Analysis of Green Total Factor Productivity of Grain and Its Dynamic Distribution: Evidence from Poyang Lake Basin, China
Abstract
:1. Introduction
2. Method and Data
2.1. Research Methods
2.1.1. Measuring Method of GTFP of Grain
2.1.2. Kernel Density Function Estimation
2.1.3. Markov Chain Method
2.2. Data Sources
3. Evolution Analysis of GTFP of Grain in Poyang Lake Basin
3.1. Evolution of GTFP of Grain Based on Time Dimensions
3.2. Evolution of GTFP of Grain Based on Spatial Dimensions
4. Dynamic Distribution Analysis of GTFP of Grain in Poyang Lake Basin
4.1. Analysis of Kernel Density Distribution of GTFP of Grain
4.2. Analysis of Internal Mobility of the Growth Distribution of GTFP of Grain
5. Conclusions and Suggestions
6. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
District | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ncx | 1.0167 | 1.0746 | 0.9431 | 1.0452 | 0.9761 | 0.9936 | 1.018 | 1.0428 | 0.9878 | 0.947 | 1.0742 | 1.0017 | 1.1785 | 1.0142 | 0.9557 | 0.9906 | 0.9179 |
jxx | 1.0947 | 1.0398 | 0.9705 | 1.1046 | 0.9941 | 1.0567 | 1.0108 | 1.0472 | 1.0586 | 0.9549 | 1.0355 | 1.0183 | 1.1183 | 0.9118 | 0.9684 | 1.0139 | 1.1541 |
ayx | 1.005 | 0.9892 | 0.9944 | 1.024 | 0.9444 | 1.0155 | 1.097 | 1.0069 | 1.0128 | 0.9864 | 1.0129 | 1.0175 | 1.1748 | 0.9865 | 1.0203 | 0.9833 | 0.9947 |
xjq | 0.9664 | 1.0033 | 0.8862 | 1.2128 | 1.0833 | 1.0121 | 1.0525 | 1.0424 | 0.9763 | 0.9189 | 1.0054 | 1.0023 | 1.1943 | 0.9776 | 1.004 | 1.0077 | 1.1319 |
flx | 0.9958 | 0.9902 | 0.9659 | 1.04 | 0.9533 | 1.0068 | 1.0349 | 1.0642 | 1.0215 | 1.0336 | 0.7544 | 0.9647 | 1.3531 | 0.9572 | 1.0497 | 1.0089 | 1.0109 |
lps | 1.0186 | 0.9999 | 0.9911 | 1.0733 | 0.9763 | 0.9965 | 1.0478 | 1.0162 | 1.0328 | 0.9951 | 0.8871 | 0.9707 | 1.2891 | 0.9779 | 0.9418 | 0.9994 | 1.0942 |
lhx | 1.0232 | 1.079 | 0.9229 | 1.1579 | 0.8831 | 1.0429 | 1.0028 | 1.033 | 1.0484 | 0.9814 | 0.9988 | 1.0225 | 1.2519 | 0.9508 | 1.0053 | 1.0057 | 1.0069 |
slx | 1.0101 | 1.0406 | 0.849 | 1.0806 | 0.9792 | 0.9752 | 1.0435 | 1.0044 | 1.0071 | 1.0029 | 0.9847 | 1.0308 | 1.1176 | 1.0159 | 0.9961 | 1.0469 | 1.1665 |
lxx | 1.0079 | 0.9412 | 0.9815 | 1.0525 | 1.003 | 1.0011 | 1.0042 | 1.0038 | 1.0092 | 1.0106 | 0.9981 | 1.0262 | 0.9846 | 1.0006 | 1.0097 | 0.9972 | 0.9797 |
fyx | 0.77 | 0.8545 | 0.834 | 1.1219 | 0.9886 | 1.0021 | 1.194 | 1.0461 | 0.9719 | 0.9575 | 1.0586 | 0.8978 | 1.1395 | 0.9081 | 1.0016 | 1.0777 | 1.0073 |
jjx | 1.2619 | 1.1279 | 1.1684 | 1.2143 | 0.8527 | 1.0934 | 1.0032 | 0.9996 | 1.0792 | 1.0249 | 0.9819 | 0.8414 | 1.4776 | 0.9692 | 1.0459 | 0.821 | 0.9619 |
wnx | 0.977 | 1.0061 | 1.0274 | 1.1224 | 1.0176 | 0.9961 | 0.8541 | 1.0208 | 1.1775 | 1.0082 | 0.9947 | 0.999 | 1.0458 | 0.9821 | 1.0675 | 0.8927 | 1.0121 |
xsx | 1.0128 | 0.9204 | 1.1118 | 1.0104 | 0.9591 | 0.9978 | 0.9969 | 1.0621 | 0.9778 | 0.9879 | 0.981 | 0.9285 | 1.5387 | 0.8678 | 1.6597 | 0.6157 | 1.2267 |
yxx | 1.0716 | 0.9235 | 1.2086 | 0.7557 | 0.7935 | 1.0569 | 1.0779 | 1.1041 | 1.0257 | 0.9847 | 1.1502 | 0.9446 | 1.1348 | 0.908 | 1.2846 | 0.6913 | 1.0549 |
