The Effect of Dietary Fumonisin Exposure on Apparent Ileal Digestibility of Amino Acids in Fattening Pigs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design, Conditions, and Diet Preparation
2.2. Digestibility Trial
2.3. Laboratory Analysis
2.4. Calculation and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piñeiro, M.S.; Silva, G.E.; Scott, P.M.; Lawrence, G.A.; Stack, M.E. Fumonisin Levels in Uruguayan Corn Products. J. AOAC Int. 1997, 80, 825–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norred, W.P. Fumonisins-Mycotoxins Produced by Fusarium Moniliforme. J. Toxicol. Environ. Health 1993, 38, 309–328. [Google Scholar] [CrossRef] [PubMed]
- Marasas, W.F.; Kellerman, T.S.; Gelderblom, W.C.; Coetzer, J.A.; Thiel, P.G.; van der Lugt, J.J. Leukoencephalomalacia in a Horse Induced by Fumonisin B1 Isolated from Fusarium Moniliforme. Onderstepoort J. Vet. Res. 1988, 55, 197–203. [Google Scholar] [PubMed]
- Gelderblom, W.C.A.; Kriek, N.P.J.; Marasas, W.F.O.; Thiel, P.G. Toxicity and Carcinogenicity of the Fusarium-Moniliforme Metabolite, Fumonisin-B1, in Rats. Carcinogenesis 1991, 12, 1247–1251. [Google Scholar] [CrossRef] [PubMed]
- Harrison, L.R.; Colvin, B.M.; Greene, J.T.; Newman, L.E.; Cole, J.R. Pulmonary Edema and Hydrothorax in Swine Produced by Fumonisin B1, a Toxic Metabolite of Fusarium Moniliforme. J. Vet. Diagn. Investig. 1990, 2, 217–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haschek, W.M.; Gumprecht, L.A.; Smith, G.; Tumbleson, M.E.; Constable, P.D. Fumonisin Toxicosis in Swine: An Overview of Porcine Pulmonary Edema and Current Perspectives. Environ. Health Perspect. 2001, 109, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Enongene, E.N.; Sharma, R.P.; Bhandari, N.; Voss, K.A.; Riley, R.T. Disruption of Sphingolipid Metabolism in Small Intestines, Liver and Kidney of Mice Dosed Subcutaneously with Fumonisin B1. Food Chem. Toxicol. 2000, 38, 793–799. [Google Scholar] [CrossRef]
- Magnoli, A.P.; Poloni, V.L.; Cavaglieri, L. Impact of Mycotoxin Contamination in the Animal Feed Industry. Curr. Opin. Food Sci. 2019, 29, 99–108. [Google Scholar] [CrossRef]
- Greco, M.V.; Franchi, M.L.; Rico Golba, S.L.; Pardo, A.G.; Pose, G.N. Mycotoxins and Mycotoxigenic Fungi in Poultry Feed for Food-Producing Animals. Sci. World J. 2014, 2014, 968215. [Google Scholar] [CrossRef] [Green Version]
- Gbore, F.A.; Akele, O. Growth Performance, Haematology and Serum Biochemistry of Female Rabbits (Oryctolagus cuniculus) Fed Dietary Fumonisin. Vet. Arh. 2010, 80, 431–443. [Google Scholar]
- Yang, C.; Song, G.; Lim, W. Effects of Mycotoxin-Contaminated Feed on Farm Animals. J. Hazard. Mater. 2020, 389, 122087. [Google Scholar] [CrossRef]
- Commission, E. Commission Recommendation of 17 August 2006 on the Presence of Deoxynivalenol, Zearalenone, Ochratoxin A, T-2 and HT-2 and Fumonisins in Products Intended for Animal Feeding. Off. J. Eur. Union 2006, 229, 7–9. [Google Scholar]
- Smith, L.E.; Stoltzfus, R.J.; Prendergast, A. Food Chain Mycotoxin Exposure, Gut Health, and Impaired Growth: A Conceptual Framework. Adv. Nutr. 2012, 3, 526–531. [Google Scholar] [CrossRef] [Green Version]
