Exogenous Application of Aloe vera Leaf Extract Improves Silybin Content in Silybum marianum L. by Up-Regulating Chalcone Synthase Gene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aloe vera Leaf Extract for Biotic Elicitors Preparation
2.2. Analysis of the Aloe vera Leaf Sap (the Mucilaginous Jelly from Aloe vera Leaves)
2.3. Plant Sources and Growth Environments
2.4. Vegetative Growth and Yield Components
2.5. Mineral Composition
2.6. Photosynthetic Pigment Determination
2.7. HPLC Analysis of the Silybin (A + B) Content
2.8. Total RNA Isolation, cDNA Preparation, and Gene Expression Analysis
2.9. Determination of S. marianum Methanolic Fruit Extract Anti-Microbial Activity by Disc Diffusion Assay
2.9.1. Preparation of S. marianum Test Solutions Using the S. marianum Methanolic Fruit Extract
2.9.2. Disc Diffusion Assay
2.10. Statistical Analysis
3. Results
3.1. The Analysis of ALE
3.2. The Effects of ALE on the Growth Components and Yield of S. marianum
3.3. Analysis of Chemical Contents
3.3.1. Photosynthetic Pigments and Mineral Contents
3.3.2. HPLC Analysis of Silybin (A + B)
3.4. The Effect of ALE on CHS 1, 2, and 3 Gene Expression
3.5. The Effect of ALE on Anti-Microbial Activity of S. marianum Methanolic Fruit Extract
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Nephali, L.; Piater, L.A.; Dubery, I.A.; Patterson, V.; Huyser, J.; Burgess, K.; Tugizimana, F. Biostimulants for Plant Growth and Mitigation of Abiotic Stresses: A Metabolomics Perspective. Metabolites 2020, 10, 505. [Google Scholar] [CrossRef] [PubMed]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in Plant Science: A Global Perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbas, S.; Zaglool, M.; El-Ghadban, E.; El-Kareem, S.A.; Waly, A. Effect of Foliar Application with Aloe Leaf Extract (ALE) on Vegetative Growth, Oil percentage and Anatomical leaf Structure of Sage (Salvia officinalis L.) Plant under Sand soil Conditions. Hortscience J. Suez Canal Univ. 2016, 5, 9–14. [Google Scholar] [CrossRef] [Green Version]
- El-Sherif, F. Aloe Vera Leaf Extract as a Potential Growth Enhancer for Populus Trees Grown Under in Vitro Conditions. Am. J. Plant Biol. 2017, 2, 101–105. [Google Scholar] [CrossRef]
- El Sherif, F.; Albotnoor, N.; Yap, Y.-K.; Meligy, A.; Khattab, S. Enhanced bioactive compounds composition in Lavandula officinalis in-vitro plantlets using NaCl and Moringa oleifera, Aloe vera and Spirulina platensis extracts. Ind. Crop. Prod. 2020, 157, 112890. [Google Scholar] [CrossRef]
- Godlewska, K.; Biesiada, A.; Michalak, I.; Pacyga, P. The Effect of Botanical Extracts Obtained through Ultrasound-Assisted Extraction on White Head Cabbage (Brassica oleracea L. Var. Capitata L.) Seedlings Grown under Controlled Conditions. Sustainability 2020, 12, 1871. [Google Scholar] [CrossRef] [Green Version]
- Karasawa, M.M.G.; Mohan, C. Fruits as Prospective Reserves of bioactive Compounds: A Review. Nat. Prod. Bioprospecting 2018, 8, 335–346. [Google Scholar] [CrossRef] [Green Version]
- Fierascu, R.C.; Sieniawska, E.; Ortan, A.; Fierascu, I.; Xiao, J. Fruits By-Products—A Source of Valuable Active Principles. A Short Review. Front. Bioeng. Biotechnol. 2020, 8, 319. [Google Scholar] [CrossRef] [Green Version]
- Biedermann, D.; Vavříková, E.; Cvak, L.; Křen, V. Chemistry of Silybin. Nat. Prod. Rep. 2014, 31, 1138–1157. [Google Scholar] [CrossRef]
