Yield Components Stability Assessment of Peas in Conventional and Low-Input Cultivation Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crop Establishment and Experimental Procedures
- (A)
- In Giannitsa, Northern Greece (latitude, 40°77′ N; longitude, 22°39′ E; elevation, 10 m a.s.l.). The soil type was clay (C): sand, 9.1%; silt, 37.5%; clay, 53.8%.
- (B)
- In the farm of the Technological Educational Institute of Western Macedonia in Florina, Northern Greece (latitude, 40°46′ N; longitude, 21°22′ E; elevation, 705 m a.s.l.). The soil type was characterized as a sandy loam (SL): sand, 62%; silt, 26.9%; clay, 11.1%.
- (C)
- In Trikala, Central, Greece (latitude, 39°55′ N; longitude, 21°64′ E; elevation, 120 m a.s.l.). The soil type was characterized as sandy clay loam (SCL): sand, 48.6%; silt, 19.2%; clay, 32.2%.
- (D)
- In Kalambaka, Central Greece (latitude, 39°64′ N; longitude, 21°65′ E; elevation, 190 m a.s.l.). The soil type was silty clay (SiC): sand, 14.6%; silt, 41.2%; clay, 44.2%.
2.2. Measurements
2.3. Data Analysis
3. Results
3.1. ANOVA and Descriptive Statistics on Stability Index
3.2. The AMMI Tool for Multi-Environment Evaluations
3.3. Correlations between Characteristics
4. Discussion
4.1. Seed Yield
4.2. Thousand Seed Weight (TSW)
4.3. Number of Pods per Plant
4.4. Number of Seeds per Pod
4.5. Pod Length
4.6. Pod Width
4.7. Number of Branches
4.8. Plant Height
4.9. Correlations between Traits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elzebroek, T.; Wind, K. Guide to Cultivated Plants; CAB International: Wallingford, UK, 2008. [Google Scholar]
- Tan, M.; Koc, A.; Dumlu, G.Z. Morphological characteristics and seed yield of East Anatolian local forage pea (Pisum sativum ssp. arvense L.) ecotypes. Turk. J. Field Crop. 2012, 17, 24–30. [Google Scholar]
- Food and Agriculture Organization of the United Nations. 2021: FAOSTAT Online Database. Available online: http://www.fao.org (accessed on 17 July 2021).
- Arata, L.; Fabrizi, E.; Sckokai, P. A worldwide analysis of trend in crop yields and yield variability: Evidence from FAO data. Econ. Model. 2020, 90, 190–208. [Google Scholar] [CrossRef]
- Atlin, G. Improving drought resistance by selecting for yield. In Breeding Rice for Drought-Prone Environments; Fischer, K.S., Lafitte, R., Fukai, S., Atlin, G., Hardy, B., Eds.; International Rice Research Institute: Los Banos, Philippines, 2003; pp. 14–22. [Google Scholar]
- Kosev, V.; Mikić, A. Assessing relationships between seed yield components in field pea (Pisum sativum L.) cultivars by correlation and path analysis. Span. J. Agric. Res. 2012, 10, 1075–1080. [Google Scholar] [CrossRef] [Green Version]
- Fasoulas, A.C. The Honeycomb Methodology of Plant Breeding; Department of Genetics and Plant Breeding, Aristotle University of Thessaloniki: Thessaloniki, Greece, 1988. [Google Scholar]
- Edmeades, G.E.; Deutsch, J.A. Stress Tolerance Breeding: Maize That Resists Insects, Drought, Low Nitrogen and Acid Soils; CIMMYT: Mexico City, Mexico, 1994. [Google Scholar]
- Tollenaar, M.; Wu, J. Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci. 1999, 39, 1597–1604. [Google Scholar] [CrossRef]
- Fasoula, V.A. Prognostic Breeding: A new paradigm for crop improvement. Plant Breed. Rev. 2013, 37, 297–347. [Google Scholar]
