Application Status and Prospect of Impedance Spectroscopy in Agricultural Product Quality Detection
Abstract
:1. Introduction
2. Electrical Impedance Spectroscopy Principle
3. Electrical Impedance Spectroscopy Application in Agriculture
3.1. Electrical Impedance Spectroscopy Application in Grain Quality Detection
3.2. Electrical Impedance Spectroscopy Application in Fruit and Vegetable Quality Detection
3.3. Electrical Impedance Spectroscopy Application in Meat Quality Inspection
3.4. Electrical Impedance Spectroscopy Application in Food Quality Inspection
4. Main Problems and Future Prospects of Impedance Spectroscopy in Agriculture
4.1. Current Main Problems
4.2. Prospects for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feng, L.; Hou, T.; Wang, B.; Zhang, B. Assessment of rice seed vigour using selected frequencies of electrical impedance spectroscopy. Biosyst. Eng. 2021, 209, 53–63. [Google Scholar] [CrossRef]
- Song, Q.; Wei, X.; Sun, W.; Lu, Z.; Tao, T. Design of capacitive paddy moisture sensor based on electrical impedance spectroscopy analysis. Appl. Sci. 2020, 10, 3968. [Google Scholar] [CrossRef]
- Qi, S.; Zemin, L.; Weihong, S.; Xinhua, W. Analysis of rice electrical impedance spectrum and determination of detection frequency range. Agric. Mech. Res. 2018, 40, 172–176. [Google Scholar]
- Ran, T. Study on the Electrical Impedance Spectrum of Rice Leaves in the Seedling Stage under Low Temperature Stress; Shenyang Agricultural University: Shenyang, China, 2019. [Google Scholar]
- Kocheva, K.V.; Georgiev, G.I.; Kochev, V.K.; Olsovska, K.; Brestic, M. Application of impedance spectroscopy and conductometry for assessment of varietal differences in wheat. Cereal Res. Commun. 2015, 43, 579–590. [Google Scholar] [CrossRef]
- Feng, L.; Hou, T.; Zhang, B. A noninvasive method for detecting frozen injuries in potatoes based on electrical impedance spectroscopy. J. Food Process Eng. 2021, 44, e13682. [Google Scholar] [CrossRef]
- Fuentes, A.; Vázquez-Gutiérrez, J.L.; Pérez-Gago, M.B.; Vonasek, E.; Nitin, N.; Barrett, D.M. Application of nondestructive impedance spectroscopy to determination of the effect of temperature on potato microstructure and texture. J. Food Eng. 2014, 133, 16–22. [Google Scholar] [CrossRef]
- Chee, G.; Rungraeng, N.; Han, J.H.; Jun, S.J. Electrochemical impedance spectroscopy as an alternative to determine dielectric constant of potatoes at various moisture contents. J. Food Sci. 2014, 79, E195–E201. [Google Scholar] [CrossRef]
- Pengfei, Z.; Hanlin, Z.; Dongjie, Z.; Zhijie, W.; Lifeng, F.; Lan, H.; Qin, M.; Zhongyi, W. Rapid on-line nondestructive detection of the moisture content of corn ear by bioelectrical impedance spectroscopy. Int. J. Agric. Biol. Eng. 2015, 8, 37–45. [Google Scholar]
- Luna, J.M.M.; Luna, A.M.; Fernández, R.E.H. Characterization and Differentiation between Olive Varieties through Electrical Impedance Spectroscopy, Neural Networks and IoT. Sensors 2020, 20, 5932. [Google Scholar] [CrossRef]
- Islam, M.; Wahid, K.A.; Dinh, A.V.; Bhowmik, P. Model of dehydration and assessment of moisture content on onion using EIS. J. Food Sci. Technol. 2019, 56, 2814–2824. [Google Scholar] [CrossRef]
- Neto, A.F.; Olivier, N.C.; Cordeiro, E.R.; Oliveira, H.P. Determination of mango ripening degree by electrical impedance spectroscopy. Comput. Electron. Agric. 2017, 143, 222–226. [Google Scholar] [CrossRef]
- Rehman, M.; Abu Izneid, B.A.J.A.; Abdullah, M.Z.; Arshad, M.R. Assessment of quality of fruits using impedance spectroscopy. Int. J. Food Sci. Technol. 2011, 46, 1303–1309. [Google Scholar] [CrossRef]
- Chowdhury, A.; Kanti Bera, T.; Ghoshal, D.; Chakraborty, B. Electrical impedance variations in banana ripening: An analytical study with electrical impedance spectroscopy. J. Food Process Eng. 2017, 40, e12387. [Google Scholar] [CrossRef]