- El-Garhy, H.A.; Khattab, S.; Moustafa, M.; Ali, R.A.; Azeiz, A.Z.A.; Elhalwagi, A.; El Sherif, F. Silybin content and overexpression of chalcone synthase genes in Silybum marianum L. plants under abiotic elicitation. Plant Physiol. Biochem. 2016, 108, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.L.; Feng, X.F.; Li, W.; Li, K. High temperature reduces peel color in eggplant (Solanum melongena) as revealed by RNA-seq analysis. Genome 2019, 62, 503–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negi, A.S.; Kumar, J.; Luqman, S.; Shanker, K.; Gupta, M.; Khanuja, S. Recent advances in plant hepatoprotectives: A chemical and biological profile of some important leads. Med. Res. Rev. 2008, 28, 746–772. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sampedro, M.A.; Fernández-Tárrago, J.; Corchete, P. Yeast Extract and Methyl Jasmonate-Induced Silymarin Pro-duction in Cell Cultures of Silybum marianum (L. ) Gaertn. J. Biotechnol. 2005, 119, 60–69. [Google Scholar] [CrossRef]
- Guo, H.; Cao, H.; Cui, X.; Zheng, W.; Wang, S.; Yu, J.; Chen, Z. Molecules Silymarin’ s Inhibition and Treatment E Ff Ects for Alzheimer’ s Disease. Molecules 2019, 24, 1748. [Google Scholar] [CrossRef] [Green Version]
- Samaneh Hossainzadeh Najmeh Ranji Alireza Naderi Sohi Farhood Najafi Silibinin Encapsulation in Polymersome: A Promising Anticancer Nanoparticle for Inducing Apoptosis and Decreasing the Expression Level of MiR-125b/MiR-182 in Human Breast Cancer Cells. Cellural Physiol. 2019, 234, 22285–22298. [CrossRef]
- Lv, Y.; Gao, S.; Xu, S.; Du, G.; Zhou, J.; Chen, J. Spatial organization of silybin biosynthesis in milk thistle [Silybum marianum (L.) Gaertn]. Plant J. 2017, 92, 995–1004. [Google Scholar] [CrossRef] [Green Version]
- Kaur, R.; Aslam, L.; Kapoor, N.; Mahajan, R. Identification and comparative expression analysis of chalcone synthase, flavanone 3-hydroxylase and dihydroflavonol 4-reductase genes in wild pomegranate (Punica granatum L.) organs. Braz. J. Bot. 2020, 43, 883–896. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, S.; Liu, X.; Shang, J.; Zhang, A.; Zhu, Z.; Zha, D. Chalcone synthase (CHS) family members analysis from eggplant (Solanum melongena L.) in the flavonoid biosynthetic pathway and expression patterns in response to heat stress. PLoS ONE 2020, 15, e0226537. [Google Scholar] [CrossRef] [Green Version]
- Sanjari, S.; Shobbar, Z.S.; Ebrahimi, M.; Hasanloo, T.; Sadat-Noori, S.-A.; Tirnaz, S. Chalcone synthase genes from milk thistle (Silybum marianum): Isolation and expression analysis. J. Genet. 2015, 94, 611–617. [Google Scholar] [CrossRef]
- de Oliveira, D.R.; Tintino, S.R.; Braga, M.F.B.M.; Boligon, A.A.; Athayde, M.L.; Coutinho, H.D.M.; de Menezes, I.R.A.; Fachinetto, R. In Vitro Antimicrobial and Modulatory Activity of the Natural Products Silymarin and Silibinin. BioMed Res. Int. 2015, 2015, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junior, I.E.S.; Filho, V.C.; Zacchino, S.A.; Lima, J.C.D.S.; Martins, D.T.D.O. Antimicrobial screening of some medicinal plants from Mato Grosso Cerrado. Rev. Bras. de Farm. 2009, 19, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Rawe, G.J. Food Analysis by Atomic Absorption Spectroscopy Varian. Tech. Tron. 1966, 89. [Google Scholar]
