Effect of Zinc Oxide Nanoparticles on Nitrous Oxide Emissions in Agricultural Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Design
2.2. N2O Emission Measurements
2.3. Soil DOC, NH4+ and NO3− Measurements
2.4. DNA Extraction and qPCR Analysis
2.5. Statistical Analysis
3. Results
3.1. Effect of N2O Emission
3.2. Soil DOC, Mineral N Content and Functional Genes Related to N2O
3.3. Effect of ZnO NPs on N2O Emission
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lewis, R.W.; Bertsch, P.M.; McNear, D.H. Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria—A critical review. Nanotoxicology 2019, 13, 392–428. [Google Scholar] [CrossRef]
- Rajput, V.D.; Minkina, T.; Kumari, A.; Harish; Singh, V.K.; Verma, K.K.; Mandzhieva, S.; Sushkova, S.; Srivastava, S.; Keswani, C. Coping with the challenges of abiotic stress in plants: New dimensions in the field application of nanoparticles. Plants 2021, 10, 1221. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Williams, P.L.; Diamond, S.A. Ecotoxicity of manufactured ZnO nanoparticles—A review. Environ. Pollut. 2013, 172, 76–85. [Google Scholar] [CrossRef]
- Rajput, V.D.; Minkina, T.M.; Behal, A.; Sushkova, S.N.; Mandzhieva, S.; Singh, R.; Gorovtsov, A.; Tsitsuashvili, V.S.; Purvis, W.O.; Ghazaryan, K.A.; et al. Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. Environ. Nanotechnol. Monit. Manag. 2018, 9, 76–84. [Google Scholar] [CrossRef]
- Luo, Z.; Qiu, Z.; Chen, Z.; Du Laing, G.; Liu, A.; Yan, C. Impact of TiO2 and ZnO nanoparticles at predicted environmentally relevant concentrations on ammonia-oxidizing bacteria cultures under ammonia oxidation. Environ. Sci. Pollut. Res. 2015, 22, 2891–2899. [Google Scholar] [CrossRef] [PubMed]
- Parada, J.; Rubilar, O.; Sousa, D.Z.; Martinez, M.; Fernandez-Baldo, M.A.; Tortella, G.R. Short term changes in the abundance of nitrifying microorganisms in a soil-plant system simultaneously exposed to copper nanoparticles and atrazine. Sci. Total. Environ. 2019, 670, 1068–1074. [Google Scholar] [CrossRef]
- Simonin, M.; Cantarel, A.A.M.; Crouzet, A.; Gervaix, J.; Martins, J.M.F.; Richaume, A. Negative effects of copper oxide nanoparticles on carbon and nitrogen cycle microbial activities in contrasting agricultural soils and in presence of plants. Front. Microbiol. 2018, 9, 3102. [Google Scholar] [CrossRef]
- Zhao, S.; Su, X.; Wang, Y.; Yang, X.; Bi, M.; He, Q.; Chen, Y. Copper oxide nanoparticles inhibited denitrifying enzymes and electron transport system activities to influence soil denitrification and N2O emission. Chemosphere 2020, 245, 125394. [Google Scholar] [CrossRef]
- Wu, J.; Bai, Y.; Lu, B.; Li, C.; Menzies, N.W.; Bertsch, P.M.; Wang, Z.; Wang, P.; Kopittke, P.M. Application of sewage sludge containing environmentally-relevant silver sulfide nanoparticles increases emissions of nitrous oxide in saline soils. Environ. Pollut. 2020, 265, 114807. [Google Scholar] [CrossRef]
- Avila-Arias, H.; Nies, L.F.; Gray, M.B.; Turco, R.F. Impacts of molybdenum-, nickel-, and lithium- oxide nanomaterials on soil activity and microbial community structure. Sci. Total Environ. 2019, 652, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhang, X.; Dang, D.; Zheng, L.; Yang, Q.; Yu, Y. Effects of iron oxide nanoparticles on CH4 and N2O emissions and microbial communities in two typical paddy soils. Chin. J. Appl. Environ. Biol. 2021, 7, 725–733. [Google Scholar] [CrossRef]
