Influence of Biocontrol and Integrated Strategies and Treatment Timing on Plum Brown Rot Incidence and Fungicide Residues in Fruits
Abstract
:1. Introduction
2. Material and Methods
2.1. Biocontrol Agents
2.2. Fungicides
2.3. Sensitivity of the BCAs to Fungicides
2.4. Microbial Epiphytic Population on the Surface of the Plum Fruits in the Field
2.5. Molecular Identification of the Plant Pathogen
2.6. Biological, Integrated, and Combined Control Experiments of Brown Rot of Plum Fruits
2.7. Analysis of Fungicide Residues in Plum Fruits
2.8. Disease Assessment
2.9. Experimental Design and Statistical Analysis
3. Results
3.1. Compatibility of the BCA Papiliotrema terrestris PT22AV with Fungicides
3.2. Microbial Epiphytic Population on the Surface of the Plum Fruits in the Field
3.3. Pathogen Identification
3.4. Control Strategies of Brown Rot of Plum Fruits in Field Trials
3.5. Fungicide Residues in Plum Fruits
3.6. Biocontrol Trials in Postharvest
4. Discussion
5. Conclusions
- -
- The high antagonist activity of the yeast P. terrestris PT22AV as a biological control agent (BCA) against Monilinia fructigena, applied alone (BIO2) and applied after (INT3) treatments with synthetic fungicides;
- -
- The phenological phase 77–81 BBCH for plums is a vulnerable period for the entry of the pathogen;
- -
- Decisive is the timing of the application of BCAs in the key phenological phase for brown rot as well as the entire control strategy, for the containment of this insidious pathogen;
- -
- The plum fruits harvested from plants treated with the BIO strategy have zero residues of synthetic fungicide.
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Byrde, R.J.W.; Willetts, H.J. The Brown Rot Fungi of Fruit; Their Biology and Control; Elsevier: Amsterdam, The Netherlands, 1977. [Google Scholar] [CrossRef]
- De Curtis, F.; Ianiri, G.; Raiola, A.; Ritieni, A.; Succi, M.; Tremonte, P.; Castoria, R. Integration of Biological and Chemical Control of Brown Rot of Stone Fruits to Reduce Disease Incidence on Fruits and Minimize Fungicide Residues in Juice. Crop Prot. 2019, 119, 158–165. [Google Scholar] [CrossRef]
- EPPO Bulletin European and Mediterranean Plant Protection Organization. PM 7/18(2): Monilinia fructicola. EPPO Bull. 2009, 39, 337–343. [CrossRef]
- EPPO Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009. Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides. Available online: https://eur-lex.europa.eu/eli/dir/2009/128/oj (accessed on 7 September 2022).
- Oliveira Lino, L.; Pacheco, I.; Mercier, V.; Faoro, F.; Bassi, D.; Bornard, I.; Quilot-Turion, B. Brown Rot Strikes Prunus Fruit: An Ancient Fight Almost Always Lost. J. Agric. Food Chem. 2016, 64, 4029–4047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Leeuwen, G.C.M.; van Kesteren, H.A. Delineation of the Three Brown Rot Fungi of Fruit Crops (Monilinia spp.) on the Basis of Quantitative Characteristics. Can. J. Bot. 1998, 76, 2042–2050. [Google Scholar] [CrossRef]
- Van Leeuwen, G.C.M.; Baayen, R.P.; Holb, I.J.; Jeger, M.J. Distinction of the Asiatic Brown Rot Fungus Monilia polystroma sp. Nov. from M. fructigena. Mycol. Res. 2002, 106, 444–451. [Google Scholar] [CrossRef]
- Harada, Y.; Nakao, S.; Sasaki, M.; Sasaki, Y.; Ichihashi, Y.; Sano, T. Monilia mumecola, a New Brown Rot Fungus on Prunus mume in Japan. J. Gen. Plant Pathol. 2004, 70, 297–307. [Google Scholar] [CrossRef]