- Shyamal, K.N.; Lok, M.P.; Parker, C.W. Dynamics of Endogenous Cytokinins during the Growth Cycle of a Hormone Auto-trophic Genetic Tumor Line of Tobacco. Plant Physiol. 1990, 94, 1084–1089. [Google Scholar]
- Yap, Y.-K.; El-Sherif, F.; Habib, E.S.; Khattab, S. Moringa oleifera Leaf Extract Enhanced Growth, Yield, and Silybin Content While Mitigating Salt-Induced Adverse Effects on the Growth of Silybum marianum. Agronomy 2021, 11, 2500. [Google Scholar] [CrossRef]
- Rad, Z.M.; Nourafcan, H.; Mohebalipour, N.; Assadi, A.; Jamshidi, S. Effect Of Salicyllc Acid Foliar Application On Phytochemical Composition, Antioxidant And Antimicrobial Activity Of Silybum Marianum. Iraqi J. Agric. Sci. 2021, 52, 63–69. [Google Scholar] [CrossRef]
- Suppakul, P.; Miltz, J.; Sonneveld, A.K.; Bigger, S.W. Antimicrobial Properties of Basil and Its Possible Application in Food Packaging. J. Agric. Food Chem. 2003, 51, 3197–3207. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology, 5th ed.; Sinauer Associates Inc.: Sunderland, MA, USA, 2010; 782p. [Google Scholar]
- Kalaji, H.M.; Bąba, W.; Gediga, K.; Goltsev, V.; Samborska, I.A.; Cetner, M.D.; Dimitrova, S.; Piszcz, U.; Bielecki, K.; Karmowska, K.; et al. Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants. Photosynth. Res. 2018, 136, 329–343. [Google Scholar] [CrossRef] [Green Version]
- Çavuşoğlu, D.; Tabur, S.; Çavuşoğlu, K. The Effects of Aloe vera L. Leaf Extract on Some Physiological and Cytogenetical Parameters in Allium cepa L. Seeds Germinated under Salt Stress. Cytologia 2016, 81, 103–110. [Google Scholar] [CrossRef]
- Ishag, A.J.; Durgham, S.M.; Shibl, A.M. In vitro susceptibility of methicillin-resistant Staphylococcus aureus to imipenem and other antimicrobial agents. Chemioter. Int. J. Mediterr. Soc. Chemother. 1987, 6, 261–263. [Google Scholar]
- Mahmoudi Rad, Z.; Nourafcan, H.; Mohebalipour, N.; Assadi, A.; Jamshidi, S. Antibacterial effect of methanolic extract of milk thistle seed on 8 species of gram-positive and negative bacteria. J. Plant Res. (Iranian J. Biol.). 2021. Available online: https://plant.ijbio.ir/article_2048.html (accessed on 1 August 2022).
Chemical Constituents | Quantity | Unit |
---|---|---|
Nitrogen | 80.65 | mg/100 g |
Phosphorus | 6.95 | mg/100 g |
Potassium | 60.14 | mg/100 g |
Iron | 0.229 | mg/100 g |
Zinc | 0.028 | mg/100 g |
Manganese | 0.0266 | mg/100 g |
Calcium | 40.00 | mg/100 g |
Copper | 0.0042 | mg/100 g |
Magnesium | 14.44 | mg/100 g |
Sodium | 51.12 | mg/100 g |
GA3 | 16 | mg/100 g |
IAA | 0.63 | mg/100 g |
ABA | 3.06 | mg/100 g |
Total carbohydrate | 10.1 | % |
Glucose | 3.2 | g/100 g |
Protein | 1.0 | mg/g |
Sterol | 18.73 | mg/g |
Salinity Level (ppm) | Cations (meq L −1) | Anions (meq L −1) | Sodium Absorption Ratio | ||||||
---|---|---|---|---|---|---|---|---|---|
Ca2+ | Mg2+ | Na+ | K+ | CO32− | HCO3− | SO42− | Cl− | ||
864 | 5.72 | 2.02 | 7.27 | 0.38 | 0.28 | 2.68 | 4.03 | 8.4 | 3.43 |
Gene | Primer Sequences | Amplicon Length (bp) | GenBank Accession Number |
---|---|---|---|
chalcone synthase 1 (CHS 1) | CHS1F 5-TCTTGATTCCCTCGTTGGTC-3 CHS1R 5-TCTCAAACAACGGCCTCTCT-3 | 101 | JN182805.1 |
chalcone synthase 2 (CHS 2) | CHS1F 5-AGGACATTGCGGAAAACAAC-3 CHS1R 5-AACGGCCTCTCTGTCTTCAA-3 | 184 | JN182806.1 |
