Antioxidant Capacity and Nutritional Value of Potato Tubers (Solanum tuberosum L.) as a Dependence of Growing Conditions and Long-Term Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location and Treatment
2.2. Plant Sampling
2.3. The Laboratory Analyses
2.4. Statistical Analysis
3. Results
3.1. Total Protein Content in Potato Tubers after Harvest and after 6 Months of Storage
3.2. Total Polyphenols Content in Potato Tubers after Harvest and after 6 Months of Storage
3.3. Chlorogenic Acid Content in Potato Tubers after Harvest and after 6 Months of Storage
3.4. Antioxidant Capacity (FRAP) in Potato Tubers after Harvest and after 6 Months of Storage
3.5. Total Amino Acids in Potato Tubers after Harvest and after 6 Months of Storage
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Staniak, M. Sustainable development of rural areas in environmental aspect. Water-Environ.-Rular Areas 2009, 9, 187–194. [Google Scholar]
- Mrówczyński, M.; Magdalena Roth, M. Sustainable use of plant protection products. Problems Agricult. Eng. 2009, 2, 93–97. (In Polish) [Google Scholar]
- Rutkowska, A.; Pikuła, D. Effect of crop rotation and nitrogen fertilization on the quality and quantity of soil organic matter. Soil Process. Curr. Trends Qual. Assess. 2013, 9, 249–267. [Google Scholar]
- FAO. Food and Agriculture Organization of the United Nations. The Future of Food and Agriculture. Alternative Pathways to 2050. 2018. Available online: http://www.fao.org/global-perspectives-studies/resources/detail/en/c/1157074/ (accessed on 1 October 2021).
- Gustavsen, G.W. Sustainability and Potato Consumption. Potato Res. 2021, 64, 571–586. [Google Scholar] [CrossRef]
- Singh, B.; Raigond, P.; Dutt, S.; Kumar, M. Potatoes for Food and Nutritional Security. In Potato; Raigond, P., Singh, B., Dutt, S., Chakrabarti, S.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Kunachowicz, H.; Nadolna, I.; Iwanow, K.; Przygoda, B. Nutritional Value of Selected Food Products and Typical Dishes; Wyd. Lekarskie PZWL: Warszawa, Poland, 2010. (In Polish) [Google Scholar]
- Burlingame, B.; Mouille´, B.; Charrondie´re, R. Nutrients, bioactive non-nutrients and anti-nutrients in potatoes. J Food Compos. Analy. 2009, 22, 494–502. [Google Scholar] [CrossRef]
- Ezekiel, R.; Singh, N.; Sharma, S.; Kaur, A. Beneficial phytochemicals in potato—A review. Food Res. Int. 2013, 50, 487–496. [Google Scholar] [CrossRef]
- FAOSTAT, Statistical Database. 2020. Available online: http://faostat.fao.org/ (accessed on 1 October 2021).
- Gumul, D.; Ziobro, R.; Noga, M.; Sabat, R. Characterisation of five potato cultivars according to their nutritional and pro-health components. Acta Sci. Pol. Technol. Aliment 2011, 10, 73–81. [Google Scholar]
- Tsao, R. Phytochemical profiles of potato and their roles in human health and wellness. In Global Science Books Food; Elsevier: Amsterdam, The Netherlands, 2009; pp. 125–135. [Google Scholar]
- Reddivari, L.; Hale, A.L.; Miller, J.C. Genotype, location, and year influence antioxidant activity, carotenoid content, phenolic content, and composition in specialty potatoes. J. Agr. Food Chem. 2007, 55, 8073–8079. [Google Scholar] [CrossRef]
- Galani, J.H.Y.; Mankad, P.M.; Shah, A.K.; Patel, N.J.; Acharya, R.R.; Talati, J.G. Effect of storage temperature on vitamin C, total phenolics, UPLC phenolic acid profile and antioxidant capacity of eleven potato (Solanum tuberosum) varieties. Hort. Plant J. 2017, 3, 73–89. [Google Scholar] [CrossRef]
- Akyol, H.; Riciputi, Y.; Capanoglu, E.; Caboni, M.F.; Verardo, V. Phenolic Compounds in the Potato and Its Byproducts: An Overview. Int. J. Mol. Sci. 2016, 17, 835. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, S.; Pandino, G.; Mauromicale, G. The effect on tuber quality of an organic versus a conventional cultivation system in the early crop potato. J. Food Compos. Anal. 2017, 62, 189–196. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauromicale, G. The influence of growing environment on the antioxidant and mineral content of early crop potato. J. Food Compos. Anal. 2013, 32, 28–35. [Google Scholar] [CrossRef]
