Assessing Growth and Water Productivity for Drip-Irrigated Maize under High Plant Density in Arid to Semi-Humid Climates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design and Field Management
2.3. AquaCrop Model Input Elements
2.3.1. Meteorological Data
2.3.2. Soil Data
2.3.3. Crop Data
2.3.4. Manage Data
2.4. AquaCrop Model Run
2.4.1. Soil Water
2.4.2. Transpiration, WUE and WP*
2.5. Statistical and Analysis
3. Results
3.1. Soil Water and Canopy Coverage
3.2. Transpiration, Biomass and Yield
3.3. Water Use Efficiency and Normalized Water Productivity
4. Discussion
4.1. AquaCrop Model Parameterization under Film-Mulched Drip Irrigation and Dense Planting
4.2. Evaluation of Parametric AquaCrop Model Simulation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Acronyms
References
- Hamdy, A.; Ragab, R.; Scarascia-Mugnozza, E. Coping with water scarcity: Water saving and increasing water productivity. Irrig. Drain. 2003, 52, 3–20. [Google Scholar] [CrossRef]
- Sowers, J.; Vengosh, A.; Weinthal, E. Climate change, water resources, and the politics of adaptation in the Middle East and North Africa. Clim. Chang. 2010, 104, 599–627. [Google Scholar] [CrossRef]
- Bozkurt, S.; Yazar, A.; Mansurolu, G.S. Effects of different drip irrigation amounts on yield and some agronomic characteristics of raised bed planted corn. Afr. J. Agric. Res. 2011, 6, 5291–5300. [Google Scholar] [CrossRef]
- Hao, B.Z.; Xue, Q.W.; Marek, T.H.; Jessup, K.E.; Hou, X.B.; Xu, W.W.; Bynum, E.D.; Bean, B.W. Soil water extraction, water use, and grain yield by drought-tolerant maize on the Texas High Plains. Agric. Water Manag. 2015, 155, 11–21. [Google Scholar] [CrossRef]
- Kang, S.Z.; Hao, X.M.; Du, T.S.; Tong, L.; Su, X.L.; Lu, H.N.; Li, X.L.; Huo, Z.L.; Li, S.E.; Ding, R.S. Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agric. Water Manag. 2017, 179, 5–17. [Google Scholar] [CrossRef]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- FAO. How to Feed the World in 2050. Issue Brief from the High-Level Expert Forum Held in Rome, 12–13 October; FAO: Rome, Italy, 2009. [Google Scholar]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: II. Main Algorithms and Software Description. Agron. J. 2009, 101, 438–447. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, T.C.; Heng, L.; Steduto, P.; Rojas-Lara, B.; Raes, D.; Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: III. Parameterization and Testing for Maize. Agron. J. 2009, 101, 448–459. [Google Scholar] [CrossRef]
- Heng, L.K.; Hsiao, T.; Evett, S.; Howell, T.; Steduto, P. Validating the FAO AquaCrop Model for Irrigated and Water Deficient Field Maize. Agron. J. 2009, 101, 488–498. [Google Scholar] [CrossRef] [Green Version]
- Abedinpour, M.; Sarangi, A.; Rajput, T.B.S.; Singh, M.; Pathak, H.; Ahmad, T. Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agric. Water Manag. 2012, 110, 55–66. [Google Scholar] [CrossRef]
- Paredes, P.; de Melo-Abreu, J.; Alves, I.; Pereira, L. Assessing the performance of the FAO AquaCrop model to estimate maize yields and water use under full and deficit irrigation with focus on model parameterization. Agric. Water Manag. 2014, 144, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Ran, H.; Kang, S.Z.; Li, F.S.; Du, T.S.; Tong, L.; Li, S.; Ding, R.S.; Zhang, X.T. Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China. Agric. Water Manag. 2018, 203, 438–450. [Google Scholar] [CrossRef]