- Acikgoz, E.; Ustun, A.; Gul, İ.; Anlarsal, A.E.; Tekeli, A.S.; Nizam, İ.; Avcioglu, R.; Geren, H.; Cakmakcı, S.; Aydinoglu, B.; et al. Genotype × environment interaction and stability analysis for dry matter and seed yield in field pea (Pisum sativum L.). Span. J. Agric. Res. 2009, 7, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Ceyhan, E.; Kahraman, A.; Ates, M.K.; Karadas, S. Stability analysis on seed yield and its components in peas. Bulg. J. Agric. Sci. 2012, 18, 905–911. [Google Scholar]
- Bocianowski, J.; Ksiezak, J.; Nowosad, K. Genotype by environment interaction for seeds yield in pea (Pisum sativum L.) using additive main effects and multiplicative interaction model. Euphytica 2019, 215, 191. [Google Scholar] [CrossRef] [Green Version]
- Rana, C.; Sharma, A.; Sharma, K.C.; Mittal, P.; Sinha, B.N.; Sharma, V.K.; Chandel, A.; Thakur, H.; Kaila, V.; Sharma, P.; et al. Stability analysis of garden pea (Pisum sativum L.) genotypes under North Western Himalayas using joint regression analysis and GGE biplots. Genet. Resour. Crop. Evol. 2021, 68, 999–1010. [Google Scholar] [CrossRef]
- Amin, M.; Mohammad, T.; Khan, A.J.; Irfaq, M.; Ali, A.; Tahir, G.R. Yield stability of spring wheat (Triticum aestivum L.) in the North West Frontier Province, Pakistan. Songklanakarin J. Sci. Technol. 2005, 27, 1147–1150. [Google Scholar]
- Gauch, H.G. A simple protocol for AMMI analysis of yield trials. Crop Sci. 2013, 53, 1860–1869. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Ipsilandis, C.G. A Stability Analysis Using AMMI and GGE Biplot Approach on Forage Yield Assessment of Common Vetch in Both Conventional and Low-Input Cultivation Systems. Agriculture 2021, 11, 567. [Google Scholar] [CrossRef]
- Ebdon, J.S.; Gauch, H.G. Direct validation of AMMI predictions in turfgrass trials. Crop Sci. 2011, 51, 862–869. [Google Scholar] [CrossRef]
- Greveniotis, V.; Sioki, E.; Ipsilandis, C.G. Estimations of fibre trait stability and type of inheritance in cotton. Czech J. Genet. Plant Breed. 2018, 54, 190–192. [Google Scholar] [CrossRef] [Green Version]
- Fasoula, V.A. A novel equation paves the way for an everlasting revolution with cultivars characterized by high and stable crop yield and quality. In Proceedings of the 11th National Hellenic Conference in Genetics and Plant Breeding, Orestiada, Greece, 31 October–2 November 2006; Hellenic Scientific Society for Genetics and Plant Breeding: Orestiada, Greece, 2006; pp. 7–14. [Google Scholar]
- Steel, R.G.D.; Torie, H. Principles and Procedures of Statistics. Biometrical Approach, 2nd ed.; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Finlay, K.; Wilkinson, G. The analysis of adaptation in a plant-breeding programme. Crop Pasture Sci. 1963, 14, 742–754. [Google Scholar] [CrossRef] [Green Version]
- Koundinya, A.V.V.; Ajeesh, B.R.; Hegde, V.; Sheela, M.N.; Mohan, C.; Asha, K.I. Genetic parameters, stability and selection of cassava genotypes between rainy and water stress conditions using AMMI, WAAS, BLUP and MTSI. Sci. Hotic. 2021, 281, 109949. [Google Scholar]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Ipsilandis, C.G. Assessment of interactions between yield components of common vetch cultivars in both conventional and low-input cultivation systems. Agriculture 2021, 11, 369. [Google Scholar] [CrossRef]