dax | 1.2812 | 0.8403 | 1.1504 | 1.0735 | 0.9983 | 0.9943 | 1.002 | 1.0183 | 1.018 | 1.0045 | 0.9044 | 0.8191 | 1.6956 | 1.0898 | 1.0613 | 0.9223 | 0.9982 |
dcx | 1.2279 | 0.9299 | 0.8394 | 1.1979 | 1.2164 | 0.9953 | 1.0041 | 1.0048 | 1.0463 | 0.9393 | 1.0186 | 0.9409 | 1.1352 | 0.9597 | 1.0146 | 0.8303 | 1.2376 |
hkx | 1.0898 | 0.9149 | 1.052 | 1.0101 | 0.9624 | 1.006 | 1.0335 | 0.9898 | 1.0889 | 0.9955 | 0.99 | 1.0184 | 1.4132 | 0.9839 | 1.1003 | 0.9531 | 0.9807 |
pzx | 1.208 | 0.9808 | 1.2049 | 1.0046 | 0.8655 | 1.0296 | 1.0666 | 1.0649 | 1.0146 | 1.0448 | 0.9086 | 0.8985 | 1.3353 | 1 | 1.0022 | 0.986 | 1.0187 |
rcs | 0.9408 | 1.1656 | 1.1526 | 1.0569 | 0.877 | 1 | 1.0991 | 1.0035 | 0.9727 | 0.9597 | 0.8375 | 1.1499 | 1.0934 | 0.9979 | 1.5266 | 0.7218 | 0.952 |
lss | 1.2334 | 0.6949 | 1.0113 | 1.2724 | 1.1465 | 0.8613 | 0.9796 | 1.0511 | 1.0788 | 0.9981 | 0.8887 | 1.0794 | 1.5581 | 0.912 | 1.1545 | 0.7122 | 1.0553 |
yjq | 1.0344 | 1.0367 | 0.9436 | 1.046 | 0.9611 | 0.971 | 1.0007 | 0.9584 | 1.003 | 0.9407 | 1.0994 | 0.935 | 1.2682 | 0.8168 | 0.8332 | 0.95 | 1.3523 |
gxs | 1.0541 | 0.9936 | 0.9691 | 1.0972 | 0.9117 | 0.9589 | 0.8771 | 0.9995 | 1.015 | 0.9942 | 1.0141 | 0.9814 | 1.0183 | 0.976 | 0.9541 | 0.9717 | 1.1323 |
nkq | 1.0301 | 0.9252 | 0.9685 | 0.9679 | 1.023 | 0.9756 | 1.0063 | 1.0157 | 1.0034 | 1.017 | 1.0925 | 0.8738 | 1.1845 | 0.9902 | 0.9521 | 1.3251 | 0.8718 |
gx | 0.98 | 0.9424 | 0.9426 | 1.0185 | 0.9674 | 0.9708 | 0.9588 | 0.9891 | 1.0097 | 0.9519 | 1.0074 | 0.9721 | 1.1683 | 0.9836 | 0.9643 | 1.0588 | 0.9619 |
xfx | 1.0064 | 0.9584 | 0.987 | 0.9962 | 1.0106 | 0.9622 | 1.0268 | 1.0199 | 1.0235 | 0.9781 | 0.966 | 0.9654 | 1.2601 | 0.9094 | 0.9399 | 1.064 | 1.0683 |
dxx | 0.9342 | 0.8789 | 0.9315 | 0.9861 | 1.0146 | 0.9805 | 0.9903 | 1.0187 | 0.9663 | 0.9897 | 0.958 | 1.0494 | 1.136 | 0.9861 | 0.999 | 1.0215 | 0.9859 |
syx | 0.9864 | 0.953 | 0.9317 | 0.9576 | 0.9804 | 0.9558 | 0.9813 | 0.9982 | 0.9678 | 1.0092 | 0.9707 | 1.0815 | 1.2534 | 0.9819 | 0.9841 | 1.0008 | 1.0044 |
cyx | 1.0622 | 0.7968 | 0.9146 | 0.9974 | 1.0406 | 0.9784 | 1.0093 | 1.0265 | 0.9702 | 1.0761 | 0.9697 | 1.0672 | 1.0807 | 0.9972 | 0.9943 | 1.0594 | 0.9459 |
ayx | 0.9319 | 0.9553 | 0.9413 | 0.9317 | 0.9585 | 0.9408 | 0.9626 | 0.9265 | 0.9873 | 0.9639 | 0.9124 | 1.0634 | 1.2446 | 0.9585 | 0.9647 | 1.1537 | 1.1243 |
lnx | 1.0464 | 0.8979 | 1.0044 | 0.9395 | 0.9621 | 0.9772 | 1.0129 | 0.9986 | 1.0322 | 0.9792 | 0.9174 | 1.0903 | 1.1705 | 0.9863 | 1.0098 | 1.0532 | 0.994 |
dnx | 0.9806 | 0.931 | 1.0242 | 0.9817 | 0.9938 | 0.9774 | 0.9788 | 1.0405 | 1.0406 | 0.9776 | 0.9638 | 1.064 | 1.0822 | 0.9831 | 1.0096 | 0.9869 | 0.9885 |
qnx | 0.9899 | 0.9492 | 0.9735 | 0.9758 | 1.0648 | 0.9254 | 0.9735 | 1.0188 | 1.0174 | 0.9648 | 0.9307 | 1.018 | 1.2416 | 0.9967 | 1.0112 | 1.0139 | 0.9878 |
ndx | 0.9702 | 0.8938 | 0.9913 | 1.0296 | 0.9055 | 1.0241 | 1.0055 | 0.98 | 0.9992 | 0.9612 | 1.0223 | 0.9457 | 1.2245 | 0.8825 | 0.9465 | 0.9838 | 1.1624 |
ydx | 0.9238 | 0.9402 | 0.9034 | 0.9805 | 1.0072 | 0.9207 | 0.9407 | 0.9651 | 0.9997 | 0.9769 | 0.9877 | 0.9839 | 1.2433 | 0.9828 | 0.9512 | 1.0605 | 1.0446 |