- Hu, M.J.; Cox, K.D.; Schnabel, G.; Luo, C.X. Monilinia Species Causing Brown Rot of Peach in China. PLoS ONE 2011, 6, e24990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rungjindamai, N.; Jeffries, P.; Xu, X.-M. Epidemiology and Management of Brown Rot on Stone Fruit Caused by Monilinia laxa. Eur. J. Plant Pathol. 2014, 140, 1–17. [Google Scholar] [CrossRef]
- Villarino, M.; Melgarejo, P.; Usall, J.; Segarra, J.; de Cal, A. Primary Inoculum Sources of Monilinia spp. in Spanish Peach Orchards and Their Relative Importance in Brown Rot. Plant Dis. 2010, 94, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Gell, I.; de Cal, A.; Torres, R.; Usall, J.; Melgarejo, P. Relationship between the Incidence of Latent Infections Caused by Monilinia spp. and the Incidence of Brown Rot of Peach Fruit: Factors Affecting Latent Infection. Eur. J. Plant Pathol. 2008, 121, 487–498. [Google Scholar] [CrossRef]
- Luo, Y.; Ma, Z.; Michailides, T.J. Analysis of Factors Affecting Latent Infection and Sporulation of Monilinia fructicola on Prune Fruit. Plant Dis. 2001, 85, 999–1003. [Google Scholar] [CrossRef] [Green Version]
- Casals, C.; Guijarro, B.; de Cal, A.; Torres, R.; Usall, J.; Perdrix, V.; Hilscher, U.; Ladurner, E.; Smets, T.; Teixidó, N. Field Validation of Biocontrol Strategies to Control Brown Rot on Stone Fruit in Several European Countries. Pest. Manag. Sci. 2021, 77, 2502–2511. [Google Scholar] [CrossRef] [PubMed]
- Curtis, K.M. The Morphological Aspect of Resistance to Brown Rot in Stone Fruit. Ann. Bot. 1928, os-42, 39–68. [Google Scholar] [CrossRef]
- Xu, X.M.; Robinson, J.D. Epidemiology of Brown Rot (Monilinia fructigena) on Apple: Infection of Fruits by Conidia. Plant Pathol. 2000, 49, 201–206. [Google Scholar] [CrossRef]
- Xu, X.M.; Robinson, J.D.; Berrie, A.M.; Harris, D.C. Spatio-Temporal Dynamics of Brown Rot (Monilinia fructigena) on Apple and Pear. Plant Pathol. 2001, 50, 569–578. [Google Scholar] [CrossRef]
- Garcia-Benitez, C.; Melgarejo, P.; de Cal, A. Detection of Latent Monilinia Infections in Nectarine Flowers and Fruit by QPCR. Plant Dis. 2017, 101, 1002–1008. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Michailides, T.J. Risk Analysis for Latent Infection of Prune by Monilinia fructicola in California. Phytopathology 2001, 91, 1197–1208. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Michailides, T.J. Threshold Conditions That Lead Latent Infection to Prune Fruit Rot Caused by Monilinia fructicola. Phytopathology 2003, 93, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Michailides, T.J.; Morgan, D.P.; Krueger, W.H.; Buchner, R.P. Inoculum Dynamics, Fruit Infection, and Development of Brown Rot in Prune Orchards in California. Phytopathology 2005, 95, 1132–1136. [Google Scholar] [CrossRef]
- Gibert, C.; Chadœuf, J.; Nicot, P.; Vercambre, G.; Génard, M.; Lescourret, F. Modelling the Effect of Cuticular Crack Surface Area and Inoculum Density on the Probability of Nectarine Fruit Infection by Monilinia laxa. Plant Pathol. 2009, 58, 1021–1031. [Google Scholar] [CrossRef]
- Lima, G.; De Curtis, F.; Cicco, V. Interaction of Microbial Biocontrol Agents and Fungicides in the Control of Postharvest Diseases. Stewart Postharvest Rev. 2008, 4, 1–7. [Google Scholar]
- Janisiewicz, W.J.; Korsten, L. Biological Control of Postharvest Diseases of Fruits. Annu. Rev. Phytopathol. 2002, 40, 411–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ippolito, A.; Nigro, F.; Schena, L. Control of Postharvest Diseases of Fresh Fruits and Vegetables by Preharvest Application of Antagonistic Microorganisms. Crop Manag. Postharvest Handl. Hortic. Prod. 2004, 4, 1–30. [Google Scholar]