- Ge, Y.; Schimel, J.P.; Holden, P.A. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ. Sci. Technol. 2011, 45, 1659–1964. [Google Scholar] [CrossRef] [PubMed]
- Chai, H.; Yao, J.; Sun, J.; Zhang, C.; Liu, W.; Zhu, M.; Ceccanti, B. The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil. Bull. Environ. Contam. Toxicol. 2015, 94, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.I.; Shahzad, T.; Shahid, M.; Ismail, I.M.; Shah, G.M.; Almeelbi, T. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil. J. Hazard. Mater. 2017, 324, 298–305. [Google Scholar] [CrossRef]
- Du, W.; Sun, Y.; Ji, R.; Zhu, J.; Wu, J.; Guo, H. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J. Environ. Monit. 2011, 13, 822–828. [Google Scholar] [CrossRef]
- Zheng, X.; Su, Y.; Chen, Y.; Wan, R.; Liu, K.; Li, M.; Yin, D. Zinc oxide nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity. Environ. Sci. Technol. 2014, 48, 13800–13807. [Google Scholar] [CrossRef]
- Ye, J.; Gao, H.; Domingo-Felez, C.; Wu, J.; Zhan, M.; Yu, R.; Smets, B.F. Insights into chronic zinc oxide nanoparticle stress responses of biological nitrogen removal system with nitrous oxide emission and its recovery potential. Bioresour. Technol. 2021, 327, 124797. [Google Scholar] [CrossRef]
- Ye, J.; Gao, H.; Wu, J.; Chang, Y.; Chen, Z.; Yu, R. Responses of nitrogen transformation processes and N2O emissions in biological nitrogen removal system to short-term ZnO nanoparticle stress. Sci. Total. Environ. 2020, 705, 135916. [Google Scholar] [CrossRef]
- Durenkamp, M.; Pawlett, M.; Ritz, K.; Harris, J.A.; Neal, A.L.; McGrath, S.P. Nanoparticles within WWTP sludges have minimal impact on leachate quality and soil microbial community structure and function. Environ. Pollut. 2016, 211, 399–405. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, C.; Zheng, N.; Jia, H.; Yao, H. Interactive effects of soil texture and salinity on nitrous oxide emissions following crop residue amendment. Geoderma 2019, 337, 1146–1154. [Google Scholar] [CrossRef]
- Muhammad, W.; Vaughan, S.M.; Dalal, R.C.; Menzies, N.W. Crop residues and fertilizer nitrogen influence residue decomposition and nitrous oxide emission from a Vertisol. Biol. Fertil. Soils 2010, 47, 15–23. [Google Scholar] [CrossRef]
- Chen, H.; Li, X.; Hu, F.; Shi, W. Soil nitrous oxide emissions following crop residue addition: A meta-analysis. Glob. Chang. Biol. 2013, 19, 2956–2964. [Google Scholar] [CrossRef]
- Daly, E.J.; Hernandez-Ramirez, G. Sources and priming of soil N2O and CO2 production: Nitrogen and simulated exudate additions. Soil Biol. Biochem. 2020, 149, 107942. [Google Scholar] [CrossRef]
- Morley, N.; Baggs, E.M. Carbon and oxygen controls on N2O and N2 production during nitrate reduction. Soil Biol. Biochem. 2010, 42, 1864–1871. [Google Scholar] [CrossRef]
- Liang, L.L.; Grantz, D.A.; Jenerette, G.D. Multivariate regulation of soil CO2 and N2O pulse emissions from agricultural soils. Glob. Chang. Biol. 2016, 22, 1286–1298. [Google Scholar] [CrossRef]
