation × N rate 2 | 0.330 | 0.105 | 0.012 | 0.037 |
Treatments | Grain 1 | Root 1 | ||
---|---|---|---|---|
Yield | Nadf | NFE | Dry Biomass | |
t ha−1 | kg ha−1 | % | t ha−1 | |
Zm400–F | 19.42 ± 0.75 a | 65.17 ± 2.23 a | 16.30 ± 0.56 c | 4.93 ± 0.75 a |
Zm400–Lm | 18.72 ± 0.71 a | 65.16 ± 2.17 a | 16.29 ± 0.54 c | 3.45 ± 0.25 a |
Zm250–Lm | 17.24 ± 0.56 b | 59.18 ± 3.60 a | 23.68 ± 1.44 a | 5.02 ± 0.82 a |
Zm250–F | 16.08 ± 0.40 c | 49.80 ± 0.92 b | 19.92 ± 0.37 b | 3.05 ±0.37 b |
p value | 0.020 | 0.036 | 0.012 | 0.028 |
Factor | NT 1 | |||
---|---|---|---|---|
Nadf | Nads | NT | ||
kg ha−1 | ||||
Crop rotation | Zm–Lm | 100.98 ± 3.30 | 294.92 ± 10.38 b | 391.96 ± 12.16 |
Zm–F | 94.84 ± 6.89 | 318.76 ± 14.84 a | 410.88 ± 21.66 | |
N rate (kg N ha−1) | 400 | 107.45 ± 3.30 a | 328.76 ± 13.47 a | 432.78 ± 15.27 a |
250 | 88.07 ± 3.62 b | 284.92 ± 4.32 b | 370.05 ± 5.13 b | |
Crop rotation 2 | 0.202 | 0.022 | 0.119 | |
N rate 2 | 0.004 | 0.001 | 0.001 | |
Crop rotation × N rate 2 | 0.090 | 0.077 | 0.055 |
Factor | N Forms 1 | |||
---|---|---|---|---|
NH4+ | NO3− | DIN | ||
kg N ha−1 | ||||
N rate + crop rotation | Zm400–Lm | 7.68 ± 2.11 ab | 32.42 ± 7.52 a | 44.88 ± 8.39 a |
Zm400–F | 14.21 ± 7.63 a | 23.35 ± 7.28 ab | 43.00 ± 10.70 a | |
Zm250–F | 5.78 ± 2.15 b | 14.81 ± 2.72 bc | 20.58 ± 2.77 b | |
Zm250–Lm | 1.83 ± 0.68 b | 13.53 ± 2.82 c | 15.36 ± 2.56 b | |
Time | I V7 | 6.29 ± 6.29 b | 41.23 ± 7.93 a | 52.96 ± 10.59 a |
II V9 | 5.48 ± 5.48 b | 19.62 ± 2.51 b | 18.20 ± 5.74 c | |
III VT | 2.88 ± 2.88 b | 15.32 ± 2.29 bc | 18.21 ± 3.66 c | |
IV R6 | 14.85 ± 14.85 a | 7.94 ± 3.78 c | 34.46 ± 2.61 b | |
Treatment 2 | 0.010 | 0.007 | 0.001 | |
Time 2 | 0.007 | 0.001 | 0.001 | |
Treatment × Time 2 | 0.167 | 0.002 | 0.005 |
Fraction | Residual 1 | Crop Recovered 1 | Unrecovered 1 | |
---|---|---|---|---|
kg ha−1 | ||||
Crop rotation | Lm | 158.48 ± 6.67 | 100.97 ± 3.94 | 65.55 ± 26.10 |
B | 170.64 ± 11.18 | 94.84 ± 6.73 | 59.51 ± 21.46 | |
N rate (kg ha−1) | 400 | 179.00 ± 9.45 a | 107.75 ± 3.37 a | 113.25 ± 9.97 a |
250 | 150.12 ± 8.34 b | 88.07 ± 9.33 b | 11.81 ± 9.95 b | |
Crop rotation 2 | 0.227 | 0.202 | 0.477 | |
N rate 2 | 0.019 | 0.004 | 0.001 | |
Crop rotation × N rate 2 | 0.711 | 0.090 | 0.178 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salazar, O.; Diaz, R.; Nario, A.; Videla, X.; Alonso-Ayuso, M.; Quemada, M. Nitrogen Fertilizer Efficiency Determined by the 15N Dilution Technique in Maize Followed or Not by a Cover Crop in Mediterranean Chile. Agriculture 2021, 11, 721. https://doi.org/10.3390/agriculture11080721
Salazar O, Diaz R, Nario A, Videla X, Alonso-Ayuso M, Quemada M. Nitrogen Fertilizer Efficiency Determined by the 15N Dilution Technique in Maize Followed or Not by a Cover Crop in Mediterranean Chile. Agriculture. 2021; 11(8):721. https://doi.org/10.3390/agriculture11080721
Chicago/Turabian StyleSalazar, Osvaldo, Renato Diaz, Adriana Nario, Ximena Videla, María Alonso-Ayuso, and Miguel Quemada. 2021. "Nitrogen Fertilizer Efficiency Determined by the 15N Dilution Technique in Maize Followed or Not by a Cover Crop in Mediterranean Chile" Agriculture 11, no. 8: 721. https://doi.org/10.3390/agriculture11080721
APA StyleSalazar, O., Diaz, R., Nario, A., Videla, X., Alonso-Ayuso, M., & Quemada, M. (2021). Nitrogen Fertilizer Efficiency Determined by the 15N Dilution Technique in Maize Followed or Not by a Cover Crop in Mediterranean Chile. Agriculture, 11(8), 721. https://doi.org/10.3390/agriculture11080721