- Andrews, J.H. Biological Control in the Phyllosphere. Annu. Rev. Phytopathol. 1992, 30, 603–635. [Google Scholar] [CrossRef] [PubMed]
- Harman, G.E.; Howell, C.R.; Viterbo, A.; Chet, I.; Lorito, M. Trichoderma Species—Opportunistic, Avirulent Plant Symbionts. Nat. Rev. Microbiol. 2004, 2, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Haas, D.; Défago, G. Biological Control of Soil-Borne Pathogens by Fluorescent Pseudomonads. Nat. Rev. Microbiol. 2005, 3, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Lima, G.; de Cicco, V. Integrated Strategies to Enhance Biological Control of Postharvest Diseases. Adv. Postharvest Technol. Hortic. Crops 2006, 1, 173–194. [Google Scholar]
- Nigro, F.; Schena, L.; Ligorio, A.; Pentimone, I.; Ippolito, A.; Salerno, M.G. Control of Table Grape Storage Rots by Pre-Harvest Applications of Salts. Postharvest Biol. Technol. 2006, 42, 142–149. [Google Scholar] [CrossRef]
- Sharma, R.R.; Singh, D.; Singh, R. Biological Control of Postharvest Diseases of Fruits and Vegetables by Microbial Antagonists: A Review. Biol. Control. 2009, 50, 205–221. [Google Scholar] [CrossRef]
- De Curtis, F.; Lima, G.; Vitullo, D.; De Cicco, V. Biocontrol of Rhizoctonia solani and Sclerotium rolfsii on Tomato by Delivering Antagonistic Bacteria through a Drip Irrigation System. Crop Prot. 2010, 29, 663–670. [Google Scholar] [CrossRef]
- De Curtis, F.; de Felice, D.V.; Ianiri, G.; De Cicco, V.; Castoria, R. Environmental Factors Affect the Activity of Biocontrol Agents against Ochratoxigenic Aspergillus carbonarius on Wine Grape. Int. J. Food Microbiol. 2012, 159, 17–24. [Google Scholar] [CrossRef] [PubMed]
- De Curtis, F.; De Cicco, V.; Lima, G. Efficacy of Biocontrol Yeasts Combined with Calcium Silicate or Sulphur for Controlling Durum Wheat Powdery Mildew and Increasing Grain Yield Components. Field Crops Res. 2012, 134, 36–46. [Google Scholar] [CrossRef]
- Fravel, D.R. Commercialization and Implementation of Biocontrol. Annu. Rev. Phytopathol. 2005, 43, 337–359. [Google Scholar] [CrossRef] [PubMed]
- Abbey, J.A.; Percival, D.; Abbey, L.; Asiedu, S.K.; Prithiviraj, B.; Schilder, A. Biofungicides as Alternative to Synthetic Fungicide Control of Grey Mould (Botrytis cinerea)—Prospects and Challenges. Biocontrol. Sci. Technol. 2018, 29, 241–262. [Google Scholar] [CrossRef]
- Beattie, G.A.; Lindow, S. Bacterial Colonization of Leaves: A Spectrum of Strategies. Phytopathology 1999, 89, 353–359. [Google Scholar] [CrossRef] [Green Version]
- Andrews, J.H.; Harris, R.F. The Ecology and Biogeography of Microorganisms on Plant Surfaces. Annu. Rev. Phytopathol. 2000, 38, 145–180. [Google Scholar] [CrossRef]
- Fokkema, N.J.; den Houter, J.G.; Kosterman, Y.J.C.; Nelis, A.L. Manipulation of Yeasts on Field-Grown Wheat Leaves and Their Antagonistic Effect on Cochliobolus sativus and Septoria nodorum. Trans. Br. Mycol. Soc. 1979, 72, 19–29. [Google Scholar] [CrossRef]
- Lima, G.; De Curtis, F.; Castoria, R.; De Cicco, V. Activity of the Yeasts Cryptococcus laurentii and Rhodotorula glutinis Against Post-Harvest Rots on Different Fruits. Biocontrol. Sci. Technol. 1998, 8, 257–267. [Google Scholar] [CrossRef]
- Lima, G.; Arru, S.; De Curtis, F.; Arras, G. Influence of Antagonist, Host Fruit and Pathogen on the Biological Control of Postharvest Fungal Diseases by Yeasts. J. Ind. Microbiol. Biotechnol. 1999, 23, 223–229. [Google Scholar] [CrossRef]
