Trifoliate Orange-Related Rootstocks Enhance the Horticultural Performance of ‘Shamouti’ Sweet Orange under Humid Subtropical Condition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location
2.2. Plant Material
2.3. Tree Management
2.4. Tree Size Measurements
2.5. Fruit Yield Assessment
2.6. Fruit and Juice Quality Evaluation
2.7. Plant Density and Yield Estimates for New Plantings
2.8. Statistical Assessment
3. Results
3.1. Tree Size Measurements
3.2. Fruit Yield Assessment
3.3. Fruit and Juice Quality Evaluation
3.4. Plant Density and Yield Estimates for New Plantings
3.5. Multivariate Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gmitter, F.G., Jr.; Wu, G.A.; Rokhsar, D.S.; Talón, M. The citrus genome. In The Genus Citrus, 1st ed.; Talon, M., Caruso, M., Gmitter, F.G., Jr., Eds.; Woodhead Publishing: Cambridge, UK, 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Barros, H.R.M.; Ferreira, T.A.P.C.; Genovese, M.I. Antioxidant capacity and mineral content of pulp and peel from commercial cultivars of citrus from Brazil. Food Chem. 2012, 134, 1892–1898. [Google Scholar] [CrossRef] [PubMed]
- Barry, G.H.; Caruso, M.; Gmitter, F.G., Jr. Commercial scion varieties. In The Genus Citrus, 1st ed.; Talon, M., Caruso, M., Gmitter, F.G., Jr., Eds.; Woodhead Publishing: Cambridge, UK, 2020; pp. 83–104. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). 2020. Available online: http://www.faostat.fao.org (accessed on 7 July 2022).
- Fund for Citrus Protection (Fundecitrus). Tree Inventory and Orange Crop Forecast for the São Paulo and West-Southwest Minas Gerais Citrus Belt; Fundecitrus: Araraquara, Brazil, 2022. [Google Scholar]
- Carvalho, S.A.; Girardi, E.A.; Mourão Filho, F.D.A.A.; Ferrarezi, R.S.; Coletta Filho, H.D. Advances in citrus propagation in Brazil. Rev. Bras. Frutic. 2019, 41, e-422. [Google Scholar] [CrossRef] [Green Version]
- Miranda, M.T.; Silva, S.F.; Silveira, N.M.; Pereira, L.; Machado, E.C.; Ribeiro, R.V. Root osmotic adjustment and stomatal control of leaf gas exchange are dependent on citrus rootstocks under water deficit. J. Plant Growth Regul. 2021, 40, 11–19. [Google Scholar] [CrossRef]
- Bowman, K.D.; Joubert, J. Citrus rootstocks. In The Genus Citrus, 1st ed.; Talon, M., Caruso, M., Gmitter, F.G., Jr., Eds.; Woodhead Publishing: Cambridge, UK, 2020; pp. 105–127. [Google Scholar] [CrossRef]
- Pompeu Junior, J. Porta-enxertos. In Citrus, 1st ed.; Mattos Junior, D., De Negri, J.D., Pio, R.M., Pompeu Junior, J., Eds.; Fundag: Campinas, Brazil, 2005; pp. 61–104. [Google Scholar]
- Pompeu Junior, J.; Blumer, S. Híbridos de trifoliata como porta-enxertos para laranjeira Pêra. Pesq. Agropec. Trop. 2014, 44, 9–14. [Google Scholar] [CrossRef]
- Castle, B.; Stover, E. Rootstock reflections: Swingle citrumelo update. Citrus Ind. 2000, 81, 18–20. [Google Scholar]
- Castle, W.S. A career perspective on Citrus rootstocks, their development, and commercialization. HortScience 2010, 45, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Albrigo, L.G.; Stelinski, L.L.; Timmer, L. Citrus, 1st ed.; CAB International: Wallingford, UK, 2009. [Google Scholar] [CrossRef]
- Carvalho, D.U.; Neves, C.S.V.J.; Cruz, M.A.; Colombo, R.C.; Yada, I.F.U.; Leite Junior, R.P.; Tazima, Z.H. Performance of ‘Salustiana’ sweet orange on different rootstocks under Brazilian subtropical conditions. Sci. Hortic. 2021, 287, 110226. [Google Scholar] [CrossRef]
- Georgiou, A. Evaluation of rootstocks for the Cyprus local lemon variety ‘Lapithiotiki’. Sci. Hortic. 2009, 123, 184–187. [Google Scholar] [CrossRef]