- Georgieva, N.; Nikolova, I.; Kosev, V. Association study of yield and its components in pea (Pisum sativum L.). Int. J. Pharmacogn. 2015, 2, 536–542. [Google Scholar]
- Singh, S.K.; Singh, V.P.; Srivastava, S.; Singh, A.K.; Chaubey, B.K.; Srivastava, R.K. Estimation of correlation coefficient among yield and attributing traits of field pea (Pisum sativum L.). Legume Res. 2018, 41, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Prasad, D.; Nath, S.; Yadav, K.; Kumar Yadav, M.; Kumar Verma, A. Assessment of genetic variability, correlation and path coefficient for yield and yield contributing traits in field pea (Pisum sativum L. var. arvense). Int. J. Chem. Stud. 2018, 6, 2330–2333. [Google Scholar]
Source of Variation | Seed Yield (kg ha−1) | Thousand Seed Weight (g) | Number of Pod per Plant | Number of Seed per Pod | Pod Length (cm) | Pod Width (mm) | Number of Branches | Plant Height (cm) |
---|---|---|---|---|---|---|---|---|
m.s. | m.s. | m.s. | m.s. | m.s. | m.s. | m.s. | m.s. | |
Environments (E) | 1,188,699.179 ** | 148.860 ** | 6.769 ** | 0.220 ** | 5.365 ** | 0.106 ** | 0.623 ** | 66.269 ** |
REPS/Environments | 1,480,010.714 ** | 716.940 ** | 25.303 ** | 1.487 ** | 35.337 ** | 2.159 ** | 0.242 ** | 53.032 ** |
Genotypes (G) | 295,705.219 ** | 172.982 ** | 3.421 ** | 0.093 ** | 4.439 ** | 0.169 ** | 0.105 ** | 65.682 ** |
Genotypes × Cultivation | 610,478.728 ** | 114.072 ** | 5.506 ** | 0.104 ** | 8.819 ** | 0.134 ** | 0.596 ** | 250.160 ** |
Genotypes × Environments (G × E) | 872,219.727 ** | 893.976 ** | 8.589 ** | 0.212 ** | 8.967 ** | 0.503 ** | 0.616 ** | 247.434 ** |
Cultivations | 19,043.123 ns | 7.976 ns | 3.038 × 10−5 ns | 0.123 * | 8.689 ** | 0.315 ** | 0.099 ** | 58.968 * |
Cultivation × Environments | 47,328.389 * | 41.542 ** | 0.890 ** | 0.206 ** | 8.611 ** | 0.159 ** | 0.324 ** | 228.013 ** |
Cultivation × Genotypes × Environments | 520,347.512 ** | 133.164 ** | 4.950 ** | 0.132 ** | 13.814 ** | 0.699 ** | 0.338 ** | 382.801 ** |
Error | 20,472.197 | 9.132 | 0.183 | 0.022 | 0.379 | 0.029 | 0.013 | 9.077 |
Environments | Seed Yield (kg ha−1) | Thousand Seed Weight (g) | Number of Pod per Plant | Number of Seed per Pod | Pod Length (cm) | Pod Width (mm) | Number of Branches | Plant Height (cm) | |
---|---|---|---|---|---|---|---|---|---|
Conventional | Giannitsa | 32 | 305 | 48 | 171 | 379 | 117 | 64 | 217 |
Florina | 25 | 108 | 39 | 118 | 450 | 80 | 55 | 86 | |
Trikala | 24 | 186 | 38 | 85 | 477 | 104 | 45 | 149 | |
Kalambaka | 22 | 204 | 51 | 125 | 415 | 106 | 43 | 117 | |
Low-inputs | Giannitsa | 37 | 252 | 60 | 153 | 411 | 115 | 72 | 227 |
Florina | 66 | 106 | 54 | 132 | 505 | 76 | 47 | 99 | |
Trikala | 37 | 241 | 51 | 130 | 449 | 100 | 64 | 162 | |
Kalambaka | 24 | 218 | 57 | 143 | 397 | 114 | 66 | 124 | |
Conventional and Low-inputs | Giannitsa | 34 | 279 | 53 | 161 | 399 | 117 | 66 | 223 |
Florina | 33 | 107 | 44 | 126 | 482 | 79 | 51 | 93 | |
Trikala | 29 | 210 | 44 | 104 | 466 | 103 | 53 | 157 | |
Kalambaka | 23 | 214 | 54 | 133 | 408 | 111 | 52 | 122 |
Genotypes | Seed Yield (kg ha−1) | Thousand Seed Weight (g) | Number of Pod per Plant | Number of Seed per Pod | Pod Length (cm) | Pod Width (mm) | Number of Branches | Plant Height (cm) | |
---|---|---|---|---|---|---|---|---|---|
Conventional | Olympos | 45 | 604 | 82 | 158 | 590 | 83 | 169 | 418 |