- Li, J.; Xu, Y.; Zhu, W.; Sun, H. Maturity assessment of tomato fruit based on electrical impedance spectroscopy. Int. J. Agric. Biol. Eng. 2019, 12, 154–161. [Google Scholar] [CrossRef]
- Ochandio Fernández, A.; Olguín Pinatti, C.A.; Masot Peris, R.; Laguarda-Miró, N. Freeze-damage detection in lemons using electrochemical impedance spectroscopy. Sensors 2019, 19, 4051. [Google Scholar] [CrossRef]
- Conesa, C.; Sanchez, L.G.; Segui, L.; Nicolás, P.F.; Laguarda-Mirób, N. Ethanol quantification in pineapple waste by an electrochemical impedance spectroscopy-based system and artificial neural networks. Chemom. Intell. Lab. Syst. 2017, 161, 1–7. [Google Scholar] [CrossRef]
- Conesa, C.; Ibanez Civera, J.; Seguí, L.; Fito, P.; Laguarda-Miró, L. An electrochemical impedance spectroscopy system for monitoring pineapple waste saccharification. Sensors 2016, 16, 188. [Google Scholar] [CrossRef]
- Xingzhi, W.; Junan, R.; Jianwu, R.; Hongjun, Y.; Rongfu, G. Study on impedance spectrum characteristics of cucumbers under different storage methods. J. Shanxi Agric. Univ. Nat. Sci. Ed. 2011, 31, 557–562. [Google Scholar]
- Huh, S.; Kim, H.J.; Lee, S.; Cho, J.; Jang, A.; Bae, J. Utilization of electrical impedance spectroscopy and image classification for non-invasive early assessment of meat freshness. Sensors 2021, 21, 1001. [Google Scholar] [CrossRef]
- Feng, Z.; Chen, Z.; Xiangjuan, L. Rapid and nondestructive evaluation of pig and beef freshness based on electrical impedance spectrum. Meat Res. 2019, 33, 51–56. [Google Scholar]
- Sun, J.; Liu, Y.; Wu, G.; Zhang, Y.; Zhang, R.; Li, X.J. A Fusion Parameter Method for Classifying Freshness of Fish Based on Electrochemical Impedance Spectroscopy. J. Food Qual. 2021, 2021, 6664291. [Google Scholar] [CrossRef]
- Niu, J.; Lee, J.Y. A new approach for the determination of fish freshness by electrochemical impedance spectroscopy. J. Food Sci. 2000, 65, 780–785. [Google Scholar] [CrossRef]
- Pérez-Esteve, E.; Fuentes, A.; Grau, R.; Fernández-Segovia, I.; Masotb, R.; Alcañiz, M.; Barata, J.M. Use of impedance spectroscopy for predicting freshness of sea bream (Sparus aurata). Food Control 2014, 35, 360–365. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, R.; Zhang, Y.; Liang, Q.; Li, G.; Yang, N.; Xu, P.F.; Guo, J.J. Classifying fish freshness according to the relationship between EIS parameters and spoilage stages. J. Food Eng. 2018, 219, 101–110. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, R.; Zhang, Y.; Li, G.; Liang, Q. Estimating freshness of carp based on EIS morphological characteristic. J. Food Eng. 2017, 193, 58–67. [Google Scholar] [CrossRef]
- Liming, L. Research on Salmon Quality Detection Based on Hyperspectral Imaging and Impedance Spectroscopy; Jiangsu University: Zhenjiang, China, 2020. [Google Scholar]
- Jian, S. Research on Key Technologies for Fish Freshness Detection Based on Impedance Spectroscopy; Jiangsu University: Zhenjiang, China, 2019. [Google Scholar]
- Rizo, A.; Fuentes, A.; Fernández-Segovia, I.; Masot, R.; Alcañiz, M.; Barat, M. Development of a new salmon salting–smoking method and process monitoring by impedance spectroscopy. LWT-Food Sci. Technol. 2013, 51, 218–224. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.Y.; Ding, Q.; Huang, L.; Wang, C.; Zhu, D.Z. Moisture content prediction of porcine meat by bioelectrical impedance spectroscopy. Math. Comput. Model. 2013, 58, 819–825. [Google Scholar] [CrossRef]
- Lianhuan, W. Research on the Identification Method of Water-Injected Meat Based on Bioelectrical Impedance Spectroscopy; Xi’an University of Technology: Xi’an, China, 2016. [Google Scholar]