- Bassal, M.A. Growth, yield and fruit quality of ‘Marisol’ clementine grown on four rootstocks in Egypt. Sci. Hortic. 2009, 119, 132–137. [Google Scholar] [CrossRef]
- Forner-Giner, M.A.; Hueso, J.J.; Agüera, J.M.; Legua, P.; Forner, J.B. Effects of citrus rootstocks on growth, yield and fruit quality of Navelate orange. J. Food Agric. Environ. 2011, 9, 400–403. [Google Scholar]
- Emmanouilidou, M.G.; Kyriacou, M.C. Rootstock-modulated yield performance, fruit maturation and phytochemical quality of ‘Lane Late’ and ‘Delta’ sweet orange. Sci. Hortic. 2017, 225, 112–121. [Google Scholar] [CrossRef]
- Carvalho, L.M.; Carvalho, H.W.; Barros, I.; Martins, C.R.; Soares Filho, W.D.S.; Girardi, E.A.; Passos, O. New scion-rootstock combinations for diversification of sweet orange orchards in tropical hard setting soils. Sci. Hortic. 2019, 243, 169–176. [Google Scholar] [CrossRef]
- Costa, D.P.; Stuchi, E.S.; Girardi, E.A.; Moreira, A.S.; Gesteira, A.S.; Coelho Filho, M.A.; Ledo, C.A.S.; Silva, A.L.V.; Leão, H.C.; Passos, O.S.; et al. Less is more: A hard way to get potential dwarfing hybrid rootstocks for Valencia sweet orange. Agriculture 2021, 11, 354. [Google Scholar] [CrossRef]
- Domingues, A.R.; Marcolini, C.D.M.; Gonçalves, C.H.D.S.; Resende, J.T.V.D.; Roberto, S.R.; Carlos, E.F. Rootstocks genotypes impact on tree development and industrial properties of ‘Valencia’ sweet orange juice. Horticulturae 2021, 7, 141. [Google Scholar] [CrossRef]
- Bacar, E.L.C.; Neves, C.S.V.J.; Leite Junior, R.P.; Yada, I.F.U.; Tazima, Z.H. ‘Jaffa’ sweet orange plants grafted onto five rootstocks. Rev. Bras. Frutic. 2017, 39, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Domingues, A.R.; Neves, C.S.V.J.; Yada, I.F.U.; Leite Junior, R.P.; Tazima, Z.H. Performance of ‘Cadenera’ orange trees grafted on five rootstocks. Rev. Bras. Fruticult. 2018, 40, e-764. [Google Scholar] [CrossRef]
- Cruz, M.A.; Neves, C.S.V.J.; Carvalho, D.U.; Colombo, R.C.; Leite Junior, R.P.; Tazima, Z.H. ‘Navelina’ sweet orange trees on five rootstocks in Northern Parana state Brazil. Rev. Bras. Fruticult. 2019, 41, e-006. [Google Scholar] [CrossRef] [Green Version]
- Stenzel, N.M.C.; Neves, C.S.V.J.; Scholz, M.B.D.S.; Gomes, J.C. Comportamento da laranjeira ‘Folha Murcha’ em sete porta-enxertos no noroeste do Paraná. Rev. Bras. Fruticult. 2005, 27, 408–411. [Google Scholar] [CrossRef]
- Instituto Agronômico do Paraná (IAPAR). A citricultura no Paraná, 1st ed.; IAPAR: Londrina, Brazil, 1992. [Google Scholar]
- Castle, W.S. Citrus rootstocks. In Rootstocks for Fruit Crops, 1st ed.; Rom, R.C., Carlson, R.F., Eds.; John Wiley and Sons: New York, NY, USA, 1987; pp. 361–369. [Google Scholar]
- Verdejo-Lucas, S.; Kaplan, D.T. The citrus nematode: Tylenchulus semipenetrans. In Plant Resistance to Parasitic Nematodes; Starr, J.L., Cook, R., Bridge, J., Eds.; CAB International: Wallingford, UK, 2002; pp. 207–219. [Google Scholar]
- Girardi, E.A.; Cerqueira, T.S.; Cantuarias-Avilés, T.E.; Silva, S.R.D.; Stuchi, E.S. Sunki mandarin and Swingle citrumelo as rootstocks for rain-fed cultivation of late-season sweet orange selections in northern São Paulo state, Brazil. Bragantia 2017, 76, 501–511. [Google Scholar] [CrossRef]
- Marini, R.P.; Fazio, G. Apple rootstocks: History, physiology, management, and breeding. Hortic. Rev. 2018, 45, 197–312. [Google Scholar] [CrossRef]
