Power Consumption Influence Test of Castor Disc-Cutting Device
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mechanical Analysis of Cutting Process
2.2. Test Materials
2.3. Test Equipment
2.3.1. Cutting Structure Parameters
2.3.2. Test Bench Parameters
2.4. Experiment Design
2.4.1. Test Index
2.4.2. Experimental Factors
2.4.3. Cutting Power Consumption Test
3. Results
3.1. Single Factor Test
3.2. Orthogonal Test Results
3.3. Regression Equations
4. Discussion
4.1. Analysis of the Influence of Each Factor on the Performance Index
4.2. Parameter Optimization
4.3. Verification Results
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mensah, M.B.; Awudza, J.A.M.; O’Brien, P. Castor oil: A suitable green source of capping agent for nanoparticle syntheses and facile surface functionalization. R. Soc. Open Sci. 2018, 5, 180824. [Google Scholar] [CrossRef]
- Pari, L.; Suardi, A.; Stefanoni, W.; Latterini, F.; Palmieri, N. Environmental and economic assessment of castor oil supply Chain: A case study. Sustainability 2020, 12, 6339. [Google Scholar] [CrossRef]
- Severino, L.S.; Auld, D.L.; Baldanzi, M.; Cândido, M.J.D.; Chen, G.; Crosby, W.; Tan, D.; He, X.; Lakshmamma, P.; Lavanya, C.; et al. A review on the challenges for increased production of castor. Agron. J. 2012, 104, 853–880. [Google Scholar] [CrossRef]
- Anjani, K.A.K. A re-evaluation of castor (Ricinus communis L.) as a crop plant. CAB Rev. Perspect. Agric. Veter. Sci. Nutr. Nat. Resour. 2014, 9, 1–21. [Google Scholar] [CrossRef]
- Kong, F.T.; Wu, T.; Shi, L.; Zhang, Y.T.; Chen, C.L.; Sun, Y.F. Research status and development prospect of ricinus communis harvester. J. Chin. Agric. Mech. 2019, 40, 32–36. [Google Scholar] [CrossRef]
- Pari, L.; Latterini, F.; Stefanoni, W. Herbaceous oil crops, a review on mechanical harvesting state of the art. Agriculture 2020, 10, 309. [Google Scholar] [CrossRef]
- Wu, T.; Kong, F.T.; Shi, L.; Chen, C.L.; Sun, Y.F.; Xie, Q. Analysis of the development status of Ricinus communis production technology. J. Chin. Agric. Mech. 2019, 40, 77–81. [Google Scholar] [CrossRef]
- Claas Ohg Beschraenkt Haftende Offene Handelsgesellschaft, Centre National Du Machinisme Agricole, Du Genie Rural, Des Eaux Et Des Forets (CEMAGREF). Self-Propelled Harvester for Harvesting Delicate Crops Und as Castor-Oil Seeds. E.P. Patent 19940250172, 11 January 1995. [Google Scholar]
- Deere & Company. Header for Harvesting Castor Beans. U.S. Patent 19590831646, 23 April 1962. [Google Scholar]
- Li, C.H.; Liu, C.C.; Zhuang, W.H.; Zhu, Z.W. The structural design and motion simulation of the comb-type castor picking system. J. Mach. Des. Manuf. 2016, 5, 95–98. [Google Scholar] [CrossRef]
- Wu, C.F.; Chen, W.C.; Sheng, C.T. Study on the harvester development of ricinus communis. J. Agric. Fore. 2013, 62, 33–44. Available online: https://ir.lib.nchu.edu.tw/handle/11455/93621 (accessed on 6 December 2017).