xgx | 1.0304 | 0.8791 | 0.9573 | 1.0814 | 0.9929 | 0.9731 | 0.9791 | 0.9652 | 0.9928 | 0.9859 | 0.9857 | 0.9836 | 1.2186 | 0.905 | 0.9074 | 0.9898 | 1.2025 |
hcx | 0.8976 | 0.9147 | 0.8701 | 1.0758 | 0.9847 | 0.8608 | 0.873 | 0.9287 | 0.9941 | 1.0061 | 0.9396 | 1.0053 | 1.3795 | 0.9988 | 0.9926 | 0.9954 | 1.0612 |
xwx | 0.9739 | 0.8017 | 1.0263 | 0.9981 | 0.9483 | 0.95 | 0.9627 | 1.0106 | 1.0186 | 0.9891 | 0.9093 | 1.045 | 1.234 | 0.8574 | 1.03 | 1.1943 | 1.0925 |
scx | 0.9533 | 0.8175 | 0.8248 | 1.1472 | 0.9647 | 0.9918 | 0.9762 | 1.0288 | 1.0369 | 0.9542 | 0.9341 | 1.0066 | 1.191 | 1.0338 | 0.9758 | 0.8826 | 1.4424 |
rjs | 1.0209 | 0.8929 | 0.9261 | 1.0942 | 0.9789 | 0.9727 | 1.0193 | 0.9929 | 1.0088 | 0.9793 | 0.9752 | 0.9933 | 1.1321 | 0.9973 | 0.9975 | 1.1399 | 0.9798 |
jax | 1.0235 | 1.0264 | 0.8765 | 1.2748 | 1.2424 | 1.0683 | 0.9668 | 1.0049 | 1.0377 | 0.9653 | 0.9977 | 0.9951 | 1.108 | 0.8868 | 0.9652 | 1.005 | 1.0218 |
jsx | 1.0095 | 0.9372 | 0.936 | 1.0954 | 1.1563 | 0.9887 | 1.0515 | 1.1634 | 1.1299 | 1.0009 | 0.9899 | 0.9486 | 1.1971 | 0.9115 | 0.9635 | 1.0109 | 1.1771 |
xjx | 0.9805 | 1.0099 | 0.9834 | 1.0806 | 1.0001 | 0.9199 | 1.0033 | 1.0027 | 0.9959 | 0.9517 | 0.9671 | 0.9721 | 1.2359 | 0.9931 | 0.9868 | 0.9943 | 0.9484 |
xgx | 1.022 | 0.9469 | 1.0084 | 0.9833 | 1.0191 | 0.9415 | 1.0553 | 0.9855 | 1.0325 | 0.9871 | 0.9495 | 0.9937 | 1.1627 | 0.9281 | 0.966 | 1.0381 | 1.1135 |
yfx | 0.8547 | 0.9135 | 0.9858 | 1.0091 | 0.9529 | 0.961 | 0.9675 | 1.0548 | 1.0547 | 1.0353 | 1.1126 | 0.9712 | 1.1952 | 0.8869 | 0.9399 | 1.0488 | 1.088 |
thx | 1.001 | 0.8315 | 0.9312 | 1.14 | 0.9875 | 1.1479 | 0.9784 | 1.1338 | 1.0119 | 0.9973 | 0.9333 | 0.9467 | 1.1854 | 0.8601 | 0.9466 | 0.9814 | 1.023 |
scx | 1.0693 | 0.9232 | 0.978 | 1.0076 | 1.0318 | 0.9882 | 0.9469 | 0.9492 | 1.0313 | 0.9872 | 1.0476 | 0.9793 | 1.2152 | 0.9554 | 0.9792 | 1.0931 | 1.0918 |
wax | 0.9367 | 0.8397 | 0.9215 | 1.2891 | 1.363 | 1.0428 | 1.0555 | 1.0508 | 0.9746 | 1.0522 | 0.9688 | 0.874 | 1.2387 | 0.8108 | 0.9667 | 0.9576 | 1.1621 |
afx | 0.9364 | 0.9423 | 0.885 | 1.1776 | 1.0617 | 1.003 | 0.9933 | 1.0799 | 1.0177 | 1.0027 | 0.9991 | 1.003 | 1.1724 | 0.953 | 0.9609 | 1.0486 | 1.0583 |
yxx | 0.9848 | 1.0692 | 0.8809 | 1.1207 | 1.0836 | 0.9851 | 1.1293 | 1.0262 | 1.1012 | 0.9942 | 1.0004 | 1.0013 | 1.0795 | 0.9837 | 0.9681 | 1.0522 | 1.0131 |
jgss | 0.9334 | 1.2127 | 0.9941 | 0.9275 | 1.052 | 1.0009 | 0.9829 | 1.0031 | 0.9132 | 1.0096 | 1.0238 | 0.9949 | 1.0909 | 0.9972 | 1.005 | 1.0067 | 1.0782 |
fxx | 0.9504 | 0.9321 | 0.874 | 1.3276 | 1.0992 | 0.9825 | 0.9912 | 1.063 | 0.9898 | 1.0261 | 1.1286 | 0.9821 | 0.9338 | 0.9199 | 1.0111 | 0.916 | 1.2283 |
wzx | 0.9235 | 0.9561 | 1.0351 | 0.9883 | 0.992 | 0.8441 | 1.1451 | 0.9546 | 0.9981 | 0.9901 | 1.0053 | 1.0008 | 1.1335 | 0.9005 | 0.9048 | 0.9354 | 1.3246 |
sgx | 0.982 | 0.9936 | 1.0008 | 1.0782 | 1.0074 | 0.986 | 0.9995 | 1.0041 | 0.9969 | 0.9561 | 1.0561 | 0.9603 | 1.1432 | 0.8587 | 0.9483 | 1.0268 | 1.2641 |
yfx | 0.9159 | 0.908 | 0.8872 | 1.1143 | 1.0954 | 0.9268 | 1.0952 | 1.0299 | 1.0007 | 0.9624 | 1.0357 | 1.1752 | 1.0737 | 0.9827 | 1.005 | 0.8539 | 1.003 |