- Lima, G.; De Curtis, F.; Castoria, R.; De Cicco, V. Integrated Control of Apple Postharvest Pathogens and Survival of Biocontrol Yeasts in Semi-Commercial Conditions. Eur. J. Plant Pathol. 2003, 109, 341–349. [Google Scholar] [CrossRef]
- De Curtis, F.; Caputo, L.; Castoria, R.; Lima, G.; Stea, G.; De Cicco, V. Use of Fluorescent Amplified Fragment Length Polymorphism (FAFLP) to Identify Specific Molecular Markers for the Biocontrol Agent Aureobasidium pullulans Strain LS30. Postharvest Biol. Technol. 2004, 34, 179–186. [Google Scholar] [CrossRef]
- Miccoli, C.; Palmieri, D.; De Curtis, F.; Lima, G.; Heitman, J.; Castoria, R.; Ianiri, G. The Necessity for Molecular Classification of Basidiomycetous Biocontrol Yeasts. BioControl 2020, 65, 489–500. [Google Scholar] [CrossRef]
- Castoria, R.; De Curtis, F.; Lima, G.; De Cicco, V. β-1,3-Glucanase Activity of Two Saprophytic Yeasts and Possible Mode of Action as Biocontrol Agents against Postharvest Diseases. Postharvest Biol. Technol. 1997, 12, 293–300. [Google Scholar] [CrossRef]
- Castoria, R.; De Curtis, F.; Lima, G.; Caputo, L.; Pacifico, S.; De Cicco, V. Aureobasidium pullulans (LS-30) an Antagonist of Postharvest Pathogens of Fruits: Study on Its Modes of Action. Postharvest Biol. Technol. 2001, 22, 7–17. [Google Scholar] [CrossRef]
- Castoria, R.; Caputo, L.; De Curtis, F.; De Cicco, V. Resistance of Postharvest Biocontrol Yeasts to Oxidative Stress: A Possible New Mechanism of Action. Phytopathology 2003, 93, 564–572. [Google Scholar] [CrossRef] [Green Version]
- Castoria, R.; Miccoli, C.; Barone, G.; Palmieri, D.; De Curtis, F.; Lima, G.; Heitman, J.; Ianiri, G. Molecular Tools for the Yeast Papiliotrema terrestris LS28 and Identification of Yap1 as a Transcription Factor Involved in Biocontrol Activity. Appl. Environ. Microbiol. 2021, 87, e02910-20. [Google Scholar] [CrossRef]
- Castoria, R.; Morena, V.; Caputo, L.; Panfili, G.; De Curtis, F.; De Cicco, V. Effect of the Biocontrol Yeast Rhodotorula glutinis Strain LS11 on Patulin Accumulation in Stored Apples. Phytopathology 2005, 95, 1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Felice, D.V.; Solfrizzo, M.; De Curtis, F.; Lima, G.; Visconti, A.; Castoria, R. Strains of Aureobasidium pullulans Can Lower Ochratoxin A Contamination in Wine Grapes. Phytopathology 2008, 98, 1261–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ianiri, G.; Idnurm, A.; Wright, S.A.I.; Durán-Patrón, R.; Mannina, L.; Ferracane, R.; Ritieni, A.; Castoria, R. Searching for Genes Responsible for Patulin Degradation in a Biocontrol Yeast Provides Insight into the Basis for Resistance to This Mycotoxin. Appl. Environ. Microbiol. 2013, 79, 3101–3115. [Google Scholar] [CrossRef] [Green Version]
- Wright, S.A.I.; de Felice, D.V.; Ianiri, G.; Pinedo-Rivilla, C.; De Curtis, F.; Castoria, R. Two Rapid Assays for Screening of Patulin Biodegradation. Int. J. Environ. Sci. Technol. 2014, 11, 1387–1398. [Google Scholar] [CrossRef] [Green Version]
- Lima, G.; Castoria, R.; De Curtis, F.; Raiola, A.; Ritieni, A.; De Cicco, V. Integrated Control of Blue Mould Using New Fungicides and Biocontrol Yeasts Lowers Levels of Fungicide Residues and Patulin Contamination in Apples. Postharvest Biol. Technol. 2011, 60, 164–172. [Google Scholar] [CrossRef]
- Droby, S.; Wisniewski, M.; Macarisin, D.; Wilson, C. Twenty Years of Postharvest Biocontrol Research: Is It Time for a New Paradigm? Postharvest Biol. Technol. 2009, 52, 137–145. [Google Scholar] [CrossRef]