- Ouyang, Y.; Evans, S.E.; Friesen, M.L.; Tiemann, L.K. Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: A meta-analysis of field studies. Soil Biol. Biochem. 2018, 127, 71–78. [Google Scholar] [CrossRef]
- Waalewijn-Kool, P.L.; Diez Ortiz, M.; van Gestel, C.A. Effect of different spiking procedures on the distribution and toxicity of ZnO nanoparticles in soil. Ecotoxicology 2012, 21, 1797–1804. [Google Scholar] [CrossRef] [Green Version]
- Tian, Q.; Yang, X.; Wang, X.; Liao, C.; Li, Q.; Wang, M.; Wu, Y.; Liu, F. Microbial community mediated response of organic carbon mineralization to labile carbon and nitrogen addition in topsoil and subsoil. Biogeochemistry 2016, 128, 125–139. [Google Scholar] [CrossRef]
- Phan, D.C.; Pasha, A.B.M.T.; Carwile, N.; Kapoor, V. Effect of zinc oxide nanoparticles on physiological activities and gene expression of wastewater nitrifying bacteria. Environ. Eng. Sci. 2020, 37, 328–336. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, R.; Wang, L.; Niu, L.; Wang, C.; Hu, J.; Wu, H.; Zhang, W.; Wang, P. Silver nanoparticles and Fe(III) co-regulate microbial community and N2O emission in river sediments. Sci. Total. Environ. 2020, 706, 135712. [Google Scholar] [CrossRef]
- Zheng, Y.; Hou, L.; Liu, M.; Newell, S.E.; Yin, G.; Yu, C.; Zhang, H.; Li, X.; Gao, D.; Gao, J.; et al. Effects of silver nanoparticles on nitrification and associated nitrous oxide production in aquatic environments. Sci. Adv. 2017, 3, e1603229. [Google Scholar] [CrossRef] [Green Version]
- Beddow, J.; Stolpe, B.; Cole, P.A.; Lead, J.R.; Sapp, M.; Lyons, B.P.; Colbeck, I.; Whitby, C. Nanosilver inhibits nitrification and reduces ammonia-oxidising bacterial but not archaeal amoA gene abundance in estuarine sediments. Environ. Microbiol. 2017, 19, 500–510. [Google Scholar] [CrossRef] [Green Version]
- Samarajeewa, A.D.; Velicogna, J.R.; Princz, J.I.; Subasinghe, R.M.; Scroggins, R.P.; Beaudette, L.A. Effect of silver nano-particles on soil microbial growth, activity and community diversity in a sandy loam soil. Environ. Pollut. 2017, 220, 504–513. [Google Scholar] [CrossRef]
- McGee, C.F.; Storey, S.; Clipson, N.; Doyle, E. Concentration-dependent responses of soil bacterial, fungal and nitrifying communities to silver nano and micron particles. Environ. Sci. Pollut. Res. 2018, 25, 18693–18704. [Google Scholar] [CrossRef]
- Masrahi, A.; VandeVoort, A.R.; Arai, Y. Effects of silver nanoparticle on soil-nitrification processes. Arch. Environ. Contam. Toxicol. 2014, 66, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Huang, J.; Cao, C.; Li, R.; Ma, Y.; Wang, Y. Effects of PVP-coated silver nanoparticles on enzyme activity, bacterial and archaeal community structure and function in a yellow-brown loam soil. Environ. Sci. Pollut. Res. 2020, 27, 8058–8070. [Google Scholar] [CrossRef]
- Wang, J.; Shu, K.; Zhang, L.; Si, Y. Effects of silver nanoparticles on soil microbial communities and bacterial nitrification in suburban vegetable soils. Pedosphere 2017, 27, 482–490. [Google Scholar] [CrossRef]
- Wu, L.; Zhu, G.; Zhang, X.; Si, Y. Silver nanoparticles inhibit denitrification by altering the viability and metabolic activity of Pseudomonas stutzeri. Sci. Total. Environ. 2020, 706, 135711. [Google Scholar] [CrossRef]