jax | 1.0013 | 1.0317 | 0.9846 | 1.0081 | 0.8579 | 1.1867 | 1.0018 | 1.0052 | 1.0209 | 0.9792 | 0.9975 | 1.0157 | 0.9923 | 0.9848 | 1.0112 | 1.0116 | 0.9976 |
tgx | 0.7841 | 1.0648 | 0.9073 | 1.1199 | 0.8375 | 1.0861 | 1.0797 | 1.1023 | 0.9473 | 0.9729 | 0.9184 | 1.0959 | 1.0857 | 1.005 | 1.0327 | 1.0236 | 1.0267 |
fcs | 0.6261 | 0.9412 | 0.9758 | 1.0591 | 1.0163 | 0.9825 | 1.0725 | 1.018 | 0.9666 | 1.0744 | 0.9348 | 0.9453 | 1.1435 | 0.9725 | 0.986 | 0.9904 | 0.9892 |
zss | 0.8816 | 0.9892 | 1.0895 | 1.1917 | 1.0397 | 1.0002 | 1.003 | 1.0066 | 1.002 | 1.0045 | 0.9954 | 0.9639 | 1.1906 | 0.8435 | 0.9612 | 1.1609 | 1.0639 |
gas | 0.9761 | 0.9864 | 1.016 | 1.0592 | 1.0135 | 0.9876 | 1.059 | 1.1182 | 1.0279 | 0.9775 | 1.009 | 0.9828 | 1.193 | 0.8431 | 0.9796 | 1.0963 | 1.0813 |
ncx | 1.0016 | 0.9771 | 0.9436 | 1.1025 | 1.0031 | 0.9888 | 1.0013 | 1.0055 | 0.9979 | 1.0017 | 1.0023 | 0.9962 | 1.083 | 0.9725 | 1.0052 | 0.9776 | 1.0748 |
lcx | 0.9858 | 0.9715 | 0.9201 | 0.9771 | 1.0511 | 0.9457 | 0.9606 | 1.0221 | 0.9988 | 0.8611 | 1.0114 | 1.0133 | 1.1416 | 1.0754 | 0.956 | 0.9697 | 1.2861 |
nfx | 0.994 | 0.8764 | 1.0722 | 1.097 | 0.9937 | 0.9211 | 0.8902 | 0.9039 | 0.9841 | 1.0558 | 0.9793 | 0.9297 | 1.3442 | 0.9532 | 0.9727 | 0.9188 | 1.1025 |
crx | 1.0063 | 0.9872 | 1.0048 | 1.1328 | 0.9984 | 0.9188 | 0.9921 | 0.9918 | 1.0435 | 0.986 | 0.9954 | 0.9906 | 1.0745 | 0.9293 | 0.9326 | 0.9869 | 1.5904 |
lax | 1.169 | 0.8912 | 0.8611 | 1.2857 | 1.154 | 0.7037 | 1.0954 | 0.8335 | 1.0313 | 1.0013 | 1.0348 | 0.987 | 1.1996 | 0.9043 | 1.0488 | 0.9748 | 1.5276 |
yhx | 0.9859 | 0.9904 | 0.9703 | 1.0107 | 0.9896 | 0.9923 | 0.9938 | 0.994 | 0.9947 | 0.9948 | 0.9552 | 1.0559 | 1.0674 | 1.0017 | 1.0428 | 0.9661 | 1.0076 |
jxx | 1.0054 | 0.9202 | 0.8148 | 1.2359 | 1.0201 | 0.9283 | 1.0071 | 0.9752 | 0.9555 | 0.8944 | 0.9798 | 0.9584 | 1.1006 | 1.0154 | 0.9448 | 1.0264 | 1.2319 |
zxx | 0.9244 | 0.934 | 0.9735 | 1.0373 | 1.0105 | 1.0127 | 0.9824 | 1.006 | 0.9942 | 0.9468 | 0.9447 | 1.0956 | 0.968 | 1.0265 | 1.0388 | 1.0399 | 1.0138 |
dxx | 1.1012 | 0.9379 | 1.1313 | 1.1193 | 0.9642 | 0.8841 | 1.0227 | 1.0687 | 0.9256 | 0.9796 | 0.9784 | 0.9695 | 1.4086 | 0.7913 | 0.9488 | 1.0051 | 1.2847 |
gcx | 1.0083 | 0.945 | 0.9277 | 1.0123 | 1.0089 | 0.9958 | 0.9911 | 1.0408 | 1.0526 | 0.8118 | 0.9285 | 1.5037 | 1.0141 | 1.0022 | 0.9954 | 1.0124 | 1.0993 |
gfq | 0.9855 | 1.0836 | 0.7885 | 1.3326 | 0.9915 | 1.0058 | 0.9958 | 1.0004 | 0.8331 | 1.0429 | 0.9473 | 0.9541 | 1.1899 | 1.023 | 1.118 | 0.8374 | 0.9966 |
srx | 0.9179 | 0.9776 | 1.0299 | 0.978 | 0.9228 | 0.9796 | 0.9284 | 1.5961 | 1.2506 | 0.865 | 0.8985 | 0.9251 | 1.1953 | 0.9979 | 1.0549 | 0.8628 | 1.0117 |
ysx | 0.9236 | 1.0943 | 1.215 | 0.8459 | 0.9737 | 1.0067 | 0.9439 | 1.0348 | 1.0603 | 1.3577 | 0.704 | 0.9841 | 1.2019 | 1.0053 | 0.9947 | 0.8824 | 0.9946 |
ysx | 0.9774 | 0.9742 | 0.9948 | 0.9488 | 0.9814 | 0.9344 | 1.0374 | 1.0074 | 1.0897 | 0.9622 | 0.9839 | 0.8032 | 1.2641 | 0.9433 | 1.0995 | 0.9377 | 0.9906 |
hfx | 1.015 | 0.9553 | 0.7893 | 1.1676 | 0.8509 | 1.124 | 1.0354 | 1.0558 | 1.0635 | 1.0592 | 0.85 | 1.1929 | 1.0939 | 0.974 | 0.9995 | 0.9538 | 1.0156 |