- He, Q.S.; Li, S.; Hu, D.; Wang, Y.H.; Cong, X. Performance assessment of the AquaCrop model for film-mulched maize with full drip irrigation in Northwest China. Irrig. Sci. 2021, 39, 277–292. [Google Scholar] [CrossRef]
- Andarzian, B.; Bannayan, M.; Steduto, P.; Mazraeh, H.; Barati, M.; Rahnama, A. Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agric. Water Manag. 2011, 100, 1–8. [Google Scholar] [CrossRef]
- Toumi, J.; Er-Raki, S.; Ezzahar, J.; Khabba, S.; Jarlan, L.; Chehbouni, A. Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management. Agric. Water Manag. 2016, 163, 219–235. [Google Scholar] [CrossRef]
- Jalil, A.; Akhtar, F.; Awan, U.K. Evaluation of the AquaCrop model for winter wheat under different irrigation optimization strategies at the downstream Kabul River Basin of Afghanistan. Agric. Water Manag. 2020, 240, 106321. [Google Scholar] [CrossRef]
- Maniruzzaman, M.; Talukder, M.S.U.; Khan, M.H.; Biswas, J.C.; Nemes, A. Validation of the AquaCrop model for irrigated rice production under varied water regimes in Bangladesh. Agric. Water Manag. 2015, 159, 331–340. [Google Scholar] [CrossRef]
- Farahani, H.J.; Izzi, G.; Oweis, T.Y. Parameterization and Evaluation of the AquaCrop Model for Full and Deficit Irrigated Cotton. Agron. J. 2009, 101, 469–476. [Google Scholar] [CrossRef] [Green Version]
- Linker, R.; Ioslovich, I.; Sylaios, G.; Plauborg, F.; Battilani, A. Optimal model-based deficit irrigation scheduling using AquaCrop: A simulation study with cotton, potato and tomato. Agric. Water Manag. 2016, 163, 236–243. [Google Scholar] [CrossRef]
- Tsakmakis, I.D.; Kokkos, N.P.; Gikas, G.D.; Pisinaras, V.; Hatzigiannakis, E.; Arampatzis, G.; Sylaios, G.K. Evaluation of AquaCrop model simulations of cotton growth under deficit irrigation with an emphasis on root growth and water extraction patterns. Agric. Water Manag. 2019, 213, 419–432. [Google Scholar] [CrossRef]
- Liu, Q.; Gong, D.Z.; Hao, W.P.; Wang, H.B.; Gao, X.; Mei, X.R. Yield of film mulched maize with AquaCrop Mode. J. Irrig. Drain. 2015, 34, 54–61, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Yang, N.; Sun, Z.X.; Zhang, L.Z.; Zheng, J.M.; Feng, L.S.; Li, K.Y.; Zhang, Z.; Feng, C. Simulation of water use process by film mulched cultivated maize based on improved AquaCrop model and its verification. Trans. CSAE 2015, 31, 122–132, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Fu, C.; Li, S.S.; Li, J.; Wang, Y.C.; Lu, Y.S.; Xu, W.Z.; Wei, S. Calibration and Validation of AquaCrop Model in Spring Wheat Region of Songnen Plain. J. Irrig. Drain. 2012, 31, 99–102, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Wang, X.X.; Wang, Q.J.; Fan, J.; Fu, Q.P. Evaluation of the AquaCrop model for simulating the impact of water deficits and different irrigation regimes on the biomass and yield of winter wheat grown on China’s Loess Plateau. Agric. Water Manag. 2013, 129, 95–104. [Google Scholar] [CrossRef]