- Swamy, H.V.L.N.; Smith, T.K.; MacDonald, E.J.; Karrow, N.A.; Woodward, B.; Boermans, H.J. Effects of Feeding a Blend of Grains Naturally Contaminated with Fusarium Mycotoxins on Growth and Immunological Measurements of Starter Pigs, and the Efficacy of a Polymeric Glucomannan Mycotoxin Adsorbent. J. Anim. Sci. 2003, 81, 2792–2803. [Google Scholar] [CrossRef] [Green Version]
- Bouhet, S.; Oswald, I.P. The Intestine as a Possible Target for Fumonisin Toxicity. Mol. Nutr. Food Res. 2007, 51, 925–931. [Google Scholar] [CrossRef]
- Bracarense, A.P.F.L.; Lucioli, J.; Grenier, B.; Drociunas Pacheco, G.; Moll, W.D.; Schatzmayr, G.; Oswald, I.P. Chronic Ingestion of Deoxynivalenol and Fumonisin, Alone or in Interaction, Induces Morphological and Immunological Changes in the Intestine of Piglets. Br. J. Nutr. 2012, 107, 1776–1786. [Google Scholar] [CrossRef] [Green Version]
- Yunus, A.W.; Blajet-Kosicka, A.; Kosicki, R.; Khan, M.Z.; Rehman, H.; Böhm, J. Deoxynivalenol as a Contaminant of Broiler Feed: Intestinal Development, Absorptive Functionality, and Metabolism of the Mycotoxin. Poult. Sci. 2012, 91, 852–861. [Google Scholar] [CrossRef]
- van Leeuwen, P.; van Kleef, D.J.; van Kempen, G.J.M.; Huisman, J.; Verstegen, M.W.A. The Post Valve T-Caecum Cannulation Technique in Pigs Applicated to Determine the Digestibility of Amino Acid in Maize, Groundnut and Sunflower Meal. J. Anim. Physiol. Anim. Nutr. 1991, 65, 183–193. [Google Scholar] [CrossRef]
- Fodor, J.; Kametier, L.; Kovács, M. Practical Aspects of Fumonisin Production under Laboratory Conditions. Mycotoxin Res. 2006, 22, 211–216. [Google Scholar] [CrossRef]
- Council, N.R.; Southern, L.L.; Adeola, O.; de Lange, C.F.M. Nutrient Requirements of Swine; National Academies Press: Washington, DC, USA, 2012; ISBN 0309224233. [Google Scholar]
- William, H. Official Methods of Analysis of AOAC International; AOAC Off. method 985.29; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Wu, G.; Bazer, F.W.; Dai, Z.; Li, D.; Wang, J.; Wu, Z. Amino Acid Nutrition in Animals: Protein Synthesis and Beyond. Annu. Rev. Anim. Biosci. 2014, 2, 387–417. [Google Scholar] [CrossRef]
- Wu, G. Amino Acids: Metabolism, Functions, and Nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef]
- Blachier, F.; Lancha, A.H.; Boutry, C.; Tomé, D. Alimentary Proteins, Amino Acids and Cholesterolemia. Amino Acids 2010, 38, 15–22. [Google Scholar] [CrossRef]
- Gbore, F.A.; Egbunike, G.N. Influence of Dietary Fumonisin B1 on Nutrient Utilization by Growing Pigs. Livest. Res. Rural Dev. 2007, 19, 93. [Google Scholar]
- Gbore, F.A.; Yinusa, R.I.; Salleh, B. Evaluation of Subchronic Dietary Fumonisin B1 on Nutrient Digestibility and Growth Performance of Rats. Afr. J. Biotechnol. 2010, 9, 6442–6447. [Google Scholar] [CrossRef]
- Gbore, F.A. Protein Profiles of Serum, Brain Regions and Hypophyses of Pubertal Boars Fed Diets Containing Fumonisin B1. Ife J. Sci. 2013, 15, 167–174. [Google Scholar]
- Iyayi, E.A.; Tewe, O.O. Serum Total Protein, Urea and Creatinine Levels as Indices of Quality of Cassava Diets for Pigs. Trop. Vet. 1998, 16, 59–67. [Google Scholar]