- Cheng, Y.-F.; Zhang, Q.; Li, G.-F.; Xue, Y.; Zheng, X.-P.; Cai, S.; Zhang, Z.-Z.; Jin, R.-C. Long-term effects of copper nanoparticles on granule-based denitrification systems: Performance, microbial communities, functional genes and sludge properties. Bioresour. Technol. 2019, 289, 121707. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Cui, P.; Du, H.; Alves, M.E.; Zhou, D.; Wang, Y. Long-term dissolution and transformation of ZnO in soils: The roles of soil pH and ZnO particle size. J. Hazard. Mater. 2021, 415, 125604. [Google Scholar] [CrossRef]
Treatments | N2O Emission | DOC | NH4+ | NO3− | AOA amoA | AOB amoA | nirK | nirS | nosZ |
---|---|---|---|---|---|---|---|---|---|
C | *** | ** | * | *** | * | * | *** | *** | ** |
N | *** | ns | ** | ** | ** | *** | ns | *** | *** |
C × N | *** | ** | *** | *** | * | ns | ns | * | ** |
Substrates | ZnO NPs Levels | DOC (mg C kg−1) | NH4+ (mg N kg−1) | NO3− (mg N kg−1) |
---|---|---|---|---|
No addition | 0 mg kg−1 | 34.13 ± 5.54 a | 1.43 ± 0.08 ab | 61.30 ± 1.56 a |
100 mg kg−1 | 41.65 ± 1.26 a | 1.15 ± 0.12 bc | 43.22 ± 0.35 b | |
500 mg kg−1 | 31.33 ± 2.38 a | 1.03 ± 0.10 c | 44.45 ± 0.64 b | |
1000 mg kg−1 | 34.08 ± 5.97 a | 1.55 ± 0.06 a | 37.43 ± 0.27 c | |
C addition | 0 mg kg−1 | 45.68 ± 2.49 a | 1.57 ± 0.05 b | 31.03 ± 1.13 a |
100 mg kg−1 | 40.72 ± 1.46 a | 1.23 ± 0.11 b | 15.98 ± 0.05 c | |
500 mg kg−1 | 45.30 ± 10.26 a | 1.22 ± 0.16 b | 16.95 ± 0.25 c | |
1000 mg kg−1 | 40.88 ± 5.15 a | 2.23 ± 0.03 a | 19.70 ± 0.26 b | |
N addition | 0 mg kg−1 | 33.97 ± 1.96 a | 24.78 ± 1.58 ab | 69.57 ± 0.38 a |
100 mg kg−1 | 35.85 ± 1.76 a | 17.18 ± 1.32 c | 65.52 ± 1.03 ab | |
500 mg kg−1 | 26.43 ± 3.80 a | 22.73 ± 1.38 bc | 58.55 ± 3.29 b | |
1000 mg kg−1 | 36.02 ± 3.64 a | 30.03 ± 1.95 a | 49.43 ± 0.62 c | |
C and N addition | 0 mg kg−1 | 41.42 ± 3.51 a | 2.80 ± 0.12 bc | 64.45 ± 0.09 a |
100 mg kg−1 | 31.18 ± 3.63 a | 1.53 ± 0.08 c | 57.08 ± 0.31 b | |
500 mg kg−1 | 17.88 ± 2.83 b | 3.97 ± 0.24 b | 47.22 ± 0.54 c | |
1000 mg kg−1 | 12.87 ± 1.92 b | 15.10 ± 1.11 a | 43.62 ± 0.64 d |
Treatments | DOC | NH4+ | NO3− | AOA amoA | AOB amoA | nirK | nirS | nosZ |
---|---|---|---|---|---|---|---|---|
No addition | Ns | * | *** | * | ** | ns | * | Ns |
C addition | Ns | ** | ** | ** | ns | ns | ns | Ns |
N addition | Ns | * | *** | ns | ns | ns | * | Ns |
C AND N addition | ** | *** | *** | *** | *** | ns | ** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Z.; Yu, Y.; Yao, H.; Ge, C. Effect of Zinc Oxide Nanoparticles on Nitrous Oxide Emissions in Agricultural Soil. Agriculture 2021, 11, 730. https://doi.org/10.3390/agriculture11080730
Feng Z, Yu Y, Yao H, Ge C. Effect of Zinc Oxide Nanoparticles on Nitrous Oxide Emissions in Agricultural Soil. Agriculture. 2021; 11(8):730. https://doi.org/10.3390/agriculture11080730
Chicago/Turabian StyleFeng, Ziyi, Yongxiang Yu, Huaiying Yao, and Chaorong Ge. 2021. "Effect of Zinc Oxide Nanoparticles on Nitrous Oxide Emissions in Agricultural Soil" Agriculture 11, no. 8: 730. https://doi.org/10.3390/agriculture11080730
APA StyleFeng, Z., Yu, Y., Yao, H., & Ge, C. (2021). Effect of Zinc Oxide Nanoparticles on Nitrous Oxide Emissions in Agricultural Soil. Agriculture, 11(8), 730. https://doi.org/10.3390/agriculture11080730