yyx | 1.6282 | 0.991 | 0.9929 | 0.616 | 0.9915 | 1.0252 | 1.1572 | 0.9668 | 1.0442 | 0.9304 | 1.1218 | 0.9329 | 1.2585 | 0.8941 | 1.0589 | 1.0191 | 1.0284 |
ygx | 1.0578 | 0.9971 | 0.994 | 1.2765 | 1.0914 | 0.9029 | 1.0815 | 1.0373 | 0.9843 | 1.0162 | 1.0971 | 0.9068 | 1.2396 | 0.9964 | 0.9965 | 1.0788 | 0.8611 |
pyx | 1.0798 | 0.9809 | 0.7863 | 1.22 | 0.9661 | 0.849 | 1.1723 | 1.0946 | 1.0196 | 1.0022 | 0.9932 | 0.9972 | 1.0716 | 0.8817 | 1.0605 | 0.7938 | 1.3653 |
wnx | 0.9508 | 1.0456 | 0.9969 | 1.0351 | 0.9831 | 0.9573 | 0.9907 | 1.0019 | 1.0416 | 0.9761 | 0.977 | 0.9943 | 1.0476 | 0.9739 | 1.0006 | 1.0146 | 1.0341 |
wyx | 1.111 | 1.1332 | 1.06 | 1.0401 | 0.9509 | 0.9576 | 0.9564 | 0.9699 | 1.2265 | 0.9187 | 0.9759 | 0.9702 | 1.1303 | 1.0049 | 0.9974 | 0.9851 | 0.9958 |
dxs | 0.9078 | 0.9868 | 0.9834 | 0.9467 | 0.975 | 1.0858 | 0.9111 | 1.0355 | 1.0251 | 0.9706 | 0.9794 | 0.9243 | 1.4268 | 0.9728 | 0.9381 | 1.082 | 1.0379 |
mean | 1.0069 | 0.9623 | 0.9712 | 1.0675 | 0.9990 | 0.9819 | 1.0110 | 1.0238 | 1.0195 | 0.9874 | 0.9804 | 0.9948 | 1.1907 | 0.9551 | 1.0122 | 0.9845 | 1.0834 |
References
- Wu, Y.S. The construction of agricultural ecological environment is the basis for the transformation of agricultural development mode. Rural Econ. 2011, 2, 104–107. (In Chinese) [Google Scholar]
- Wei, H.K. Ten cutting-edge research topics on agriculture, rural areas and farmers. Chin. Rural Econ. 2019, 4, 2–6. (In Chinese) [Google Scholar]
- Alem, H. Source of total factor productivity change: An empirical analysis of grain producing regions in Norway. Rev. Econ. 2017, 69, 8–18. [Google Scholar]
- Arshad, M.; Amjath-Babu, T.S.; Aravindakshan, S.; Krupnik, T.J.; Toussaint, V.; Kächele, H.; Müller, K. Climatic variability and thermal stress in Pakistan’s rice and wheat systems: A stochastic frontier and quantile regression analysis of economic efficiency. Ecol. Indic. 2018, 89, 496–506. [Google Scholar] [CrossRef]
- Li, L.; Tsunekawa, A.; Tsubo, M.; Koike, A.; Wang, J. Assessing total factor productivity and efficiency change for farms participating in Grain for Green program in China: A case study from Ansai, Loess Plateau. J. Food Agric. Environ. 2010, 8, 1185–1192. [Google Scholar]
- Zhang, L.; Bao, B. Empirical analysis on spatio-temporal evolution and driving forces of food total factor production in major grain producing Areasofour Country. Econ. Geogr. 2016, 36, 147–152. (In Chinese) [Google Scholar]
- Mukherjee, D.N.; Vasudev, N.; Kumari, R.V.; Suhasini, K. Nonparametric estimation and decomposition of total factor productivity of rice and maize in Telangana State. Bull. Environ. Pharmacol. Life Sci. 2017, 6, 26–31. [Google Scholar]
- Monga, S.; Sidana, B.K. Total factor productivity of coarse cereals in India: State-level analysis using Malmquist approach. J. Pharmacogn. Phytochem. 2020, 9, 683–689. [Google Scholar]
- Divya, K.; Devi, I.B.; Kumari, P.L. Total Factor Productivity Growth of Rice and Maize in Andhra Pradesh, India. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 2852–2857. [Google Scholar] [CrossRef]