- Smith-Spangler, C.; Brandeau, M.L.; Hunter, G.E.; Bavinger, J.C.; Pearson, M.; Eschbach, P.J.; Sundaram, V.; Liu, H.; Schirmer, P.; Stave, C.; et al. Are organic foods safer or healthier than conventional alternatives? A systematic review. Ann. Intern. Med. 2012, 157, 348–366. [Google Scholar] [CrossRef] [Green Version]
- Beals, K.A. Potatoes, Nutrition and Health. Am. J. Potato Res. 2019, 96, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Mangge, H.; Becker, K.; Fuchs, D.; Gostner, J.M. Antioxidants, inflammation and cardiovascular disease. World J. Cardiol. 2014, 6, 462–477. [Google Scholar] [CrossRef] [PubMed]
- Camire, M.E.; Kubow, S.; Donnelly, D.J. Potatoes and human health. Crit. Rev. Food Sci. Nutr. 2009, 49, 823–840. [Google Scholar] [CrossRef]
- Murr, C.; Winklhofer-Roob, B.M.; Schroecksnadel, K.; Maritschnegg, M.; Mangge, H.; Bo¨hm, B.O.; Winkelmann, B.R.; März, W.; Fuchs, D. Inverse association between serum concentrations of neopterin and antioxidants in patients with and without angiographic coronary artery disease. Atherosclerosis 2009, 202, 543–549. [Google Scholar] [CrossRef]
- Friedman, M. Chemistry, Biochemistry, and Dietary Role of Potato Polyphenols. A Review. J. Agric. Food Chem. 1997, 45, 1523–1540. [Google Scholar] [CrossRef]
- Lovat, C.; Nassar, A.M.K.; Kubow, S.; Li, X.-Q.; Donnelly, D.J. Metabolic Biosynthesis of Potato (Solanum tuberosum L.) Antioxidants and Implications for Human Health. Crit. Rev. Food Sci. Nutr. 2016, 56, 2278–2303. [Google Scholar] [CrossRef]
- McGill, C.R.; Kurilich, A.C.; Davignon, J. The role of potatoes and potato components in cardiometabolic health: A review. Ann. Med. 2013, 45, 467–473. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Q.; He, M.; Mir, P.; Su, J.; Yang, Q. Inhibitory effect of antioxidant extracts from various potatoes on the proliferation of human colon and liver cancer cells. Nutr. Cancer 2011, 63, 1044–1052. [Google Scholar] [CrossRef]
- Willcox, J.K.; Ash, S.L.; Catignani, G.L. Antioxidants and Prevention of Chronic Disease. J. Crit. Rev. Food Sci. Nutr. 2004, 44, 275–295. [Google Scholar] [CrossRef]
- Ikanone, C.E.O.; Oyekan, P.O. Effect of Boiling and Frying on the Total Carbohydrate, Vitamin C and Mineral Contents of Irish (Solanun tuberosum) and Sweet (Ipomea batatas) Potato Tubers. Nigerian Food J. 2014, 32, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, A.D.; Crosby, G.A. A review of the impact of preparation and cooking on the nutritional quality of vegetables and legumes. Intern. J. Gastr. Food Sci. 2016, 3, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Trawczyński, C. Nutrient balance in the organic crop production system on the light soil. J. Res. Appl. Agric. Eng. 2010, 55, 166–168. (In Polish) [Google Scholar]
- Trawczyński, C.; Bogdanowicz, P. The use of Soil Fertiliser in the aspect of ecological potato cultivation. J. Res. App. Agric. Eng. 2007, 52, 94–97. (In Polish) [Google Scholar]
- Pikuła, D. Environmental aspects of managing the organic matter in agriculture. Econ. Reg. Stud. 2015, 8, 98–112. [Google Scholar]
- Zydlik, P.; Zydlik, Z. Impact of biological effective microorganisms (EM) preparations on some physico-chemical properties of soil and the vegetative growth of apple-tree rootstocks. Nauka Przyr. Techn. 2008, 2, 1–8. [Google Scholar]
- Shah, H.S.; Saleem, M.F.; Shahid, M. Effect of different fertilizers and effective microorganisms on growth, yield and quality of maize. Int. J. Agric. Biol. 2001, 3, 378–379. [Google Scholar]
- Kołodziejczyk, M. Effect of nitrogen fertilization and microbial preparations on potato yielding. Plant. Soil Environ. 2014, 60, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Długosz, J.; Orzechowski, M.; Piotrowska, A.; Smólczyński, S.; Bogdanowicz, P. Changes in some soil properties under the influence of the soil fertilizer UGmax. Pol. J. Environ. Stud. 2012, 21, 32–34. [Google Scholar]