- Shao, D.G.; Le, Z.H.; Xu, B.L.; Hu, N.J.; Tian, Y.N. Optimization of irrigation scheduling for organic rice based on AquaCrop. Trans. Chin. Soc. Agric. Eng. 2018, 34, 114–122. [Google Scholar] [CrossRef]
- Chen, R.; Cheng, W.H.; Cui, J.; Liao, J.; Fan, H.; Zheng, Z.; Ma, F.Y. Lateral spacing in drip-irrigated wheat: The effects on soil moisture, yield, and water use efficiency. Field Crops Res. 2015, 179, 52–62. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, F.Y.; Jia, Z.K.; Ren, X.L.; Cai, T. Response of soil water, temperature, and maize (Zea may L.) production to different plastic film mulching patterns in semi-arid areas of northwest China. Soil Tillage Res. 2017, 166, 113–121. [Google Scholar] [CrossRef]
- Zhao, Y.G.; Li, Y.Y.; Wang, J.; Pang, H.C.; Li, Y. Buried straw layer plus plastic mulching reduces soil salinity and increases sunflower yield in saline soils. Soil Tillage Res. 2016, 155, 363–370. [Google Scholar] [CrossRef]
- Fan, Y.Q.; Ding, R.S.; Kang, S.Z.; Hao, X.M.; Du, T.S.; Tong, L.; Li, S. Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland. Agric. Water Manag. 2017, 179, 122–131. [Google Scholar] [CrossRef]
- Wang, F.X.; Wu, X.X.; Shock, C.C.; Chu, L.Y.; Gu, X.X.; Xue, X. Effects of drip irrigation regimes on potato tuber yield and quality under plastic mulch in arid Northwestern China. Field Crops Res. 2011, 122, 78–84. [Google Scholar] [CrossRef]
- He, H.B.; Ma, F.Y.; Yang, R.; Chen, L.; Jia, B.; Cui, J.; Fan, H.; Wang, X.; Li, L. Rice Performance and Water Use Efficiency under Plastic Mulching with Drip Irrigation. PLoS ONE 2013, 8, e83103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Zhang, R.; Wang, X.; Chen, F.; Lai, D.; Tian, C. Effects of plastic film mulching with drip irrigation on N2O and CH4 emissions from cotton fields in arid land. J. Agric. Sci. 2014, 152, 534–542. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Fereres, E. On the conservative behavior of biomass water productivity. Irrig. Sci. 2007, 25, 189–207. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Xiao, J.F.; Ming, B.; Xie, R.Z.; Wang, K.R.; Hou, P.; Liu, G.Z.; Zhang, G.Q.; Chen, J.L.; Liu, W.M.; et al. Grain yields and evapotranspiration dynamics of drip-irrigated maize under high plant density across arid to semi-humid climates. Agric. Water Manag. 2021, 247, 106726. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements, Irrigation and Drain; Paper No. 56; FAO: Rome, Italy, 1998; p. 300. [Google Scholar]
- Yuan, M.; Zhang, L.; Gou, F.; Su, Z.; Spiertz, J.H.J.; van der Werf, W. Assessment of crop growth and water productivity for five C3 species in semi-arid Inner Mongolia. Agric. Water Manag. 2013, 122, 28–38. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef] [Green Version]
- Willmott, C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef] [Green Version]
- Tabuada, M.A.; Rego, Z.J.C.; Vachaud, G.; Pereira, L.S. Modelling of furrow irrigation. Advance with two-dimensional infiltration. Agric. Water Manag. 1995, 28, 201–221. [Google Scholar] [CrossRef]
- Fernández-Gálvez, J.; Simmonds, L.P. Monitoring and modelling the three-dimensional flow of water under drip irrigation. Agric. Water Manag. 2006, 83, 197–208. [Google Scholar] [CrossRef]