- Spadaro, D.; Droby, S. Development of Biocontrol Products for Postharvest Diseases of Fruit: The Importance of Elucidating the Mechanisms of Action of Yeast Antagonists. Trends Food Sci. Technol. 2016, 47, 39–49. [Google Scholar] [CrossRef]
- Lima, G.; Spina, A.M.; Castoria, R.; De Curtis, F.; De Cicco, V. Integration of Biocontrol Agents and Food-Grade Additives for Enhancing Protection of Stored Apples from Penicillium expansum. J. Food Prot. 2005, 68, 2100–2106. [Google Scholar] [CrossRef] [PubMed]
- Bellemain, E.; Carlsen, T.; Brochmann, C.; Coissac, E.; Taberlet, P.; Kauserud, H. ITS as an Environmental DNA Barcode for Fungi: An in Silico Approach Reveals Potential PCR Biases. BMC Microbiol. 2010, 10, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoang, M.T.V.; Irinyi, L.; Chen, S.C.A.; Sorrell, T.C.; Meyer, W.; Arabatzis, M.; Arthur, I.; Cano-Lira, J.F.; Cardinali, G.; Castañón, L.R.; et al. Dual DNA Barcoding for the Molecular Identification of the Agents of Invasive Fungal Infections. Front. Microbiol. 2019, 10, 1647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EU Regulation (EC) N 396/2005. Directive 91/414/EEC Part A of Annex I to Reg. 396/2005, of the European Parliament and of the Council of 23 February 2005 on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin and Amending Council. Available online: http://ec.europa.eu/food/plant/pesticides/eupesticides-database/public/?event¼homepage&language¼EN (accessed on 7 September 2022).
- EU Regulation (EC). No 1107/2009 of the European Parliament and of the Council of 21 October 2009 Concerning the Placing of Plant Protection Products on the Market and Repealing Council Directives 79/117/EEC and 91/414/EEC. Available online: http://data.europa.eu/eli/reg/2009/1107/oj (accessed on 7 September 2022).
- Liu, J.; Sui, Y.; Wisniewski, M.; Droby, S.; Liu, Y. Review: Utilization of Antagonistic Yeasts to Manage Postharvest Fungal Diseases of Fruit. Int. J. Food Microbiol. 2013, 167, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.H.; Qin, G.Z.; Tian, S.P. Influences of Preharvest Spraying Cryptococcus laurentii Combined with Postharvest Chitosan Coating on Postharvest Diseases and Quality of Table Grapes in Storage. LWT—Food Sci. Technol. 2010, 43, 596–601. [Google Scholar] [CrossRef]
- Lima, G.; Ippolito, A.; Nigro, F.; Salerno, M. Effectiveness of Aureobasidium pullulans and Candida oleophila against Postharvest Strawberry Rots. Postharvest Biol. Technol. 1997, 10, 169–178. [Google Scholar] [CrossRef]
- Palmieri, D.; Ianiri, G.; del Grosso, C.; Barone, G.; de Curtis, F.; Castoria, R.; Lima, G. Advances and Perspectives in the Use of Biocontrol Agents against Fungal Plant Diseases. Horticulturae 2022, 8, 577. [Google Scholar] [CrossRef]
- Yang, C.; Hamel, C.; Vujanovic, V.; Gan, Y. Fungicide: Modes of Action and Possible Impact on Nontarget Microorganisms. ISRN Ecol. 2011, 2011, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.M.; Bertone, C.; Berrie, A. Effects of Wounding, Fruit Age and Wetness Duration on the Development of Cherry Brown Rot in the UK. Plant Pathol. 2007, 56, 114–119. [Google Scholar] [CrossRef]
- Romanazzi, G.; Sanzani, S.M.; Bi, Y.; Tian, S.; Gutiérrez Martínez, P.; Alkan, N. Induced Resistance to Control Postharvest Decay of Fruit and Vegetables. Postharvest Biol. Technol. 2016, 122, 82–94. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, L.; Li, B.; Gu, X.; Zhang, X.; Boateng, N.S.; Zhang, H. Molecular Dissection of Defense Response of Pears Induced by the Biocontrol Yeast, Wickerhamomyces anomalus Using Transcriptomics and Proteomics Approaches. Biol. Control. 2020, 148, 104305. [Google Scholar] [CrossRef]