Pisso | 59 | 639 | 74 | 191 | 560 | 183 | 160 | 636 | |
Livioletta | 54 | 350 | 56 | 159 | 739 | 117 | 103 | 683 | |
Vermio | 54 | 434 | 92 | 124 | 592 | 188 | 136 | 1054 | |
Dodoni | 29 | 374 | 56 | 84 | 533 | 121 | 181 | 520 | |
Low-inputs | Olympos | 66 | 495 | 68 | 134 | 620 | 185 | 128 | 399 |
Pisso | 40 | 584 | 73 | 166 | 540 | 128 | 297 | 741 | |
Livioletta | 36 | 413 | 65 | 137 | 540 | 117 | 192 | 1127 | |
Vermio | 142 | 502 | 90 | 148 | 742 | 163 | 118 | 1057 | |
Dodoni | 43 | 364 | 53 | 193 | 620 | 112 | 107 | 621 | |
Conventional and Low-inputs | Olympos | 46 | 524 | 71 | 142 | 614 | 116 | 136 | 409 |
Pisso | 48 | 614 | 74 | 176 | 557 | 152 | 196 | 691 | |
Livioletta | 41 | 380 | 61 | 148 | 628 | 119 | 133 | 864 | |
Vermio | 79 | 467 | 91 | 136 | 669 | 174 | 128 | 1062 | |
Dodoni | 32 | 375 | 45 | 119 | 576 | 118 | 131 | 565 |
Genotypes | Seed Yield (kg ha−1) | Thousand Seed Weight (g) | Number of Pod per Plant | Number of Seed per Pod | Pod Length (cm) | Pod Width (mm) | Number of Branches | Plant Height (cm) | |
---|---|---|---|---|---|---|---|---|---|
Giannitsa | |||||||||
Conventional | Olympos | 49 | 989 | 67 | 144 | 709 | 82 | 276 | 1282 |
Pisso | 46 | 721 | 60 | 238 | 641 | 276 | 110 | 1252 | |
Livioletta | 53 | 514 | 45 | 191 | 706 | 166 | 178 | 1354 | |
Vermio | 47 | 520 | 106 | 352 | 441 | 189 | 457 | 1491 | |
Dodoni | 31 | 508 | 59 | 120 | 367 | 97 | 231 | 1191 | |
Low-inputs | Olympos | 110 | 546 | 76 | 128 | 631 | 217 | 216 | 780 |
Pisso | 30 | 485 | 61 | 232 | 645 | 163 | 395 | 1010 | |
Livioletta | 32 | 629 | 57 | 177 | 489 | 142 | 213 | 1287 | |
Vermio | 156 | 846 | 94 | 152 | 889 | 109 | 245 | 1364 | |
Dodoni | 74 | 495 | 66 | 255 | 598 | 144 | 214 | 816 | |
Conventional and Low-inputs | Olympos | 70 | 745 | 76 | 142 | 715 | 127 | 253 | 980 |
Pisso | 39 | 619 | 65 | 235 | 688 | 211 | 134 | 1172 | |
Livioletta | 42 | 606 | 52 | 195 | 609 | 164 | 124 | 1354 | |
Vermio | 78 | 659 | 102 | 222 | 632 | 145 | 327 | 1510 | |
Dodoni | 46 | 535 | 53 | 175 | 484 | 124 | 238 | 982 | |
Florina | |||||||||
Conventional | Olympos | 79 | 502 | 96 | 213 | 408 | 56 | 372 | 729 |
Pisso | 90 | 508 | 101 | 195 | 640 | 106 | 263 | 526 | |
Livioletta | 83 | 383 | 58 | 167 | 730 | 127 | 299 | 625 | |
Vermio | 74 | 374 | 106 | 109 | 752 | 139 | 386 | 853 | |
Dodoni | 32 | 150 | 66 | 77 | 521 | 92 | 194 | 866 | |
Low-inputs | Olympos | 294 | 303 | 88 | 121 | 644 | 189 | 369 | 746 |
Pisso | 53 | 443 | 81 | 132 | 704 | 89 | 260 | 589 | |
Livioletta | 63 | 274 | 56 | 114 | 527 | 114 | 174 | 856 | |
Vermio | 596 | 452 | 86 | 103 | 688 | 132 | 313 | 1200 | |
Dodoni | 175 | 241 | 60 | 481 | 715 | 116 | 102 | 1305 | |
Conventional and Low-inputs | Olympos | 69 | 296 | 66 | 158 | 535 | 91 | 284 | 773 |
Pisso | 65 | 482 | 95 | 163 | 716 | 101 | 280 | 573 | |
Livioletta | 46 | 333 | 61 | 143 | 655 | 128 | 220 | 747 | |
Vermio | 140 | 427 | 99 | 114 | 769 | 139 | 305 | 1055 | |
Dodoni | 32 | 195 | 37 | 142 | 644 | 109 | 125 | 1055 | |
Trikala | |||||||||
Conventional | Olympos | 42 | 558 | 70 | 186 | 731 | 95 | 306 | 1019 |
Pisso | 55 | 598 | 86 | 164 | 536 | 153 | 216 | 1093 | |
Livioletta | 53 | 367 | 67 | 119 | 930 | 124 | 346 | 1023 | |
Vermio | 58 | 950 | 70 | 74 | 577 | 294 | 311 | 2554 | |
Dodoni | 24 | 626 | 33 | 50 | 749 | 197 | 330 | 1548 | |