- Jabłoński, K. The effect of new generation multi-component fertilization on potato yield and quality. Zesz. Probl. Post. Nauk Rol. 2006, 511, 309–315. [Google Scholar]
- Wichrowska, D.; Wszelaczyńska, E.; Pobereżny, J. Effect of nutrient supply from different sources on some quality parameters of potato tubers. J. Elementol. 2015, 20, 217–230. [Google Scholar] [CrossRef]
- Wszelaczynska, E.; Poberezny, J.; Wichrowska, D. Yielding and size of losses after storage of potato (Solanum tuberosum L.) cultivar ‘Satina’ depending on the farming system and the soil fertilizer application. Fresenius Environ. Bull. 2016, 25, 3159–3168. [Google Scholar]
- Wichrowska, D.; Szczepanek, M. Possibility of Limiting Mineral Fertilization in Potato Cultivation by Using Bio-Fertilizer and Its Influence on Protein Content in Potato Tubers. Agriculture 2020, 10, 442. [Google Scholar] [CrossRef]
- Sweeney, R.A.; Rexroad, P.R. Comparison of LECO FP-228 “nitrogen determinator” with AOAC copper catalyst Kjeldahl method for crude protein. J. Assoc. O Anal. Chem. 1987, 70, 1028–1030. [Google Scholar] [CrossRef]
- Fisher, G.H.; Arias, I.; Quesada, I.; D’Aniello, S.; Errico, F.; Di Fiore, M.M.; D’Aniello, A. A fast and sensitive method for measuring picomole levels of total free amino acids in very small amounts of biological tissues. Amino Acids 2001, 20, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, D.W.; Bain, H.; Dale, M.F. Development of a rapid colorimetric method for the determination of chlorogenic acid in freeze-dried potato tubers. J. Sci. Food. Agric. 1992, 58, 41–48. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods in ENZYMOLOGY; Abelson, J.N., Simon, M.I., Sies, H., Eds.; Academic Press: Burlington, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar]
- Leszczyński, W. Nutrition value of potato and potato products (Review of literature). Biul. IHAR 2012, 266, 5–20. (In Polish) [Google Scholar]
- Hassanpanah, D.; Hassanabadi, H.; Azizi Chakherchaman, S.H. Evaluation of Cooking Quality Characteristics of Advanced Clones and Potato Cultivars. Am. J. Food Technol. 2011, 6, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Wichrowska, D.; Wojdyła, T.; Rogozińska, I. Concentrations of some macroelements in potato tubers stored at 4 °C and 8 °C. J. Elementol. 2009, 14, 373–382. [Google Scholar]
- Garcia, M.C.; Puchalska, P.; Esteve, C.; Marina, M.L. Vegetable foods: A cheap source of proteins and peptides with antihypertensive, antioxidant, and other less occurrence bioactivities. Talanta 2013, 106, 328–349. [Google Scholar] [CrossRef] [PubMed]
- Elfaki, A.E.; Abbsher, A.M. Nutritional situation of potato subjected to Sudanese cooking methods. J. Appl. Sci. Res. 2010, 6, 980–984. [Google Scholar]
- Harkema, J. Potato Proteins “Free From” Texture & Nutrition. Proceeding of the Conference Solanic Potato Proteins-Free From Food Expo, Barcelona, Belgium, 4–5 June 2015; Available online: http://www.freefromfoodexpo.com/pdf/2015-conference-solanic.pdf (accessed on 1 October 2021).
- Järvan, M.; Edesi, L. The effect of cultivation methods on the yield and biological quality of potato. Agronomy Res. 2009, 7, 289–299. [Google Scholar]
- Pęksa, A. Potato protein—Characteristics of properties. Post. Nauk Rol. 2003, 5, 79–94. (In Polish) [Google Scholar]
- Wierzbicka, A.; Trawczyński, C. Factors influencing the content and yield of protein in potato tubers. Biul. IHAR 2012, 266, 181–190. (In Polish) [Google Scholar]
- Zarzecka, K.; Gugała, M. The influence of herbicides and their mixtures on total proteins content and proper proteins in potato tubers. Plant Soil Environ. 2005, 51, 517–522. [Google Scholar] [CrossRef] [Green Version]
- Kołodziejczyk, M. Effect of nitrogen fertilisation and microbial preparations on quality and storage loses in table potato. Acta Agroph 2016, 23, 67–78. [Google Scholar]