- Azad, N.; Behmanesh, J.; Rezaverdinejad, V.; Abbasi, F.; Navabian, M. Developing an optimization model in drip fertigation management to consider environmental issues and supply plant requirements. Agric. Water Manag. 2018, 208, 344–356. [Google Scholar] [CrossRef]
- Katerji, N.; Campi, P.; Mastrorilli, M. Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region. Agric. Water Manag. 2013, 130, 14–26. [Google Scholar] [CrossRef]
- Ahmadi, S.H.; Mosallaeepour, E.; Kamgar-Haghighi, A.A.; Sepaskhah, A.R. Modeling Maize Yield and Soil Water Content with AquaCrop Under Full and Deficit Irrigation Managements. Water Resour. Manag. 2015, 29, 2837–2853. [Google Scholar] [CrossRef]
- Li, J.; Zhu, T.; Mao, X.M.; Adeloye, A.J. Modeling crop water consumption and water productivity in the middle reaches of Heihe River Basin. Comput. Electron. Agric. 2016, 123, 242–255. [Google Scholar] [CrossRef]
- Han, C.Y.; Zhang, B.Z.; Chen, H.; Liu, Y.; Wei, Z. Novel approach of upscaling the FAO AquaCrop model into regional scale by using distributed crop parameters derived from remote sensing data. Agric. Water Manag. 2020, 240, 106288. [Google Scholar] [CrossRef]
- Abedinpour, M.; Sarangi, A.; Rajput, T.B.S.; Singh, M. Prediction of maize yield under future water availability scenarios using the AquaCrop model. J. Agric. Sci. 2014, 152, 558–574. [Google Scholar] [CrossRef]
- Yang, C.Y.; Fraga, H.; Van Ieperen, W.; Santos, J.A. Assessment of irrigated maize yield response to climate change scenarios in Portugal. Agric. Water Manag. 2017, 184, 178–190. [Google Scholar] [CrossRef]
- García-Vila, M.; Fereres, E. Combining the simulation crop model AquaCrop with an economic model for the optimization of irrigation management at farm level. Eur. J. Agron. 2012, 36, 21–31. [Google Scholar] [CrossRef] [Green Version]
Site | Year | Total Irrigation Amount (mm) | SWS (0–20 cm) before Sowing (mm) | Irrigation Amount 3 Days after Sowing (mm) | Irrigation Interval in Growth Period (d) | Irrigation Times in Growth Period |
---|---|---|---|---|---|---|
Changji | 2018 | I1(450), I2(540), I3(630), I4(720), I5(810) | 29.9 | 45 | 8–9 | 9 |
2019 | I1(450), I2(540), I3(630), I4(720), I5(810) | 33.4 | 40 | 8–9 | 9 | |
Qitai | 2018 | I1(360), I2(450), I3(540), I4(630), I5(720) | 46.7 | 30 | 8–9 | 9 |
2019 | I1(360), I2(450), I3(540), I4(630), I5(720) | 50.7 | 30 | 8–9 | 9 | |
Xinyuan | 2018 | I1(90), I2(180), I3(270), I4(360), I5(450) | 55.5 | 30 | 12–15 | 4 |
2019 | I1(0), I2(90), I3(180), I4(270), I5(360) | 62.8 | 0 | 12–15 | 3 |
Site | Texture | Water Content at Saturation | Field Capacity | Permanent Wilting Point | Ksat |
---|---|---|---|---|---|
m3 m−3 | mm d−1 | ||||
Changji | loamy sand | 0.32 | 0.16 | 0.09 | 1950.00 |
Qitai | sandy loam | 0.41 | 0.28 | 0.12 | 850.00 |
Xinyuan | silt loam | 0.46 | 0.33 | 0.13 | 575.00 |
Description | Default Value |
Base temperature, °C | 8.0 |
Upper temperature, °C | 30 |
Canopy size of the average seedling at 90% emergence(CC0), cm2 | 6.5 |
Minimum effective rooting depth, m | 0.3 |
Canopy growth coefficient (CGC),% | 1.3 |
Leaf growth threshold (pupper) | 0.14 |
Leaf growth threshold (plower) | 0.72 |
Leaf growth stress coefficient curve shape | 2.9 |
Stomatal conductance threshold (pupper) | 0.69 |