chalcone synthase 3 (CHS 3) | CHS1F 5-ACCCACCTCATCTTTTGCAC-3 CHS1R 5-CATCATGAGGCGTTTGATTG-3 | 105 | JN182807.1 |
NADH Dehydrogenase (NADH) | ndhchs_L 5-TTCCGCATTTTGGAAATACC-3 ndhchs_R 5-CCCGTCTTGATTGAAAGGAA-3 | 134 | KC589999.1 |
ALE (mL/L) | Plant Height (cm) | Number of Leaves (n) | Branch Number (n) | Root Dry Weight (g) | Aerial Part Dry Weight (g) |
---|---|---|---|---|---|
0 | 50.75 b* ± 1.500 | 49.00 b ± 0.732 | 3.25 b ± 0.500 | 6.56 b ± 0.739 | 59.49 b ± 0.317 |
20 | 90.20 a ± 1.094 | 52.50 b ± 2.104 | 4.00 ab ± 0.200 | 6.27 b ± 0.213 | 68.762 b ± 0.983 |
40 | 91.40 a ± 2.915 | 66.80 ab ± 0.663 | 5.00 a ± 0.581 | 9.73 b ± 0.467 | 103.184 a ± 0.560 |
60 | 105.25 a ± 1.506 | 74.75 a ± 0.852 | 5.75 a ± 0.577 | 16.92 a ±0.666 | 111.67 a ± 0.692 |
ALE (mL/L) | Capitula Number (n) | Fruits Dry Weight (g) |
---|---|---|
0 | 5.0 c* ± 0.0816 | 16.65 c ± 0.387 |
20 | 8.2 b ± 0.295 | 19.80 c ± 0.425 |
40 | 8.4 b ± 0.164 | 31.13 b ± 0.237 |
60 | 13.5 a ± 0.462 | 50.96 a ± 0.149 |
ALE (mL/L) | Chl a (mg/100 g F.W.) | Chl b (mg/100 g F.W.) | Carotenoids (mg/100 g F.W.) |
---|---|---|---|
0 | 28.283 c* ± 0.544 | 6.426 b ± 0.146 | 34.883 b ±1.322 |
20 | 50.175 a ± 1.855 | 6.499 b ± 0.217 | 38.447 b ± 0.709 |
40 | 37.461 b ± 0.784 | 12.864 a ± 0.387 | 49.551 a ± 0.515 |
60 | 34.838 b ±0.187 | 9.548 ab ±0.386 | 51.006 a ±0.151 |
ALE (mL/L) | N% | P% | K% |
---|---|---|---|
0 | 2.015 a* ± 0.516 | 0.215 b ± 0.843 | 0.570 b ± 0.276 |
20 | 2.490 a ± 0.255 | 0.698 a ± 0.049 | 0.930 ab ± 0.042 |
40 | 1.725 a ± 0.262 | 0.368 b ± 0.092 | 1.145 a ± 0.014 |
60 | 2.180 a ± 0.283 | 0.280 b ± 0.021 | 0.720 b ± 0.020 |
ALE (mL/L) | CHS1 | CHS2 | CHS3 |
---|---|---|---|
0 | 1.000 c* ± 0.439 | 1.000 c ± 0.168 | 1.000 c ± 0.147 |
20 | 7.018 a ± 0.000 | 3.014 b ± 0.001 | 2.098 b ± 0.036 |
40 | 8.362 a ± 1.669 | 9.050 a ± 1.311 | 3.536 a ± 0.231 |
60 | 5.375 b ± 0201 | 1.389 c ± 0.035 | 1.211 c ± 0.017 |
Test Solution | Inhibition Zone (mm) | ||
---|---|---|---|
S. aureus | E. coli | MRSA | |
S. marianum extract (control) | 12 c* ± 1 | 12 b ± 2 | 7 c ± 2 |
S. marianum extract (ALE 40) | 17 b ± 2 | 5 c ± 2 | 14 b ± 1 |
Imipenem 10 µg | 18 a ± 3 | 20 a ± 2 | 25 a ± 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkuwayti, M.A.; Aldayel, M.F.; Yap, Y.-K.; El Sherif, F. Exogenous Application of Aloe vera Leaf Extract Improves Silybin Content in Silybum marianum L. by Up-Regulating Chalcone Synthase Gene. Agriculture 2022, 12, 1649. https://doi.org/10.3390/agriculture12101649
Alkuwayti MA, Aldayel MF, Yap Y-K, El Sherif F. Exogenous Application of Aloe vera Leaf Extract Improves Silybin Content in Silybum marianum L. by Up-Regulating Chalcone Synthase Gene. Agriculture. 2022; 12(10):1649. https://doi.org/10.3390/agriculture12101649
Chicago/Turabian StyleAlkuwayti, Mayyadah Abdullah, Munirah Fahad Aldayel, Yun-Kiam Yap, and Fadia El Sherif. 2022. "Exogenous Application of Aloe vera Leaf Extract Improves Silybin Content in Silybum marianum L. by Up-Regulating Chalcone Synthase Gene" Agriculture 12, no. 10: 1649. https://doi.org/10.3390/agriculture12101649
APA StyleAlkuwayti, M. A., Aldayel, M. F., Yap, Y.-K., & El Sherif, F. (2022). Exogenous Application of Aloe vera Leaf Extract Improves Silybin Content in Silybum marianum L. by Up-Regulating Chalcone Synthase Gene. Agriculture, 12(10), 1649. https://doi.org/10.3390/agriculture12101649