- Reddivari, L.; Hale, H.A.; Creighton-Miler, J. Determination of phenolic content, composition and their contribution to antioxidant activity in specialty potato selections. Am. J. Potato Res. 2007, 84, 275–282. [Google Scholar] [CrossRef]
- Jeske, M.; Pańka, D.; Wichrowska, D. Effect of chemical protection, organic fertilization and UGmax soil conditioner on health status of potato tubers. Prog. Plant Prot. 2015, 55, 92–97. [Google Scholar]
- Černá, M.; Kráčmar, S. The effect of storage on the amino acids composition in potato tubers. Acta Univ. Agric. Silvicult. Mendelianae Brunensis 2010, 58, 49–55. [Google Scholar]
- Brierley, E.R.; Bonner, P.L.R.; Cobb, A.H. Factors influencing the free amino acid content of potato (Solanum tuberosum L.) tubers during prolonged storage. J. Sci. Food Agric. 1996, 70, 515–525. [Google Scholar] [CrossRef]
- Brierley, E.R.; Bonner, P.L.R.; Cobb, A.H. Aspects of amino acids metabolism in stored potato tubers (cv. Pentland Dell). Plant Sc. 1997, 127, 17–24. [Google Scholar] [CrossRef]
- André, C.M.; Schafleitner, R.; Guignard, C.; Oufir, M.; Aliaga, C.A.; Nomberto, G.; Hoffmann, L.; Hausman, J.F.; Evers, D.; Larondelle, Y. Modification of the health-promoting value of potato tubers field grown under drought stress: Emphasis on dietary antioxidant and glycoalkaloid contents in five native andean cul¬tivars (Solanum tuberosum L.). J. Agricult. Food Chem. 2009, 57, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Albishi, T.; John, J.A.; Al-Khalifa, A.S.; Shahidi, F. Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. J. Funct. Foods 2013, 5, 590–600. [Google Scholar] [CrossRef]
- Eryigit, T.; Kumlay, A.M.; Yildirim, B. Potato antioxidants: Effect of environmental conditions and agronomical practices. In Proceedings of the 19th Triennial Conference of the European Association for Potato Research EAPR, Brussels, Belgium, 6–11 July 2014; Abstracts Book (appendix). p. 288. [Google Scholar]
- Mäder, J.; Rawel, H.; Kroh, L.W. Composition of phenolic compounds and glycoalkaoids α-solanine and α-chaconine during commercial potato processing. J. Agric. Food. Chem. 2009, 57, 6292–6297. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poprac, P.; Jomova, K.; Simunkova, M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci. 2017, 38, 592–607. [Google Scholar] [CrossRef]
- Brown, C.R. Antioxidants in potato. Am. J. Pot. Res. 2005, 62, 163–172. [Google Scholar] [CrossRef]
- Matysiak, K.; Adamczewski, K.; Kaczmarek, S. The influence of the Asahi SL biostimulator on the yield and selected quantitative and qualitative characteristics of some agricultural plants cultivated in the conditions of Wielkopolska. Prog. Plant Prot. 2011, 51, 1849–1857. (In Polish) [Google Scholar]
- Zarzecka, K.; Gugała, M. The effect of herbicides and soil tillage systems on the content of polyphenols in potato tubers. Pol J. Environ. Stud. 2011, 20, 513–517. [Google Scholar]
- Hamouz, K.; Lachman, J.; Pazderu, K.; Hejtmankova, K.; Cimr, J.; Musilova, J.; Pivec, V.; Orsak, M.; Svobodova, A. Effect of cultivar, location and method of cultivation on the content of chlorogenic acid in potatoes with different flesh colour. Plant Soil Environ. 2013, 59, 465–471. [Google Scholar] [CrossRef] [Green Version]
- Lemos, M.A.; Aliyu, M.M.; Kynoch, G.; Joseph, L.R.; Hungerford, G. Effect of cooking on the levels of bioactive compounds in Purple Majesty Potato. In Proceedings of the Inside Food Symposium, Leuven, Belgium, 9–12 April 2013; pp. 1–6. [Google Scholar]
- Reyes, L.F.; Miller, J.C.; Cisneros-Zevallos, L. Environmental conditions influence the content any yield of anthocyanins and total phenolics in purple- and redflesh potatoes during tuber development. Am. J. Potato Res. 2004, 81, 187–193. [Google Scholar] [CrossRef]