Stomata stress coefficient curve shape | 6.0 |
Senescence stress coefficient (pupper) | 0.69 |
Senescence stress coefficient curve shape | 2.7 |
Allowable maximum increase in specified HI | 15 |
Coefficient, inhibition of leaf growth on HI | 7.0 |
Coefficient, inhibition of stomata on HI | 3.0 |
Site | Description | Calibrated Value | ||||
---|---|---|---|---|---|---|
I1 | I2 | I3 | I4 | I5 | ||
Changji | GDD from sowing to 90% emergence (CC0) | 67/72 | 67/72 | 67/72 | 67/72 | 67/72 |
GDD from sowing to maximum canopy coverage | 822/766 | 822/766 | 805/750 | 798/750 | 798/750 | |
GDD from sowing to start of anthesis | 1165/1031 | 1165/1031 | 1152/1015 | 1116/1000 | 1116/1000 | |
Duration of anthesis, in GDD | 246/243 | 250/243 | 242/243 | 242/244 | 242/244 | |
GDD sowing-canopy senescence | 1702/1638 | 1754/1653 | 1763/1668 | 1763/1698 | 1763/1698 | |
GDD from sowing to maximum root depth | 1516/1378 | 1500/1361 | 1472/1344 | 1446/1325 | 1446/1325 | |
GDD from sowing to maturity | 2013/2088 | 2013/2088 | 2013/2088 | 2013/2088 | 2013/2088 | |
GDD from sowing to 90% emergence (CC0) | 67/64 | 67/64 | 67/64 | 67/64 | 67/64 | |
Qitai | GDD from sowing to maximum canopy coverage | 669/544 | 669/544 | 669/544 | 669/544 | 669/544 |
GDD from sowing to start of anthesis | 886/801 | 864/801 | 840/786 | 840/771 | 840/771 | |
Duration of anthesis, in GDD | 194/209 | 194/209 | 194/209 | 194/209 | 194/209 | |
GDD from sowing to canopy senescence | 1504/1419 | 1516/1419 | 1522/1422 | 1522/1422 | 1522/1422 | |
GDD from sowing to maximum root depth | 1183/1110 | 1135/1095 | 1120/1079 | 1126/1063 | 1120/1063 | |
GDD from sowing to maturity | 1626/1687 | 1626/1687 | 1626/1687 | 1626/1687 | 1626/1687 | |
Xinyuan | GDD from sowing to 90% emergence (CC0) | 70/62 | 70/62 | 70/62 | 70/62 | 70/62 |
GDD from sowing to maximum canopy coverage | 634/626 | 634/626 | 634/626 | 634/626 | 634/626 | |
GDD from sowing to start of anthesis | 885/816 | 872/816 | 872/816 | 872/816 | 872/816 | |
Duration of anthesis, in GDD | 205/202 | 205/202 | 205/202 | 205/202 | 205/202 | |
GDD sowing-canopy senescence | 1514/1353 | 1523/1353 | 1533/1353 | 1533/1353 | 1533/1353 | |
GDD from sowing to maximum root depth | 1175/1088 | 1160/1074 | 1146/1060 | 1146/1060 | 1146/1060 | |
GDD from sowing to maturity | 1774/1602 | 1774/1602 | 1774/1602 | 1744/1602 | 1774/1602 | |
Unified calibration parameter | Maximum canopy cover, % | 98 | ||||
Reference harvest index (HI0), % | 51 | |||||
Maximum root depth, m | 0.6 | |||||
Crop coefficient for transpiration at CC = 100% (KcTr,x) | 1.20 | |||||
Type of surface mulches | Plastic mulches | |||||
Percentage of soil surface covered, % | 40 |
Site | Year | Irrigation (mm) | Biomass (Mg ha−1) | Yield (Mg ha−1) | Transpiration (mm) | WUEB (kg m−3) | WUEY (kg m−3) | WP* (g m2 d−1) |
---|---|---|---|---|---|---|---|---|
Changji | 2018 | I1 (450) | 24.4 c | 12.3 d | 357.2 c | 7.2 d | 3.4 c | 32.1 d |
I2 (540) | 28.9 b | 14.2 c | 369.9 b | 8.0 c | 3.8 c | 37.4 c | ||
I3 (630) | 32.1 ab | 15.3 b | 373.0 a | 8.8 b | 4.1 b | 41.2 b | ||
I4 (720) | 35.0 a | 16.3 a | 374.4 a | 9.2 a | 4.4 a | 45.4 a | ||
I5 (810) | 36.6 a | 16.6 a | 377.8 a | 9.3 a | 4.4 a | 45.8 a | ||