- Ikinci, A.; Bolat, I.; Ercisli, S.; Kodad, O. Influence of rootstocks on growth, yield, fruit quality and leaf mineral element contents of pear cv. ‘Santa Maria’ in semi-arid conditions. Biol. Res. 2014, 47, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Riaz, S.; Pap, D.; Uretsky, J.; Laucou, V.; Boursiquot, J.M.; Kocsis, L.; Walker, M.A. Genetic diversity and parentage analysis of grape rootstocks. Theor. Appl. Genet. 2019, 132, 1847–1860. [Google Scholar] [CrossRef]
- Cheng, J.; Wei, L.; Mei, J.; Wu, J. Effect of rootstock on phenolic compounds and antioxidant properties in berries of grape (vitis vinifera L.) cv. ‘red alexandria’. Sci. Hortic. 2017, 217, 137–144. [Google Scholar] [CrossRef]
- Sobierajski, G.D.R.; Blain, G.C.; Teixeira, L.A.J.; Mayer, N.A. Vegetative growth and foliar nutrient contents of peach on different clonal rootstocks. Pesqui. Agropecu. Bras. 2021, 56, e02043. [Google Scholar] [CrossRef]
- Gradziel, T.M. Wild and Related Species as a Breeding Source for Biotic Stress Resistance of Peach Cultivars and Rootstocks. In Genomic Designing for Biotic Stress Resistant Fruit Crops; Springer: Cham, The Netherlands, 2022; pp. 257–274. [Google Scholar]
- Rabe, E.; van der Walt, H.P. Effect of urea sprays, girdling and paclobutrazol on yield in ‘Shamouti’ sweet orange trees in a subtropical climate. J. S. Afri. Soc. Hortic. Sci. 1992, 2, 77–81. [Google Scholar]
- Paula, M.C.M.S.; Carvalho, D.U.; Cruz, M.A.; Longhi, T.V.; Tazima, Z.H.; Behlau, F.; Carvalho, S.A.; Leite Junior, R.P. Agronomic performance of sweet orange genotypes under the Brazilian humid subtropical climate. Horticulturae 2022, 8, 254. [Google Scholar] [CrossRef]
- Georgiou, A.; Gregoriou, C. Growth, yield and fruit quality of ‘Shamouti’ orange on fourteen rootstocks in Cyprus. Sci. Hortic. 1999, 80, 113–121. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.D.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Instituto de Desenvolvimento Rural do Paraná (IDR-Paraná). 2021. Available online: http://www.idrparana.pr.gov.br/Pagina/Dados-Meteorologicos-Historicos-e-Atuais (accessed on 2 December 2021).
- Larach, J.O.I.; Cardoso, A.; Carvalho, A.P.; Hochmüller, D.P.; Martins, J.S.; Rauen, M.D.J.; Fasolo, P.J.; Pötter, R.O. Survey of Soil Identification in the State of Paraná, 1st ed.; Embrapa Solos: Recife, Brazil, 1984. [Google Scholar]
- Nunes, W.M.C.; Souza, E.B.; Leite Junior, R.P.; Salvador, C.A.; Rinaldi, D.A.; Croce Filho, J.; Paiva, P.G. Plan of action for the control of Huanglongbing in the Paraná state, Brazil. Citrus Res. Technol. 2010, 31, 169–177. [Google Scholar] [CrossRef]
- Mendel, K. Rootstock-scion relationships in Shamouti trees on light soil. Ktavim 1956, 6, 35–60. [Google Scholar]
- Pearce, S.C.; Doberšek-Urbanc, S. The measurement of irregularity in growth and cropping. J. Hortic. Sci. 1967, 42, 295–305. [Google Scholar] [CrossRef]
- Companhia de Entrepostos e Armazéns Gerais de São Paulo (CEAGESP). Normas de Classificação de Citros de Mesa, 2nd ed.; CEAGESP: São Paulo, Brazil, 2011. [Google Scholar]
- Berk, Z. Citrus Fruit Processing, 1st ed.; Elsevier Academic Press: London, UK, 2016. [Google Scholar] [CrossRef]
- Association of Official Agricultural Chemists (AOAC). Official Methods of Analysis; Association of Official Agricultural Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Di Giorgi, F.; Ide, B.Y.; Dib, K.; March, R.J.; Triboni, H.D.; Wagner, R.L. Contribuição ao estudo do comportamento de algumas variedades de citros e suas implicações agroindustriais. Laranja 1990, 11, 567–612. [Google Scholar]
- De Negri, J.D.; Blasco, E.E.A. Planejamento e implantação de um pomar cítrico. In Citricultura Brasileira, 1st ed.; Rodrigues, O., Ed.; Fundação Cargill: Campinas, Brazil, 1991; pp. 318–332. [Google Scholar]