- Gheribi, E. Importance of polyphenolic compounds from fruits and vegetables in atherosclerosis dietotherapy. Med. Rodz. 2013, 4, 149–153. (In Polish) [Google Scholar]
- Mystkowska, I.; Zarzecka, K.; Gugała, M.; Sikorska, A. The Polyphenol Content in Three Edible Potato Cultivars Depending on the Biostimulants Used. Agriculture 2020, 10, 269. [Google Scholar] [CrossRef]
- Hajślova, J.; Schulzova, V.; Slanina, P.; Janne, K.; Hellenas, K.E.; Andersson, C.H. Quality of organically and conventionally grown potatoes; Four year study of micronutrients, metals, secondary, metabolites, enzymic browning and organoleptic properties. Food Addit. Contam. 2005, 22, 514–534. [Google Scholar] [CrossRef] [PubMed]
- Grudzińska, M.; Czerko, Z.; Zarzyńska, K.; Borowska-Komenda, M. Bioactive Compounds in Potato Tubers: Effects of Farming System, Cooking Method, and Flesh Color. PLoS ONE 2016, 11, e0153980. [Google Scholar] [CrossRef] [Green Version]
- Riciputi, Y.; Diaz-de-Cerio, E.; Akyol, H.; Capanoglu, E.; Cerretani, L.; Caboni, M.F.; Verardo, V. Establishment of ultrasound-assisted extraction of phenolic compounds from industrial potato by-products using response surface methodology. Food Chem. 2018, 269, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.; Levin, C.E. Analysis and biological activities of potato glycoalkaloids, calystegine alkaloids, phenolic compounds, and anthocyanins. In Advances in Potato Chemistry and Technology; Singh, J., Kaur, L., Eds.; Elsevier-Academic Press: Amsterdam, The Netherlands, 2009; pp. 127–161. [Google Scholar]
- Külen, O.; Stushnoff, C.; Holm, D.G. Effect of cold storage on total phenolics content, antioxidant activity and vitamin C level of selected potato clones. J. Sci. Food Agric. 2013, 93, 2437–2444. [Google Scholar] [CrossRef]
- Zarzecka, K.; Gugała, M.; Sikorska, A.; Mystkowska, I.; Baranowska, A.; Niewęgłowski, M.; Dołęga, H. The effect of herbicides and biostimulants on polyphenol content of potato (Solanum tuberosum L.) tubers and leaves. J. Saudi Soc. Agric. Sci. 2019, 18, 102–106. [Google Scholar] [CrossRef]
- Escuredo, O.; Seijo-Rogríguez, A.; Rodríguez-Flores, M.S.; Míguez, M.; Seijo, M.C. Influence of weather conditions on the physicochemical characteristics of potato tubers. Plant Soil Environ. 2018, 64, 317–323. [Google Scholar]
- Furrer, A.; Cladis, D.P.; Kurilich, A.; Manoharan, R.; Ferruzzi, M.G. Changes in phenolic content of commercial potato varieties through industrial processing and fresh preparation. Food Chem. 2017, 218, 47–55. [Google Scholar] [CrossRef]
- Valiñas, M.A.; Lanteri, M.L.; Ten Have, A.; Andreu, A.B. Chlorogenic acid, anthocyanin and flavan-3-ol biosynthesis in flesh and skin of Andean potato tubers (Solanum tuberosum subsp. andigena). Food Chem. 2017, 229, 837–846. [Google Scholar] [CrossRef]
- Orsák, M.; Hamouz, K.; Lachman, J.; Kasal, P. Chlorogenic acid content in potato tubers with colored flesh as affected by a genotype, location and long-term storage. Plant Soil Environ. 2019, 65, 355–360. [Google Scholar] [CrossRef]
Bioactive Compounds | Organic Fertilizers | Mineral Fertilizers | Bio- Fertilizer | Organic Fertilizers × Mineral Fertilizers | Organic Fertilizers × Bio- Fertilizer | Mineral Fertilizers × Bio- Fertilizer | Organic Fertilizers × Mineral Fertilizers × Bio- Fertilizer |
---|---|---|---|---|---|---|---|
After harvest | |||||||
Protein | n.s. | ** | ** | n.s. | n.s. | ** | ** |
Total polyphenols | ** | ** | ** | ** | ** | ** | ** |
Chlorogenic acid | ** | n.s. | n.s. | n.s. | n.s | n.s. | n.s |
Antioxidant potential FRAP | ** | ** | ** | * | * | * | ** |
After storage | |||||||
Protein | n.s. | ** | ** | n.s. | n.s. | n.s. | n.s. |
Total polyphenols | ** | ** | ** | ** | ** | ** | ** |
Chlorogenic acid | ** | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Antioxidant potential FRAP | ** | ** | ** | * | * | ** | ** |
Type of Organic Fertilizer | Bio-Fertilizer Application | Mineral NPK Fertilization | Mean | |
---|---|---|---|---|
100% | 50% | |||