- Liu, L.; Wu, T.; Kong, F.T.; Sun, Y.F.; Chen, C.L.; Xie, Q.; Shi, L. Optimized design and experiment of the picking mechanism for brush-roller castor harvesters. Trans. Chin. Soc. Agric. Eng. 2021, 37, 19–29. [Google Scholar]
- Bai, J.B. The Design of Small-Sized Castor Harvester and Cutting Device; Shenyang Agricultural University: Shenyang, China, 2019. [Google Scholar] [CrossRef]
- Song, Z.H.; Song, H.L.; Yan, Y.F.; Li, Y.D.; Gao, T.H.; Li, F.D. Optimizing design on knife section of reciprocating cutter bars for harvesting cotton stalk. Trans. Chin. Soc. Agric. Eng. 2016, 32, 42–49. [Google Scholar]
- Guo, Q.; Zhang, X.L.; Xu, Y.F.; Li, P.P.; Chen, C.; Wu, S. Design and experiment of cutting blade for cane straw. Trans. Chin. Soc. Agric. Eng. 2014, 30, 47–53. [Google Scholar]
- Chen, Z.G.; Wang, D.F.; Li, L.J.; Shan, R.X. Experiment on tensile and shearing characteristics of rind of corn stalk. Trans. Chin. Soc. Agric. Eng. 2012, 28, 59–65. [Google Scholar]
- Ugwu, K.C.; Egwuagu, O.M.; Omoruyi, A. Determination of some mechanical and aerodynamic properties of castor fruits and seeds. Int. J. Sci. Eng. Res. 2015, 6, 659–666. [Google Scholar]
- Cao, Y.H.; Li, C.Y.; Zhang, Z.X.; Qing, Y.M.; Yao, L.L. Improvement design and test to key components of castor capsule hulling device. Tran. Chin. Soc. Agric. Eng. 2012, 28, 16–22. [Google Scholar]
- Lorestani, A.N.; Jaliliantabar, F.; Gholami, R. Physical and mechanical properties of castor seed. Qual. Assur. Saf. Crop. Foods 2012, 4, e29–e32. [Google Scholar] [CrossRef]
- Wang, J.W.; Guan, R.; Gao, P.X.; Zhou, W.Q.; Tang, H. Design and Experiment of Single Disc to Top Cutting Device for Carrot Combine Harvester. Trans. Chin. Soc. Agric. Mach. 2020, 51, 74–81. [Google Scholar] [CrossRef]
- Maughan, J.D.; Mathanker, S.K.; Fehrenbacher, B.M.; Hansen, A.C. Impact of cutting speed and blade configuration on energy requirement for miscanthus harvesting. Appl. Eng. Agric. 2014, 30, 137–142. [Google Scholar] [CrossRef]
- Orlowski, K.; Ochrymiuk, T. A newly-developed model for predicting cutting power during wood sawing with circular saw blades. Maderas Cienc. Tecnol. 2017, 19, 149–162. [Google Scholar] [CrossRef]
- Li, C.; Zhang, H.; Wang, Q.; Chen, Z. Influencing factors of cutting force for apple tree branch pruning. Agriculture 2022, 12, 312. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, H.; Huang, J.; Tian, K.; Shen, C.; Li, X.; Wang, X. Ramie field distribution model and miss cutting rate prediction based on the statistical analysis. Agriculture 2022, 12, 651. [Google Scholar] [CrossRef]
- Song, S.Y.; Zhou., H.P.; Xu., L.Y.; Jia, Z.C.; Hu, G.M. Cutting mechanical properties of sisal leaves under rotary impact cutting. Ind. Crops Prod. 2022, 182, 114856. [Google Scholar] [CrossRef]
- Kong, F.T.; Wang, D.F.; Shi, L.; Wu, T.; Chen, C.L.; Sun, Y.F.; Xie, Q. Design and experiment of disc-cutting picking device of castor. Tran. Chin. Soc. Agric. Eng. 2021, 37, 1–9. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Plant height/mm | 890~1260 |
Yield/(kg·hm−2) | 3187.5 |
Line spacing/mm | 700 |
Row spacing/mm | 550 |
Capsule number per plant | 89~176 |
Minimum ear height/mm | 211~459 |
Main stalk diameter/mm | 19.8~24.9 |