- Boussemart, J.P.; Leleu, H.; Ojo, O. The spread of pesticide practices among cost-efficient farmers. Environ. Model. Assess. 2013, 18, 523–532. [Google Scholar] [CrossRef]
- Blancard, S.; Boussemart, J.; Briec, W.; Kerstens, K. Short-and long-run credit constraints in French agriculture: A directional distance function framework using expenditure-constrained profit functions. Am. J. Agric. Econ. 2006, 88, 351–364. [Google Scholar] [CrossRef]
- Singbo, A.G.; Lansink, A.O. Lowland farming system inefficiency in Benin (West Africa): Directional distance function and truncated bootstrap approach. Food Secur. 2010, 2, 367–382. [Google Scholar] [CrossRef] [Green Version]
- Min, R.; Li, G.C. Spatial differentiation of grain production technical efficiency in China from the perspective of “two types”. Econ. Geogr. 2013, 33, 144–149. (In Chinese) [Google Scholar]
- Watto, M.A.; Mugera, A.W. Measuring production and irrigation efficiencies of rice farms: Evidence from the Punjab Province, Pakistan. Asian Econ. J. 2014, 28, 301–322. [Google Scholar] [CrossRef]
- Kijek, A.; Kijek, T.; Nowak, A.; Skrzypek, A. Productivity and its convergence in agriculture in new and old European Union member states. Agric. Econ. 2019, 65, 01–09. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, C. What drives the fluctuations of “green” productivity in China’s agricultural sector? A weighted Russell directional distance approach. Resour. Conserv. Recycl. 2019, 147, 201–213. [Google Scholar] [CrossRef]
- Song, M.; Zhao, X.; Choi, Y. Technical efficiency of Chinese forestryand its total factor productivity for the adaption of the climate change. J. For. Econ. 2020, 35, 149–175. [Google Scholar]
- Coelli, T.; Rahman, S.; Thirtle, C. Technical, allocative, cost and scale efficiencies in Bangladesh rice cultivation: A non-parametric approach. J. Agric. Econ. 2002, 53, 607–626. [Google Scholar] [CrossRef]
- Fang, F. Spatial-temporal pattern and convergence of agricultural production efficiency in Beijing-Tianjin-Hebei region. World Reg. Stud. 2019, 28, 130–140. (In Chinese) [Google Scholar]
- Zhang, H.; Han, P. Measurement and convergence analysis of agricultural total factor productivity: Based on Hicks-Moorsteen index. Rural Econ. 2018, 06, 55–61. (In Chinese) [Google Scholar]
- Fuglie, K.O. Is agricultural productivity slowing? Glob. Food Secur. 2018, 17, 73–83. [Google Scholar] [CrossRef]
- Shi, C.; Zhu, J.; Jie, C. Regional differences and convergence analysis of agricultural total factor productivity growth in China: Based on fixed effects SFA model and panel unit root method. Explor. Econ. Probl. 2016, 04, 134–141. (In Chinese) [Google Scholar]
- Zhou, P.; Shen, Y.; Zhang, Z. Promoting effect of new urbanization on high quality development of agriculture. J. Fujian Agric. Univ. (Philos. Soc. Sci. Ed.) 2021, 24, 1–11. (In Chinese) [Google Scholar]
- Ban, L.; Yuan, X. Differences and spatial influence mechanism of green economic efficiency between China’s Eight Regions. J. Xi’an Jiao Tong Univ. (Soc. Sci.) 2016, 36, 22–30. (In Chinese) [Google Scholar]