Control | Control | 108.1 ± 0.02 | 103.8 ± 0.03 | 105.9 |
Bio-fertilizer | 110.9 ± 0.04 | 104.4 ± 0.04 | 107.7 | |
Catch crop (fodder pea) | Control | 111.3 ± 0.06 | 99.1 ± 0.09 | 105.2 |
Bio-fertilizer | 114.4 ± 0.01 | 102.8 ± 0.04 | 108.6 | |
Straw | Control | 111.4 ± 0.02 | 103.4 ± 0.12 | 107.4 |
Bio-fertilizer | 112.5 ± 0.04 | 108.4 ± 0.08 | 110.5 | |
Farmyard manure (FYM) | Control | 104.7 ± 0.08 | 100.3 ± 0.04 | 102.5 |
Bio-fertilizer | 104.1 ± 0.06 | 104.1 ± 0.06 | 104.1 | |
Mean | Control | 109.5 | 104.1 | 106.8 a |
Catch crop (fodder pea) | 112.9 | 112.9 | 100.9 a | |
Straw | 112.8 | 112.0 | 105.9 a | |
Farmyard manure (FYM) | 104.4 | 104.4 | 102.2 a | |
Control | 108.9 | 101.7 | 105.3 B | |
Bio-fertilizer | 110.5 | 104.9 | 107.7 A | |
Mineral NPK Fertilization | 109.7 A | 103.3 B | 106.5 |
Bioactive Compounds | Organic Fertilizers × Storage | Mineral Fertilizers × Storage | Bio-Fertilizer × Storage |
---|---|---|---|
Protein | ** (-) | ** (-) | ** (-) |
Total polyphenols | ** (-) | ** (-) | ** (-) |
Chlorogenic acid | ** (-) | n.s. | n.s. |
Antioxidant potential FRAP | ** (-) | ** (-) | ** (-) |
Type of Organic Fertilizer | Bio-Fertilizer Application | Mineral NPK Fertilization | Mean | |
---|---|---|---|---|
100% | 50% | |||
Control | Control | 101.6 ± 0.05 | 94.4 ± 0.08 | 98.0 |
Bio-fertilizer | 105.9 ± 0.08 | 98.8 ± 0.07 | 102.4 | |
Catch crop (fodder pea) | Control | 97.2 ± 0.09 | 96.1 ± 0.09 | 98.2 |
Bio-fertilizer | 106.6 ± 0.07 | 98.6 ± 0.08 | 104.1 | |
Straw | Control | 99.4 ± 0.09 | 95.6 ± 0.09 | 97.5 |
Bio-fertilizer | 106.9 ± 0.09 | 99.4 ± 0.10 | 103.2 | |
Farmyard manure (FYM) | Control | 102.4 ± 0.11 | 98.1 ± 0.11 | 103.8 |
Bio-fertilizer | 102.6 ± 0.09 | 102.1 ± 0.11 | 103.3 | |
Mean | Control | 103.8 | 96.6 | 100.2 a |
Catch crop (fodder pea) | 101.9 | 97.4 | 101.2 a | |
Straw | 103.2 | 97.5 | 100.4 a | |
Farmyard manure (FYM) | 102.5 | 100.1 | 103.6 a | |
Control | 100.2 | 96.1 | 99.4 B | |
Bio-fertilizer | 105.5 | 99.7 | 103.3 A | |
Mineral NPK Fertilization | 102.8 A | 97.9 B | 101.3 |
Type of Organic Fertilizer | Bio-Fertilizer Application | Mineral NPK Fertilization | Mean | |
---|---|---|---|---|
100% | 50% | |||
Control | Control | 4.77 ± 0.01 | 4.68 ± 0.01 | 4.73 |
Bio-fertilizer | 4.81 ± 0.01 | 4.72 ± 0.02 | 4.77 | |
Catch crop (fodder pea) | Control | 5.21 ± 0.02 | 4.89 ± 0.01 | 5.05 |
Bio-fertilizer | 5.64 ± 0.01 | 5.06 ± 0.01 | 5.35 | |
Straw | Control | 4.35 ± 0.01 | 4.12 ± 0.03 | 4.24 |
Bio-fertilizer | 4.58 ± 0.02 | 4.26 ± 0.01 | 4.42 | |
Farmyard manure (FYM) | Control | 4.81 ± 0.03 | 4.62 ± 0.01 | 4.72 |
Bio-fertilizer | 4.98 ± 0.00 | 4.85 ± 0.02 | 4.92 | |
Mean | Control | 4.79 | 4.70 | 4.75 c |
Catch crop (fodder pea) | 5.43 | 4.98 | 5.20 a | |
Straw | 4.47 | 4.19 | 4.33 d | |
Farmyard manure (FYM) | 4.90 | 4.74 | 4.82 b | |
Control | 4.79 | 4.58 | 4.68 B | |
Bio-fertilizer | 5.00 | 4.72 | 4.86 A | |
Mineral NPK Fertilization | 4.89 A | 4.65 B | 4.77 |
Type of Organic Fertilizer | Bio-Fertilizer Application | Mineral NPK Fertilization | Mean | |
---|---|---|---|---|
100% | 50% | |||
Control | Control | 4.21 ± 0.01 | 4.03 ± 0.01 | 4.12 |
Bio-fertilizer | 4.25 ± 0.01 | 4.08 ± 0.02 | 4.17 | |
Catch crop (fodder pea) | Control | 4.54 ± 0.02 | 4.09 ± 0.02 | 4.32 |
Bio-fertilizer | 4.75 ± 0.01 | 4.24 ± 0.02 | 4.50 | |
Straw | Control | 3.89 ± 0.01 | 3.65 ± 0.03 | 3.77 |
Bio-fertilizer | 3.97 ± 0.02 | 3.85 ± 0.01 | 3.91 | |
Farmyard manure (FYM) | Control | 4.22 ± 0.01 | 4.01 ± 0.01 | 4.12 |
Bio-fertilizer | 4.27 ± 0.01 | 4.15 ± 0.01 | 4.21 | |
Control | 4.23 | 4.06 | 4.14 b | |
Catch crop (fodder pea) | 4.65 | 4.17 | 4.41 a | |
Straw | 3.93 | 3.75 | 3.84 c | |
Mean | Farmyard manure (FYM) | 4.25 | 4.08 | 4.16 b |
Control | 4.22 | 3.95 | 4.08 B | |
Bio-fertilizer | 4.31 | 4.08 | 4.20 A | |
Mineral NPK Fertilization | 4.26 A | 4.01 B | 4.14 |
Type of Organic Fertilizer | Bio-Fertilizer Application | Mineral NPK Fertilization | Mean | |