Capsule diameter/mm | 15.9~18.4 |
Level | Cutting-Disc Thickness (mm) | Cutting-Disc Rotational Speed (r∙min−1) | Feeding Speed (m∙s−1) | Edge Angle /(°) |
---|---|---|---|---|
−2 | 2 | 400 | 0.4 | 15 |
−1 | 3 | 550 | 0.6 | 20 |
0 | 4 | 700 | 0.8 | 25 |
1 | 5 | 850 | 1.0 | 30 |
2 | 6 | 1000 | 1.2 | 35 |
Serials Number | Cutting-Disc Thickness (mm) | Cutting-Disc Rotational Speed (r∙min−1) | Feeding Speed (m∙s−1) | Edge Angle (°) | Cutting Power Consumption (J) |
---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 1.76 |
2 | −1 | 1 | −1 | 1 | 1.87 |
3 | 1 | −1 | −1 | 1 | 2.52 |
4 | 0 | 0 | 0 | 0 | 1.7 |
5 | 1 | 1 | 1 | −1 | 1.91 |
6 | −1 | 1 | 1 | 1 | 1.83 |
7 | 0 | 0 | 2 | 0 | 2.05 |
8 | 0 | 0 | 0 | −2 | 1.33 |
9 | 0 | 0 | 0 | 0 | 1.76 |
10 | 1 | −1 | −1 | −1 | 1.68 |
11 | −2 | 0 | 0 | 0 | 1.23 |
12 | −1 | −1 | −1 | −1 | 1.25 |
13 | 2 | 0 | 0 | 0 | 2.46 |
14 | 0 | −2 | 0 | 0 | 1.62 |
15 | 0 | 0 | 0 | 0 | 1.56 |
16 | 1 | −1 | 1 | −1 | 1.68 |
17 | 0 | 0 | 0 | 0 | 1.73 |
18 | −1 | −1 | 1 | 1 | 1.64 |
19 | −1 | −1 | −1 | 1 | 1.45 |
20 | 0 | 0 | 0 | 2 | 2.31 |
21 | 1 | 1 | 1 | 1 | 2.56 |
22 | 1 | 1 | −1 | 1 | 2.41 |
23 | 1 | −1 | 1 | 1 | 2.41 |
24 | 1 | 1 | −1 | −1 | 1.83 |
25 | −1 | −1 | 1 | −1 | 1.33 |
26 | −1 | 1 | 1 | −1 | 1.91 |
27 | 0 | 2 | 0 | 0 | 2.11 |
28 | −1 | 1 | −1 | −1 | 1.74 |
29 | 0 | 0 | 0 | 0 | 1.87 |
30 | 0 | 0 | −2 | 0 | 1.76 |
Serials | Cutting Power Consumption Y/J | |||
---|---|---|---|---|
Sum of Squares | Degree of Freedom | F Value | Significant Level P | |
Model | 3.92 | 14 | 35.24 | <0.0001 ** |
A | 1.73 | 1 | 217.66 | <0.0001 ** |
B | 0.4 | 1 | 49.79 | <0.0001 ** |
C | 0.05 | 1 | 6.35 | 0.0236 * |
D | 1.18 | 1 | 148.53 | <0.0001 ** |
AB | 0.099 | 1 | 12.5 | 0.003 ** |
AC | 4.90 × 10−3 | 1 | 0.62 | 0.4443 |
AD | 0.31 | 1 | 39.5 | <0.0001 ** |
BC | 2.50 × 10−3 | 1 | 0.31 | 0.583 |
BD | 0.04 | 1 | 5.04 | 0.0403 * |
CD | 1.23 × 10−3 | 1 | 0.15 | 0.7 |
A2 | 0.028 | 1 | 3.46 | 0.0824 |
B2 | 0.037 | 1 | 4.64 | 0.0478 * |
C2 | 0.06 | 1 | 7.52 | 0.0151 * |
D2 | 0.018 | 1 | 2.23 | 0.1559 |
Residual | 0.12 | 15 | ||
Lack of fit | 0.068 | 10 | 0.66 | 0.7291 |
Pure error | 0.051 | 5 | ||
Total | 4.04 | 29 |
Items | Predicted Value | Test Value 1 | Test Value 2 | Test Value 3 | Test Value 4 | Test Value 5 |
---|---|---|---|---|---|---|
Cutting power consumption/J | 1.20375 | 1.23 | 1.21 | 1.25 | 1.20 | 1.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Kong, F.; Shi, L.; Xie, Q.; Sun, Y.; Chen, C. Power Consumption Influence Test of Castor Disc-Cutting Device. Agriculture 2022, 12, 1535. https://doi.org/10.3390/agriculture12101535
Wu T, Kong F, Shi L, Xie Q, Sun Y, Chen C. Power Consumption Influence Test of Castor Disc-Cutting Device. Agriculture. 2022; 12(10):1535. https://doi.org/10.3390/agriculture12101535
Chicago/Turabian StyleWu, Teng, Fanting Kong, Lei Shi, Qing Xie, Yongfei Sun, and Changlin Chen. 2022. "Power Consumption Influence Test of Castor Disc-Cutting Device" Agriculture 12, no. 10: 1535. https://doi.org/10.3390/agriculture12101535
APA StyleWu, T., Kong, F., Shi, L., Xie, Q., Sun, Y., & Chen, C. (2022). Power Consumption Influence Test of Castor Disc-Cutting Device. Agriculture, 12(10), 1535. https://doi.org/10.3390/agriculture12101535