- Chambers, R.G.; Chung, Y.; Färe, R. Benefit and Distance Functions. J. Econ. Theory 1996, 70, 407–419. [Google Scholar] [CrossRef]
- Hintz, E.; Hofert, M.; Lemieux, C. Normal variance mixtures: Distribution, density and parameter estimation. Comput. Stat. Data Anal. 2021, 157, 107175. [Google Scholar] [CrossRef]
- Han, H.B.; Li, G.C.; He, A. Spatail-temporal characteristics and dynamic evolution of agricultural growth quality in China from 2000 to 2015. J. Guangdong Univ. Financ. Econ. 2017, 32, 95–105. (In Chinese) [Google Scholar]
- Wu, P.; Jin, X.Y.; Ma, L. China’s regional economic development gap from the perspective of numerical distribution and spatial distribution from 1952 to 2008. Econ. Sci. 2010, 46–58. (In Chinese) [Google Scholar]
- Pan, D. Research on China’s Agricultural Productivity Considering Resource and Environmental Factors. Ph.D. Thesis, Nanjing Agricultural University, Nanjing, China, 2012. (In Chinese). [Google Scholar]
- Sharififar, A.; Sarmadian, F.; Minasny, B. Mapping imbalanced soil classes using Markov chain random fields models treated with data resampling technique. Comput. Electron. Agric. 2019, 159, 110–118. (In Chinese) [Google Scholar] [CrossRef]
- Lin, X.; Zhang, G.; Wei, S. Velocity prediction using Markov Chain combined with driving pattern recognition and applied to Dual-Motor Electric Vehicle energy consumption evaluation. Appl. Soft Comput. 2021, 101, 106998. (In Chinese) [Google Scholar] [CrossRef]
- Hu, S.; Jiao, S.; Zhang, X. The Spatio-temporal Evolution and Influencing Factors of China’s Urban Tourism Development—Based on the Analysis of the Dynamic Spatial Markov Chain Model. J. Nat. Resour. 2021, 36, 854–865. (In Chinese) [Google Scholar]
- Dong, Y.; Sun, J. Analysis of the dynamic evolution of income distribution of regional economy: A case of Zhejiang province. Contemp. Financ. Econ. 2009, 3, 25–30. (In Chinese) [Google Scholar]
- Bao, B.; Jiang, A.; Jin, S.; Zhang, R. The evolution and influencing factors of total factor productivity of grain production environment: Evidence from Poyang Lake Basin, China. Land 2021, 10, 606. [Google Scholar] [CrossRef]
- Zhang, L.; Bao, B.; Pan, D. Spatial-Temporal Evolution and Environmental Coordination of Technical Efficiency of Grain Production in Poyang Lake Eco-Economic Zone. Econ. Geogr. 2016, 36, 116–123. (In Chinese) [Google Scholar]
- Tian, X.; Wang, S. Environmental efficient and its determints regarding China grain production. Resour. Sci. 2016, 38, 2106–2116. (In Chinese) [Google Scholar]
- Fischer, G.; Winiwarter, W.; Ermolieva, T.; Cao, G.Y.; Qui, H.; Klimont, Z. Integrated modeling framework for assessment and mitigation of nitrogen pollution from agriculture: Concept and case study for China. Agric. Ecosyst. Environ. 2010, 136, 116–124. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, Y.; Yang, G. Verification of Environmental Kuznets curve of agricultural non-point source pollution in Shaanxi Province. J. Agrotech. Econ. 2010, 183, 22–29. (In Chinese) [Google Scholar]