Low-inputs | Olympos | 96 | 669 | 93 | 295 | 455 | 130 | 97 | 1150 |
Pisso | 51 | 783 | 70 | 166 | 646 | 83 | 258 | 2108 | |
Livioletta | 40 | 622 | 63 | 88 | 506 | 132 | 193 | 2912 | |
Vermio | 161 | 1061 | 90 | 196 | 924 | 211 | 309 | 1672 | |
Dodoni | 48 | 492 | 42 | 95 | 606 | 125 | 129 | 1366 | |
Conventional and Low-inputs | Olympos | 42 | 597 | 78 | 239 | 591 | 115 | 134 | 1109 |
Pisso | 56 | 726 | 81 | 176 | 627 | 115 | 251 | 1542 | |
Livioletta | 46 | 443 | 70 | 106 | 678 | 137 | 261 | 1614 | |
Vermio | 89 | 1037 | 83 | 114 | 761 | 259 | 246 | 2142 | |
Dodoni | 31 | 561 | 37 | 69 | 706 | 159 | 189 | 1552 | |
Kalambaka | |||||||||
Conventional | Olympos | 32 | 597 | 76 | 293 | 653 | 117 | 222 | 821 |
Pisso | 56 | 669 | 78 | 204 | 700 | 283 | 198 | 1932 | |
Livioletta | 69 | 490 | 66 | 153 | 730 | 182 | 260 | 1319 | |
Vermio | 54 | 363 | 96 | 102 | 709 | 131 | 105 | 1802 | |
Dodoni | 22 | 1098 | 69 | 90 | 682 | 163 | 157 | 806 | |
Low-inputs | Olympos | 54 | 679 | 68 | 196 | 686 | 239 | 228 | 1145 |
Pisso | 34 | 680 | 82 | 154 | 577 | 211 | 231 | 1027 | |
Livioletta | 28 | 494 | 79 | 214 | 892 | 289 | 295 | 1302 | |
Vermio | 210 | 505 | 85 | 141 | 581 | 216 | 106 | 1778 | |
Dodoni | 35 | 583 | 53 | 160 | 524 | 92 | 195 | 812 | |
Conventional and Low-inputs | Olympos | 41 | 678 | 77 | 215 | 715 | 167 | 207 | 990 |
Pisso | 45 | 713 | 85 | 182 | 668 | 259 | 170 | 1433 | |
Livioletta | 43 | 526 | 77 | 191 | 856 | 238 | 196 | 1375 | |
Vermio | 92 | 452 | 96 | 124 | 679 | 175 | 109 | 1852 | |
Dodoni | 29 | 798 | 58 | 123 | 614 | 126 | 172 | 825 |
Thousand Seed Weight (g) | Number of Pod per Plant | Number of Seed per Pod | Pod Length (cm) | Pod Width (mm) | Number of Branches | Plant Height (cm) | |
---|---|---|---|---|---|---|---|
Seed Yield (kg ha−1) | 0.730 ** | 0.477 ** | 0.237 ** | 0.309 ** | 0.292 ** | 0.602 ** | 0.491 ** |
Thousand seed weight (g) | 0.329 ** | 0.154 ** | 0.275 ** | 0.293 ** | 0.551 ** | 0.541 ** | |
Number of pod per plant | 0.801 ** | 0.792 ** | 0.780 ** | 0.764 ** | 0.558 ** | ||
Number of seed per pod | 0.814 ** | 0.810 ** | 0.587 ** | 0.539 ** | |||
Pod length (cm) | 0.901 ** | 0.660 ** | 0.680 ** | ||||
Pod width (mm) | 0.614 ** | 0.632 ** | |||||
Number of branches | 0.731 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Ipsilandis, C.G. Yield Components Stability Assessment of Peas in Conventional and Low-Input Cultivation Systems. Agriculture 2021, 11, 805. https://doi.org/10.3390/agriculture11090805
Greveniotis V, Bouloumpasi E, Zotis S, Korkovelos A, Ipsilandis CG. Yield Components Stability Assessment of Peas in Conventional and Low-Input Cultivation Systems. Agriculture. 2021; 11(9):805. https://doi.org/10.3390/agriculture11090805
Chicago/Turabian StyleGreveniotis, Vasileios, Elisavet Bouloumpasi, Stylianos Zotis, Athanasios Korkovelos, and Constantinos G. Ipsilandis. 2021. "Yield Components Stability Assessment of Peas in Conventional and Low-Input Cultivation Systems" Agriculture 11, no. 9: 805. https://doi.org/10.3390/agriculture11090805
APA StyleGreveniotis, V., Bouloumpasi, E., Zotis, S., Korkovelos, A., & Ipsilandis, C. G. (2021). Yield Components Stability Assessment of Peas in Conventional and Low-Input Cultivation Systems. Agriculture, 11(9), 805. https://doi.org/10.3390/agriculture11090805