---|---|---|---|---|
100% | 50% | |||
Control | Control | 3.42 ± 0.01 | 2.88 ± 0.02 | 3.15 |
Bio-fertilizer | 2.95 ± 0.02 | 2.92 ± 0.02 | 2.93 | |
Catch crop (fodder pea) | Control | 4.48 ± 0.01 | 3.81 ± 0.03 | 4.15 |
Bio-fertilizer | 4.35 ± 0.01 | 3.50 ± 0.01 | 3.93 | |
Straw | Control | 3.37 ± 0.01 | 2.83 ± 0.01 | 3.10 |
Bio-fertilizer | 3.33 ± 0.01 | 3.28 ± 0.01 | 3.31 | |
Farmyard manure (FYM) | Control | 3.51 ± 0.01 | 3.26 ± 0.01 | 3.38 |
Bio-fertilizer | 3.77 ± 0.01 | 3.83 ± 0.01 | 3.80 | |
Mean | Control | 3.19 | 2.90 | 3.04 d |
Catch crop (fodder pea) | 4.42 | 3.66 | 4.04 a | |
Straw | 3.35 | 3.06 | 3.20 c | |
Farmyard manure (FYM) | 3.64 | 3.54 | 3.59 b | |
Control | 3.70 | 3.19 | 3.45 A | |
Bio-fertilizer | 3.60 | 3.38 | 3.49 A | |
Mineral NPK Fertilization | 3.65 A | 3.29 A | 3.47 |
Type of Organic Fertilizer | Bio-Fertilizer Application | Mineral NPK Fertilization | Mean | |
---|---|---|---|---|
100% | 50% | |||
Control | Control | 2.98 ± 0.01 | 2.44 ± 0.02 | 2.71 |
Bio-fertilizer | 2.39 ± 0.01 | 2.29 ± 0.01 | 2.34 | |
Catch crop (fodder pea) | Control | 3.55 ± 0.01 | 3.32 ± 0.01 | 3.44 |
Bio-fertilizer | 3.50 ± 0.01 | 3.21 ± 0.01 | 3.36 | |
Straw | Control | 2.87 ± 0.01 | 2.54 ± 0.01 | 2.71 |
Bio-fertilizer | 2.81 ± 0.01 | 2.84 ± 0.01 | 2.83 | |
Farmyard manure (FYM) | Control | 3.18 ± 0.01 | 3.14 ± 0.01 | 3.16 |
Bio-fertilizer | 3.49 ± 0.01 | 3.67 ± 0.01 | 3.58 | |
Mean | Control | 2.69 | 2.37 | 2.53 c |
Catch crop (fodder pea) | 3.53 | 3.27 | 3.40 a | |
Straw | 2.84 | 2.69 | 2.77 b | |
Farmyard manure (FYM) | 3.34 | 3.41 | 3.37 a | |
Control | 3.15 | 2.86 | 3.00 A | |
Bio-fertilizer | 3.05 | 3.00 | 3.03 A | |
Mineral NPK Fertilization | 3.10 A | 2.93 A | 3.01 |
Type of Organic Fertilizer | Bio-Fertilizer Application | Mineral NPK Fertilization | Mean | |
---|---|---|---|---|
100% | 50% | |||
Control | Control | 7.54 ± 0.01 | 6.98 ± 0.02 | 7.26 |
Bio-fertilizer | 8.98 ± 0.02 | 8.02 ± 0.02 | 8.50 | |
Catch crop (fodder pea) | 7.98 ± 0.01 | 7.59 ± 0.03 | 7.79 | |
Bio-fertilizer | 8.21 ± 0.03 | 8.03 ± 0.01 | 8.12 | |
Straw | Control | 7.64 ± 0.03 | 7.51 ± 0.01 | 7.58 |
Bio-fertilizer | 7.89 ± 0.01 | 7.59 ± 0.04 | 7.74 | |
Farmyard manure (FYM) | Control | 9.25 ± 0.04 | 8.59 ± 0.05 | 8.92 |
Bio-fertilizer | 9.91 ± 0.04 | 9.02 ± 0.06 | 9.47 | |
Mean | Control | 7.67 | 7.89 | 7.89 B |
Bio-fertilizer | 8.17 | 8.46 | 8.46 A | |
Control | 8.26 | 8.26 | 7.50 cd | |
Catch crop (fodder pea) | 8.10 | 7.81 | 7.95 b | |
Straw | 7.77 | 7.55 | 7.66 c | |
Farmyard manure (FYM) | 9.58 | 8.81 | 9.19 a | |
Mineral NPK Fertilization | 8.43 A | 7.92 B | 8.17 |
Type of Organic Fertilizer | Bio-Fertilizer Application | Mineral NPK Fertilization | Mean | |
---|---|---|---|---|
100% | 50% | |||
Control | Control | 6.45 ± 0.02 | 5.99 ± 0.04 | 6.22 |
Bio-fertilizer | 7.85 ± 0.01 | 7.11 ± 0.06 | 7.48 | |
Catch crop (fodder pea) | 7.08 ± 0.01 | 6.85 ± 0.02 | 6.97 | |
Bio-fertilizer | 7.35 ± 0.04 | 7.23 ± 0.05 | 7.29 | |
Straw | Control | 6.67 ± 0.05 | 6.59 ± 0.05 | 6.63 |
Bio-fertilizer | 7.02 ± 0.04 | 6.79 ± 0.06 | 6.91 | |
Farmyard manure (FYM) | Control | 7.86 ± 0.05 | 7.31 ± 0.06 | 7.59 |
Bio-fertilizer | 8.42 ± 0.01 | 7.91 ± 0.04 | 8.17 | |
Mean | Control | 7.15 | 6.55 | 6.85 cd |
Catch crop (fodder pea) | 7.22 | 7.04 | 7.13 b | |
Straw | 6.85 | 6.69 | 6.77 d | |
Farmyard manure (FYM) | 8.14 | 7.61 | 7.88 a | |
Control | 7.02 | 6.69 | 6.85 B | |
Bio-fertilizer | 7.66 | 7.26 | 7.46 A | |
Mineral NPK Fertilization | 7.34 A | 6.97 B | 7.16 |
Amino Acids | Before Storage | Between Fertilizers | After 6 Months of Storage | Between Fertilizers | Between Storages | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Control | Catch Crop (pea) | Straw | FYM | Control | Catch Crop (pea) | Straw | FYM | ||||
Tyrosine | 0.72 | 1.22 | 1.16 | 1.39 | * | 0.88 | 1.48 | 1.40 | 1.62 | ** | ** (+) |
Threonine | 1.32 | 3.00 | 2.96 | 1.58 | * | 1.30 | 2.96 | 2.91 | 1.52 | ** | n.s. |