- Hou, M.; Yao, S. Convergence and differentiation characteristics on agro-ecological efficiency in China from a spatial perspective. China Popul. Resour. Environ. 2019, 29, 116–126. (In Chinese) [Google Scholar]
- Wu, L. Study on Temporal-spatial Distribution of Agricultural Non-point Source Pollution in Poyang Lake Region. Acta Agric. Jiangxi 2012, 24, 159–163. (In Chinese) [Google Scholar]
- Guo, H.; Liu, X. Spatio-temporal evolution of China’s agricultural green total factor productivity. Chin. J. Manag. Sci. 2020, 28, 66–75. (In Chinese) [Google Scholar]
Crest Features | Gap Becomes Bigger | Gap Becomes Smaller |
---|---|---|
Crest Height | Getting Shorter | Getting Higher |
Crest Width | Widening | Narrowing |
Crest Skewness | Left Deviation | Right Deviation |
Number of Crests | More | Less |
Horizontal Type | Low | Medium Low | Medium High | High |
---|---|---|---|---|
Low | P11 | P12 | P13 | P14 |
Medium Low | P21 | P22 | P23 | P24 |
Medium High | P31 | P32 | P33 | P34 |
High | P41 | P42 | P43 | P44 |
Period | Type | Number of Samples | Low Level | Medium Low Level | Medium High Level | High Level |
---|---|---|---|---|---|---|
2001–2009 | Low Level | 175 | 0.3314 | 0.2171 | 0.1600 | 0.2914 |
Medium Low Level | 158 | 0.1899 | 0.2785 | 0.3038 | 0.2279 | |
Medium High Level | 147 | 0.2177 | 0.2789 | 0.3197 | 0.1837 | |
High Level | 160 | 0.2375 | 0.2438 | 0.2188 | 0.3000 | |
2009–2017 | Low Level | 172 | 0.2384 | 0.1512 | 0.2267 | 0.3837 |
Medium Low Level | 165 | 0.2546 | 0.2606 | 0.2364 | 0.2485 | |
Medium High Level | 161 | 0.1553 | 0.3416 | 0.2671 | 0.2360 | |
High Level | 142 | 0.4507 | 0.2535 | 0.1409 | 0.1549 | |
2001–2017 | Low Level | 331 | 0.2719 | 0.1994 | 0.1813 | 0.3474 |
Medium Low Level | 325 | 0.2062 | 0.2615 | 0.2862 | 0.2462 | |
Medium High Level | 322 | 0.1801 | 0.3106 | 0.3230 | 0.1863 | |
High Level | 302 | 0.3378 | 0.2318 | 0.2086 | 0.2219 |
Horizontal Type | Low | Medium Low | Medium High | High |
---|---|---|---|---|
Initial Distribution | 0.2750 | 0.2250 | 0.2750 | 0.2250 |
Steady State Distribution | 0.2467 | 0.2512 | 0.2500 | 0.2521 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, B.; Jin, S.; Li, L.; Duan, K.; Gong, X. Analysis of Green Total Factor Productivity of Grain and Its Dynamic Distribution: Evidence from Poyang Lake Basin, China. Agriculture 2022, 12, 8. https://doi.org/10.3390/agriculture12010008
Bao B, Jin S, Li L, Duan K, Gong X. Analysis of Green Total Factor Productivity of Grain and Its Dynamic Distribution: Evidence from Poyang Lake Basin, China. Agriculture. 2022; 12(1):8. https://doi.org/10.3390/agriculture12010008
Chicago/Turabian StyleBao, Bingfei, Shengtian Jin, Lilian Li, Kaifeng Duan, and Xiaomei Gong. 2022. "Analysis of Green Total Factor Productivity of Grain and Its Dynamic Distribution: Evidence from Poyang Lake Basin, China" Agriculture 12, no. 1: 8. https://doi.org/10.3390/agriculture12010008
APA StyleBao, B., Jin, S., Li, L., Duan, K., & Gong, X. (2022). Analysis of Green Total Factor Productivity of Grain and Its Dynamic Distribution: Evidence from Poyang Lake Basin, China. Agriculture, 12(1), 8. https://doi.org/10.3390/agriculture12010008