- Stockmann-Juvala, H.; Savolainen, K. A Review of the Toxic Effects and Mechanisms of Action of Fumonisin B 1. Hum. Exp. Toxicol. 2008, 27, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Wu, Z.; Yang, Y.; Wang, J.; Satterfield, M.C.; Meininger, C.J.; Bazer, F.W.; Wu, G. Nitric Oxide and Energy Metabolism in Mammals. Biofactors 2013, 39, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Marc Rhoads, J.; Wu, G. Glutamine, Arginine, and Leucine Signaling in the Intestine. Amino Acids 2009, 37, 111–122. [Google Scholar] [CrossRef]
- Duan, J.; Yin, J.; Wu, M.; Liao, P.; Deng, D.; Liu, G.; Wen, Q.; Wang, Y.; Qiu, W.; Liu, Y.; et al. Dietary Glutamate Supplementation Ameliorates Mycotoxin-Induced Abnormalities in the Intestinal Structure and Expression of Amino Acid Transporters in Young Pigs. PLoS ONE 2014, 9, e112357. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, X.; Hou, Y.; Yin, Y.; Qiu, Y.; Wu, G.; Hu, C.A.A. Roles of Amino Acids in Preventing and Treating Intestinal Diseases: Recent Studies with Pig Models. Amino Acids 2017, 49, 1277–1291. [Google Scholar] [CrossRef]
- Smith, M.C.; Madec, S.; Coton, E.; Hymery, N. Natural Co-Occurrence of Mycotoxins in Foods and Feeds and Their in Vitro Combined Toxicological Effects. Toxins 2016, 8, 94. [Google Scholar] [CrossRef]
- Jo, H.; Kong, C.; Song, M.; Kim, B.G. Effects of Dietary Deoxynivalenol and Zearalenone on Apparent Ileal Digestibility of Amino Acids in Growing Pigs. Anim. Feed Sci. Technol. 2016, 219, 77–82. [Google Scholar] [CrossRef]
- Liu, J.D.; Doupovec, B.; Schatzmayr, D.; Murugesan, G.R.; Bortoluzzi, C.; Villegas, A.M.; Applegate, T.J. The Impact of Deoxynivalenol, Fumonisins, and Their Combination on Performance, Nutrient, and Energy Digestibility in Broiler Chickens. Poult. Sci. 2020, 99, 272–279. [Google Scholar] [CrossRef]
Component, g/kg | |
Corn | 612.35 |
Soybean meal | 247 |
Barley | 101 |
Sunflower oil | 40 |
Limestone | 13 |
Monocalcium phosphate | 11.1 |
Vitamin and mineral premix | 5.0 |
Salt | 4.0 |
L-Lysine HCl | 1.3 |
DL-methionine | 1.0 |
L-threonine | 0.25 |
Item, g/kg | |
Crude protein | 167 |
Crude fat | 32 |
Crude fiber | 23 |
Starch | 479 |
Crude ash | 51 |
Calcium | 7.14 |
Phosphorus | 5.37 |
Sodium | 1.81 |
Mycotoxins | LOD, mg/kg | Fungal Culture, mg/g | Control (No Contamination) | 40 mg/kg FUMs, mg/kg |
---|---|---|---|---|
FB1 | 0.031 | 25.57 | nd | 30.37 |
FB2 | 0.051 | 6.17 | nd | 7.12 |
FB3 | - | 3.01 | nd | 3.1 |
Zearalenone | 0.005 | - | nd | - |
Deoxynivalenol | 0.053 | - | nd | - |
T-2 | 0.011 | - | nd | - |
Amino Acids, g/100 g Sample | |
---|---|
Aspartic acid | 1.65 |
Threonine | 0.66 |
Serine | 0.84 |
Glutamic acid | 3.33 |
Proline | 1.12 |
Glycine | 0.69 |
Alanine | 0.89 |
Cysteine | 0.26 |
Valine | 0.76 |
Methionine | 0.28 |
Isoleucine | 0.65 |
Leucine | 1.43 |
Tyrosine | 0.45 |
Phenylalanine | 0.8 |
Histidine | 0.42 |
Lysine | 0.95 |
Ammonia | 0.3 |
Arginine | 0.96 |
Item, Kg | Control | 40 mg/kg FUMs |
---|---|---|
Initial BW | 67.3 ± 5.0 | 67.8 ± 3.7 |
Final BW | 81.2 ± 5.7 | 83.1 ± 5.7 |
Duration, d | Short-Term Effect, 7 d | Long-Term Effect, 21 d | p-Values | ||||
---|---|---|---|---|---|---|---|