Disease Control Strategy | Treatments and Application Timing (BBCH) | ||||
---|---|---|---|---|---|
Preharvest (60–70 Days) | Preharvest (30–35 Days) | Preharvest (7–15 Days) | |||
69–71 of BBCH: End of Flowering-Ovary Growing | 75 of BBCH: Fruit About Half Final Size | 77–78 of BBCH: Fruit 70–80% of Final Size | 81 of BBCH: Beginning of Fruit Coloring | 87 of BBCH: Fruit Ripe for Picking | |
BIOLOGICAL 1 (BIO 1): 5 treatments with BCA a | BCA | BCA | BCA | BCA | BCA |
BIOLOGICAL 2 (BIO 2): 7 treatments with BCA | BCA | BCA | BCA BCA | BCA BCA | BCA |
INTEGRATED 1 (INT 1): One treatment with FFD b followed by four treatments with BCA | FFD (Cantus®) c | BCA | BCA | BCA | BCA |
INTEGRATED 2 (INT2): Two treatments with FFD followed by three treatments with BCA | FFD (Cantus®) | FFD (Chorus®) d | BCA | BCA | BCA |
INTEGRATED 3 (INT 3): Three treatments with FFD followed by two treatments with BCA | FFD (Cantus®) | FFD (Chorus®) | FFD (Cantus®) | BCA | BCA |
COMBINED (COMB): Five treatments with BCA applied in combination with FLD e | FLD + BCA (Cantus® + BCA) | FLD + BCA (Chorus® + BCA) | FLD + BCA (Cantus® + BCA) | FLD + BCA (Chorus® + BCA) | FLD + BCA (Cantus® + BCA) |
CHEMICAL (FLD): Five treatments with FLD | Cantus® | Chorus® | Cantus® | Chorus® | Cantus® |
CHEMICAL (FFD): Five treatments with FFD | Cantus® | Chorus® | Cantus® | Chorus® | Cantus® |
WATER (UTC) | Water | Water | Water | Water | Water |
PCR Products | Results of Blast | ||||||
---|---|---|---|---|---|---|---|
Description | Max Score | Total Score | Query Cover (%) | E Value | Ident. (%) | Accession | |
ITS | Monilinia fructigena isolate DM1082 | 922 | 922 | 100 | 0.0 | 100 | MT644896.1 |
Monilinia fructigena strain PHYTMN | 922 | 922 | 100 | 0.0 | 100 | MT522857.1 | |
Monilinia fructigena isolate MON23 | 922 | 922 | 100 | 0.0 | 100 | MN049479.1 | |
Monilinia fructigena isolate MON7 | 922 | 922 | 100 | 0.0 | 100 | MN049477.1 | |
Monilinia fructigena CBS:101500 strain | 922 | 922 | 100 | 0.0 | 100 | MH862738.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmieri, D.; Ianiri, G.; Conte, T.; Castoria, R.; Lima, G.; De Curtis, F. Influence of Biocontrol and Integrated Strategies and Treatment Timing on Plum Brown Rot Incidence and Fungicide Residues in Fruits. Agriculture 2022, 12, 1656. https://doi.org/10.3390/agriculture12101656
Palmieri D, Ianiri G, Conte T, Castoria R, Lima G, De Curtis F. Influence of Biocontrol and Integrated Strategies and Treatment Timing on Plum Brown Rot Incidence and Fungicide Residues in Fruits. Agriculture. 2022; 12(10):1656. https://doi.org/10.3390/agriculture12101656
Chicago/Turabian StylePalmieri, Davide, Giuseppe Ianiri, Thomas Conte, Raffaello Castoria, Giuseppe Lima, and Filippo De Curtis. 2022. "Influence of Biocontrol and Integrated Strategies and Treatment Timing on Plum Brown Rot Incidence and Fungicide Residues in Fruits" Agriculture 12, no. 10: 1656. https://doi.org/10.3390/agriculture12101656
APA StylePalmieri, D., Ianiri, G., Conte, T., Castoria, R., Lima, G., & De Curtis, F. (2022). Influence of Biocontrol and Integrated Strategies and Treatment Timing on Plum Brown Rot Incidence and Fungicide Residues in Fruits. Agriculture, 12(10), 1656. https://doi.org/10.3390/agriculture12101656