- Kening, W.; Xiaopan, W.; Xiongxing, Z.; Wei, W. Application of AD5933 in Meat Impedance Spectroscopy Measurement System. J. Xi’an Univ. Technol. 2013, 32, 806–810. [Google Scholar]
- Qiang, D.; Zhongyi, W.; Lan, H.; Jianxi, H.; Gengwei, Z.; Wei, Z. Development of a portable pork impedance spectrum detection system. Chin. J. Agric. Eng. 2009, 12, 138–144. [Google Scholar]
- Zhao, X.; Zhuang, H.; Yoon, S.C.; Dong, Y.; Wang, W. Electrical impedance spectroscopy for quality assessment of meat and fish: A review on basic principles, measurement methods, and recent advances. J. Food Qual. 2017, 2017, 6370739. [Google Scholar] [CrossRef]
- Xiaohang, Z. Research on the Detection Method of Pork Freshness Based on Impedance Spectroscopy; Zhejiang Technology and Business University: Hangzhou, China, 2019. [Google Scholar]
- Muller, T.L.; Ward, L.C.; Plush, K.J.; Pluske, J.R.; D’Souza, D.N.; Bryden, W.L.; Barneveld, R.J. Use of bioelectrical impedance spectroscopy to provide a measure of body composition in sows. Animal 2021, 15, 100156. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, F.C.; Fuentes, A.; Masot, R.; Alcañiz, M.; Laurindo, J.B.; Barat, J.M. Assessing heat treatment of chicken breast cuts by impedance spectroscopy. Food Sci. Technol. Int. 2017, 23, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Xie, Y.; Wan, D.; Zheng, F.; Wang, J. Enrichment-free rapid detection of Phthalates in Chinese liquor with electrochemical impedance spectroscopy. Sensors 2020, 20, 901. [Google Scholar] [CrossRef]
- Jiang, X.; Xie, Y.; Wan, D.; Chen, M.; Zheng, F. GUITAR-enhanced facile discrimination of aged Chinese Baijiu using electrochemical impedance spectroscopy. Anal. Chim. Acta 2019, 1059, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Sairin, M.A.; Amira, N.; Aziz, S.A.; Sucipto, S.; Rokhani, F.Z. Design of Portable Wireless Impedance Spectroscopy for Sensing Lard as Adulterant in Palm Oil. In IOP Conference Series: Earth and Environmental Science, Proceeding of the International Conference on Green Agro-industry and Bioeconomy, Universitas Brawijaya, East Java, Indonesia, 18–20 September 2018; IOP Publishing: Bristol, UK, 2019; Volume 230, p. 012021. [Google Scholar]
- M’Peko, J.C.; Reis DL, S.; De Souza, J.E.; Caires AR, L. Evaluation of the dielectric properties of biodiesel fuels produced from different vegetable oil feedstocks through electrochemical impedance spectroscopy. Int. J. Hydrogen Energy 2013, 38, 9355–9359. [Google Scholar] [CrossRef]
- Yu, Y.; Shi, G.; Hu, J.; Yuan, S.H. Detection method of waste oil based on impedance spectrum eigenvalue database. Cereals Oils Food Sci. Technol. 2013, 21, 79–82. [Google Scholar]
- Ulloa, P.A.; Guerra, R.; Cavaco, A.M.; Costa, A.M.R.; Figueira, A.C.; Brigas, A.F. Determination of the botanical origin of honey by sensor fusion of impedance e-tongue and optical spectroscopy. Comput. Electron. Agric. 2013, 94, 1–11. [Google Scholar] [CrossRef]
- Das, C.; Chakraborty, S.; Acharya, K.; Bera, N.K.; Chattopadhyay, D.; Karmakar, A.; Chattopadhyay, S. FT-MIR supported Electrical Impedance Spectroscopy based study of sugar adulterated honeys from different floral origin. Talanta 2017, 171, 327–334. [Google Scholar] [CrossRef]
- Scandurra, G.; Tripodi, G.; Verzera, A. Impedance spectroscopy for rapid determination of honey floral origin. J. Food Eng. 2013, 119, 738–743. [Google Scholar] [CrossRef]
- Soares, C.; Machado JA, T.; Lopes, A.M.; Vieira, E.; Delerue-Matos, C. Electrochemical impedance spectroscopy characterization of beverages. Food Chem. 2020, 302, 125345. [Google Scholar] [CrossRef]
- Li, X.; Toyoda, K.; Ihara, I. Coagulation process of soymilk characterized by electrical impedance spectroscopy. J. Food Eng. 2011, 105, 563–568. [Google Scholar] [CrossRef]