Methionine | 2.23 | 2.82 | 2.34 | 1.97 | ** | 2.00 | 2.47 | 2.06 | 1.78 | ** | ** (+) |
Valine | 2.39 | 3.86 | 2.84 | 3.31 | ** | 2.43 | 3.87 | 2.82 | 3.28 | ** | n.s. |
Isoleucine | 1.76 | 3.36 | 3.25 | 2.92 | ** | 1.68 | 3.13 | 3.10 | 2.66 | ** | ** (-) |
Leucine | 1.71 | 4.54 | 3.83 | 3.31 | * | 1.93 | 4.75 | 4.27 | 0.85 | ** | ** (+) |
Lysine | 0.25 | 0.44 | 0.61 | 0.12 | ** | 0.72 | 0.69 | 0.85 | 0.31 | ** | ** (+) |
Phenyl-alanine | 1.49 | 2.25 | 2.11 | 1.95 | ** | 1.19 | 2.02 | 1.83 | 1.68 | ** | * (-) |
Aspartic acid | 6.37 | 6.93 | 7.71 | 5.81 | ** | 6.93 | 7.49 | 8.31 | 6.46 | ** | ** (+) |
Asparagine | 5.43 | 3.93 | 3.79 | 2.79 | ** | 5.95 | 4.41 | 4.21 | 3.17 | ** | ** (-) |
Alanine | 0.57 | 1.16 | 0.93 | 0.33 | ** | 1.23 | 2.27 | 1.60 | 0.63 | ** | ** (+) |
Glutamic acid | 5.49 | 7.82 | 6.01 | 4.50 | ** | 6.05 | 8.39 | 6.51 | 4.98 | ** | ** (+) |
Total AA | 29.73 | 41.33 | 37.54 | 29.98 | ** | 32.29 | 43.93 | 39.87 | 28.94 | ** | n.s. |
Amino Acids | Before Storage | Between Mineral Fertilizers | After 6 Months of Storage | Between Mineral Fertilizers | Between Storages | ||
---|---|---|---|---|---|---|---|
100% NPK | 50% NPK | 100% NPK | 50% NPK | ||||
Tyrosine | 1.13 | 1.06 | * | 1.36 | 1.26 | * | ** (+) |
Threonine | 2.26 | 2.07 | * | 2.21 | 2.02 | * | n.s. |
Methionine | 2.36 | 2.35 | n.s. | 2.13 | 2.01 | * | * (+) |
Valine | 3.09 | 3.06 | n.s. | 3.11 | 3.02 | * | n.s. |
Isoleucine | 2.78 | 2.76 | n.s. | 2.65 | 2.52 | * | ** (-) |
Leucine | 3.06 | 3.32 | ** | 3.33 | 3.69 | * | ** (+) |
Lysine | 0.4 | 0.38 | n.s. | 0.69 | 0.57 | * | ** (+) |
Phenyl-alanine | 2.05 | 2.02 | n.s. | 1.74 | 1.56 | ** | ** (-) |
Aspartic acid | 7.12 | 6.20 | ** | 7.8 | 6.69 | ** | * (+) |
Asparagine | 4.57 | 3.67 | ** | 4.98 | 3.78 | ** | * (+) |
Alanine | 0.87 | 0.65 | ** | 1.59 | 1.12 | * | ** (+) |
Glutamic acid | 6.04 | 6.02 | n.s. | 6.63 | 6.05 | * | ** (+) |
Total AA | 35.73 | 33.56 | * | 35.73 | 34.29 | * | ** (+) |
Amino Acids | Before Storage | Between without and with Bio- Fertilizer | After 6 Months of Storage | Between without and with Bio- Fertilizer | Between Storages | ||
---|---|---|---|---|---|---|---|
Control | Bio-Fertilizer | Control | Bio-Fertilizer | ||||
Tyrosine | 1.09 | 1.16 | * | 1.28 | 1.41 | * | ** (+) |
Threonine | 1.78 | 2.65 | * | 1.73 | 2.61 | ** | n.s. |
Methionine | 2.25 | 2.43 | ** | 1.99 | 2.16 | * | * |
Valine | 3.00 | 3.20 | ** | 3.01 | 3.19 | * | n.s. |
Isoleucine | 2.51 | 3.13 | ** | 2.38 | 2.91 | ** | * |
Leucine | 3.24 | 3.44 | ** | 3.51 | 3.84 | * | ** |
Lysine | 0.18 | 0.53 | ** | 0.48 | 0.81 | ** | ** |
Phenyl-alanine | 1.93 | 1.97 | * | 1.64 | 1.72 | * | ** |
Aspartic acid | 5.47 | 7.94 | ** | 6.09 | 8.50 | ** | ** |
Asparagine | 3.74 | 4.23 | ** | 4.25 | 4.58 | * | ** |
Alanine | 0.46 | 1.03 | ** | 0.91 | 1.56 | ** | ** |
Glutamic acid | 4.87 | 7.08 | ** | 5.48 | 6.48 | ** | ** |
Total AA | 30.52 | 38.79 | ** | 35.73 | 39.77 | ** | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wichrowska, D. Antioxidant Capacity and Nutritional Value of Potato Tubers (Solanum tuberosum L.) as a Dependence of Growing Conditions and Long-Term Storage. Agriculture 2022, 12, 21. https://doi.org/10.3390/agriculture12010021
Wichrowska D. Antioxidant Capacity and Nutritional Value of Potato Tubers (Solanum tuberosum L.) as a Dependence of Growing Conditions and Long-Term Storage. Agriculture. 2022; 12(1):21. https://doi.org/10.3390/agriculture12010021
Chicago/Turabian StyleWichrowska, Dorota. 2022. "Antioxidant Capacity and Nutritional Value of Potato Tubers (Solanum tuberosum L.) as a Dependence of Growing Conditions and Long-Term Storage" Agriculture 12, no. 1: 21. https://doi.org/10.3390/agriculture12010021
APA StyleWichrowska, D. (2022). Antioxidant Capacity and Nutritional Value of Potato Tubers (Solanum tuberosum L.) as a Dependence of Growing Conditions and Long-Term Storage. Agriculture, 12(1), 21. https://doi.org/10.3390/agriculture12010021