Treatments, t | Control | 40 mg/kg FUMs | Control | 40 mg/kg FUMs | Treatment (t) Effect | Time (d) Effect | Interaction (t × d) |
AID of AAs, g/g | |||||||
Dry matter | 0.7404 ± 0.013 | 0.7467 ± 0.011 | 0.7641 ± 0.027 | 0.7432 ± 0.007 | 0.29 | 0.16 | 0.06 |
Crude protein | 0.7737 ± 0.011 | 0.7927 ± 0.017 | 0.7876 ± 0.007 | 0.7778 ± 0.022 | 0.58 | 0.95 | 0.099 |
Indispensable amino acids | |||||||
Arginine | 0.8524 ± 0.007 | 0.8659 ± 0.005 | 0.8642 ± 0.009 | 0.8500 ± 0.007 | 0.93 | 0.58 | 0.003 |
Threonine | 0.7032 ± 0.024 | 0.7094 ± 0.024 | 0.7082 ± 0.026 | 0.6866 ± 0.011 | 0.494 | 0.43 | 0.23 |
Valine | 0.7668 ± 0.020 | 0.7734 ± 0.019 | 0.7614 ± 0.015 | 0.7553 ± 0.017 | 0.98 | 0.23 | 0.50 |
Phenylalanine | 0.8031 ± 0.018 | 0.8149 ± 0.016 | 0.8128 ± 0.007 | 0.8048 ± 0.014 | 0.803 | 0.98 | 0.22 |
Methionine | 0.8743 ± 0.020 | 0.8867 ± 0.013 | 0.8780 ± 0.005 | 0.8708 ± 0.012 | 0.71 | 0.39 | 0.18 |
Lysine | 0.8394 ± 0.009 | 0.8426 ± 0.011 | 0.8593 ± 0.15 | 0.8508 ± 0.013 | 0.70 | 0.06 | 0.41 |
Histidine | 0.7886 ± 0.020 | 0.8084 ± 0.015 | 0.8458 ± 0.008 | 0.8325 ± 0.009 | 0.67 | <0.001 | 0.047 |
Isoleucine | 0.7934 ± 0.020 | 0.8062 ± 0.021 | 0.7973 ± 0.009 | 0.7945 ± 0.019 | 0.60 | 0.68 | 0.42 |
Leucine | 0.8307 ± 0.024 | 0.8431 ± 0.019 | 0.8416 ± 0.008 | 0.8341 ± 0.018 | 0.80 | 0.92 | 0.31 |
Dispensable amino acids | |||||||
Tyrosine | 0.6958 ± 0.030 | 0.7130 ± 0.013 | 0.7260 ± 0.004 | 0.7075 ± 0.010 | 0.94 | 0.15 | 0.047 |
Alanine | 0.7661 ± 0.016 | 0.7725 ± 0.015 | 0.7471 ± 0.018 | 0.7506 ± 0.25 | 0.63 | 0.07 | 0.89 |
Glutamic acid | 0.8421 ± 0.013 | 0.8546 ± 0.006 | 0.8496 ± 0.008 | 0.8393 ± 0.015 | 0.86 | 0.53 | 0.08 |
Glycine | 0.5863± 0.034 | 0.6169 ± 0.057 | 0.6308 ± 0.008 | 0.6070 ± 0.051 | 0.88 | 0.46 | 0.25 |
Cysteine | 0.7184 ± 0.021 | 0.7368 ± 0.027 | 0.7559 ± 0.011 | 0.7342 ± 0.019 | 0.88 | 0.12 | 0.08 |
Aspartic acid | 0.7708 ± 0.015 | 0.7771 ± 0.010 | 0.7782 ± 0.011 | 0.7686 ± 0.010 | 0.79 | 0.93 | 0.28 |
Proline | 0.6874 ± 0.069 | 0.6811 ± 0.116 | 0.5993 ± 0.103 | 0.6891 ± 0.040 | 0.400 | 0.42 | 0.34 |
Serine | 0.7724 ± 0.016 | 0.7802 ± 0.016 | 0.7906 ± 0.010 | 0.7760 ± 0.016 | 0.671 | 0.39 | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeebone, Y.Y.; Kovács, M.; Bóta, B.; Halas, V. The Effect of Dietary Fumonisin Exposure on Apparent Ileal Digestibility of Amino Acids in Fattening Pigs. Agriculture 2022, 12, 1720. https://doi.org/10.3390/agriculture12101720
Zeebone YY, Kovács M, Bóta B, Halas V. The Effect of Dietary Fumonisin Exposure on Apparent Ileal Digestibility of Amino Acids in Fattening Pigs. Agriculture. 2022; 12(10):1720. https://doi.org/10.3390/agriculture12101720
Chicago/Turabian StyleZeebone, Yarsmin Yunus, Melinda Kovács, Brigitta Bóta, and Veronika Halas. 2022. "The Effect of Dietary Fumonisin Exposure on Apparent Ileal Digestibility of Amino Acids in Fattening Pigs" Agriculture 12, no. 10: 1720. https://doi.org/10.3390/agriculture12101720
APA StyleZeebone, Y. Y., Kovács, M., Bóta, B., & Halas, V. (2022). The Effect of Dietary Fumonisin Exposure on Apparent Ileal Digestibility of Amino Acids in Fattening Pigs. Agriculture, 12(10), 1720. https://doi.org/10.3390/agriculture12101720