- Lopes, A.M.; Machado, J.A.; Ramalho, E.; Silva, V. Milk characterization using electrical impedance spectroscopy and fractional models. Food Anal. Methods 2018, 11, 901–912. [Google Scholar] [CrossRef]
- Masot, R.; Alcañiz, M.; Fuentes, A.; Schmidt, F.C.; Barat, J.M.; Gil, L.; Diana, B.; Martínez-Máñez, R.; Soto, J. Design of a low-cost nondestructive system for punctual measurements of salt levels in food products using impedance spectroscopy. Sens. Actuators A Phys. 2010, 158, 217–223. [Google Scholar] [CrossRef]
- Grossi, M.; Parolin, C.; Vitali, B.; Riccò, B. Electrical Impedance Spectroscopy (EIS) characterization of saline solutions with a low-cost portable measurement system. Eng. Sci. Technol. Int. J. 2019, 22, 102–108. [Google Scholar] [CrossRef]
- Caicedo-Eraso, J.C.; Díaz-Arango, F.O.; Osorio-Alturo, A. Electrical impedance spectroscopy applied to quality control in the food industry. Cienc. Tecnol. Agropecu. 2020, 21, 100–119. [Google Scholar]
- Guermazi, M.; Fendri, A.; Kanoun, O.; Derbel, N. Potential of impedance spectroscopy for real-time assessing of food quality. IEEE Instrum. Meas. Mag. 2018, 21, 44–48. [Google Scholar] [CrossRef]
- Dean, D.A.; Ramanathan, T.; Machado, D.; Sundararajan, R. Electrical impedance spectroscopy study of biological tissues. J. Electrost. 2008, 66, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Hayden, R.I.; Moyse, C.A.; Calder, F.W.; Crawford, D.P.; Fensom, D.S. Electrical impedance studies on potato and alfalfa tissue. J. Exp. Bot. 1969, 20, 177–200. [Google Scholar] [CrossRef]
- Vozáry, E.; Paine, D.H.; Kwiatkowski, J.; Taylor, A.G. Prediction of soybean and snap bean seed germinability by electrical impedance spectroscopy. Seed Sci. Technol. 2007, 35, 48–64. [Google Scholar] [CrossRef]
- Jócsák, I.; Végvári, G.; Vozáry, E. Electrical impedance measurement on plants: A review with some insights to other fields. Theor. Exp. Plant Physiol. 2019, 31, 359–375. [Google Scholar] [CrossRef]
- Bera, T.K.; Nagaraju, J.; Lubineau, G. Electrical impedance spectroscopy (EIS)-based evaluation of biological tissue phantoms to study multifrequency electrical impedance tomography (Mf-EIT) systems. J. Vis. 2016, 19, 691–713. [Google Scholar] [CrossRef]
- Fu, B.; Freeborn, T.J. Biceps tissue bioimpedance changes from isotonic exercise-induced fatigue at different intensities. Biomed. Phys. Eng. Express 2018, 4, 025037. [Google Scholar] [CrossRef]
- Maundy, B.J.; Elwakil, A.S.; Allagui, A. Extracting the parameters of the single-dispersion Cole bioimpedance model using a magnitude-only method. Comput. Electron. Agric. 2015, 119, 153–157. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, J.; Yu, P.; Huang, Y.; Zhang, G.; Lu, C.; Jiang, X. Application Status and Prospect of Impedance Spectroscopy in Agricultural Product Quality Detection. Agriculture 2022, 12, 1525. https://doi.org/10.3390/agriculture12101525
Cheng J, Yu P, Huang Y, Zhang G, Lu C, Jiang X. Application Status and Prospect of Impedance Spectroscopy in Agricultural Product Quality Detection. Agriculture. 2022; 12(10):1525. https://doi.org/10.3390/agriculture12101525
Chicago/Turabian StyleCheng, Junhui, Pengpeng Yu, Yourui Huang, Gang Zhang, Chengling Lu, and Xueping Jiang. 2022. "Application Status and Prospect of Impedance Spectroscopy in Agricultural Product Quality Detection" Agriculture 12, no. 10: 1525. https://doi.org/10.3390/agriculture12101525
APA StyleCheng, J., Yu, P., Huang, Y., Zhang, G., Lu, C., & Jiang, X. (2022). Application Status and Prospect of Impedance Spectroscopy in Agricultural Product Quality Detection. Agriculture, 12(10), 1525. https://doi.org/10.3390/agriculture12101525