2019 | I1 (450) | 24.6 d | 11.4 d | 397.4 c | 6.2 d | 2.9 c | 32.3 d | |
I2 (540) | 29.2 c | 13.0 c | 425.3 b | 6.9 c | 3.1 c | 36.0 c | ||
I3 (630) | 32.4 b | 14.1 b | 428.4 b | 7.6 b | 3.3 b | 38.7 b | ||
I4 (720) | 36.6 a | 15.1 a | 434.0 a | 8.4 a | 3.5 a | 43.4 a | ||
I5 (810) | 37.4 a | 15.7 a | 434.0 a | 8.6 a | 3.6 a | 44.1 a | ||
Qitai | 2018 | I1 (360) | 31.0 c | 16.0 c | 336.7 c | 9.2 c | 4.8 c | 34.6 c |
I2 (450) | 33.6 b | 17.1 b | 345.2 b | 9.7 bc | 5.0 b | 37.0 b | ||
I3 (540) | 36.1 a | 18.7 a | 346.8 ab | 10.4 ab | 5.4 a | 39.0 b | ||
I4 (630) | 37.9 a | 18.6 a | 350.2 a | 10.8 a | 5.3 a | 40.7 a | ||
I5 (720) | 38.6 a | 18.5 a | 348.4 a | 11.1 a | 5.3 a | 41.3 a | ||
2019 | I1 (360) | 32.5 c | 15.8 c | 350.2 c | 9.3 c | 4.5 c | 34.3 c | |
I2 (450) | 35.6 b | 17.7 b | 365.5 b | 9.7 b | 4.8 b | 36.4 b | ||
I3 (540) | 37.8 a | 18.9 a | 368.2 ab | 10.3 a | 5.1 a | 38.2 ab | ||
I4 (630) | 38.6 a | 18.9 a | 370.4 a | 10.4 a | 5.1 a | 39.1 a | ||
I5 (720) | 39.2 a | 18.3 a | 369.4 a | 10.6 a | 5.0 ab | 39.4 a | ||
Xinyuan | 2018 | I1 (90) | 35.5 c | 16.1 b | 525.5 c | 6.8 bc | 3.1 a | 36.4 b |
I2 (180) | 39.0 b | 17.6 a | 586.6 b | 6.6 c | 3.0 b | 36.1 b | ||
I3 (270) | 40.5 a | 17.9 a | 594.9 a | 6.8 bc | 3.0 b | 37.9 a | ||
I4 (360) | 41.5 a | 17.0 a | 593.6 a | 7.0 ab | 2.9 b | 38.0 a | ||
I5 (450) | 41.6 a | 15.6 b | 583.7 b | 7.1 a | 2.7 c | 39.1 a | ||
2019 | I1 (0) | 30.7 d | 14.1 d | 428.1 d | 7.1 a | 3.3 a | 41.4 a | |
I2 (90) | 34.4 c | 16.3 c | 515.2 c | 6.7 c | 3.2 b | 37.9 c | ||
I3 (180) | 37.9 b | 18.4 ab | 561.3 b | 6.8 bc | 3.3 ab | 37.8 c | ||
I4 (270) | 39.1 ab | 18.6 a | 576.4 a | 6.8 bc | 3.2 ab | 39.3 bc | ||
I5 (360) | 39.7 a | 16.8 b | 574.2 a | 6.9 b | 2.9 c | 39.9 ab | ||
Source of variation | ||||||||
Site | ** | ** | ** | ** | ** | ** | ||
Year | ns | * | ** | ** | ** | ns | ||
Irrigation | ** | ** | ** | ** | ** | ** | ||
Site × Year | ** | ** | ** | ** | ** | ** | ||
Site × Irrigation | ** | ** | ** | ** | ** | ** | ||
Year × Irrigation | ns | ns | ns | ns | ns | ns | ||
Site × Year × Irrigation | ns | ns | ns | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Xue, J.; Xie, R.; Ming, B.; Wang, K.; Hou, P.; Zhang, L.; Li, S. Assessing Growth and Water Productivity for Drip-Irrigated Maize under High Plant Density in Arid to Semi-Humid Climates. Agriculture 2022, 12, 97. https://doi.org/10.3390/agriculture12010097
Wang F, Xue J, Xie R, Ming B, Wang K, Hou P, Zhang L, Li S. Assessing Growth and Water Productivity for Drip-Irrigated Maize under High Plant Density in Arid to Semi-Humid Climates. Agriculture. 2022; 12(1):97. https://doi.org/10.3390/agriculture12010097
Chicago/Turabian StyleWang, Feng, Jun Xue, Ruizhi Xie, Bo Ming, Keru Wang, Peng Hou, Lizhen Zhang, and Shaokun Li. 2022. "Assessing Growth and Water Productivity for Drip-Irrigated Maize under High Plant Density in Arid to Semi-Humid Climates" Agriculture 12, no. 1: 97. https://doi.org/10.3390/agriculture12010097
APA StyleWang, F., Xue, J., Xie, R., Ming, B., Wang, K., Hou, P., Zhang, L., & Li, S. (2022). Assessing Growth and Water Productivity for Drip-Irrigated Maize under High Plant Density in Arid to Semi-Humid Climates. Agriculture, 12(1), 97. https://doi.org/10.3390/agriculture12010097