- Martínez-Cuenca, M.R.; Primo-Capella, A.; Forner-Giner, M.A. Influence of rootstock on Citrus tree growth: Effects on photosynthesis and carbohydrate distribution, plant size, yield, fruit quality, and dwarfing genotypes. Plant Growth 2016, 16, 107. [Google Scholar] [CrossRef] [Green Version]
- Hodgson, R.W. Horticultural varieties of Citrus. In The Citrus Industry, 1st ed.; Reuther, W., Webber, H.J., Batchelor, L.D., Eds.; University of California: Los Angeles, CA, USA, 1967; pp. 431–591. [Google Scholar]
- Stover, E.; Castle, W.S.; Spyke, P. The citrus grove of the future and its implications for huanglongbing management. Proc. Fla. State Hortic. Soc. 2008, 121, 155–159. [Google Scholar]
- Bergamin Filho, A.; Nagata, A.; Bassanezi, R.B.; Belasque Junior, J.; Amorim, L.; Macedo, M.A.; Barbosa, J.C.; Willocquet, L.; Savary, S. The importance of primary inoculum and area-wide disease management to crop health and food security. Food Sec. 2016, 8, 221–238. [Google Scholar] [CrossRef]
- Bassanezi, R.B.; Lopes, S.A.; Miranda, M.P.; Wulff, N.A.; Volpe, H.X.L.; Ayres, A.J. Overview of citrus huanglongbing spread and management strategies in Brazil. Trop. Plant Pathol. 2020, 45, 251–264. [Google Scholar] [CrossRef]
- Moreira, A.S.; Stuchi, E.S.; Silva, P.R.; Bassanezi, R.B.; Girardi, E.A.; Laranjeira, F.F. Could tree density play a role in managing Citrus huanglongbing epidemics? Trop. Plant Pathol. 2019, 44, 268–274. [Google Scholar] [CrossRef]
- Warschefsky, E.J.; Klein, L.L.; Frank, M.H.; Chitwood, D.H.; Londo, J.P.; von Wettberg, E.J.; Miller, A.J. Rootstocks: Diversity, domestication, and impacts on shoot phenotypes. Trends Plant Sci. 2016, 21, 418–437. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, J.T.; Qin, Y.H.; Hu, G.B. Study on the graft compatibility between ‘Jingganghongnuo’ and other litchi cultivars. Sci. Hortic. 2016, 199, 56–62. [Google Scholar] [CrossRef]
- Pereira, I.; Messias, R.D.S.; Campos, Â.D.; Errea, P.; Antunes, L.C.; Fachinello, J.C.; Pina, A. Growth characteristics and phenylalanine ammonia-lyase activity in peach grafted on different Prunus spp. Biol Plant 2014, 58, 114–120. [Google Scholar] [CrossRef] [Green Version]
- Irisarri, P.; Zhebentyayeva, T.; Errea, P.; Pina, A. Differential expression of phenylalanine ammonia lyase (PAL) genes implies distinct roles in development of graft incompatibility symptoms in Prunus. Sci. Hortic. 2016, 204, 16–24. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, J.T.; Hu, F.C.; Qin, Y.H.; Wang, X.H.; Hu, G.B. Transcriptome changes between compatible and incompatible graft combination of Litchi chinensis by digital gene expression profile. Sci. Rep. 2017, 7, 3954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Jiang, L.; Wu, R. Plant grafting: How genetic exchange promotes vascular reconnection. New Phytol. 2017, 214, 56–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, L.; Sakovich, N.; Roose, M.L. California Citrus Rootstocks, 1st ed.; University of California: Oakland, CA, USA, 1990; (Publication 21477). [Google Scholar]
- Castle, W.S.; Gmitter, F.G., Jr. Rootstock and scion selection. In Citrus Health Management, 1st ed.; Timmer, L.W., Duncan, L.W., Eds.; The American Phytopathological Society Press: St. Paul, MN, USA, 1999. [Google Scholar]
- Hartmann, H.T.; Kester, D.E.; Davies Jr, F.T.D.; Geneve, R.L. Plant Propagation: Principles and Practices, 8th ed.; Prentice Hall: Hoboken, NJ, USA, 2011. [Google Scholar]
- Garnsey, S.M.; Castle, W.S.; Tucker, D.P.H.; Rouse, R.E.; Wutscher, H.K.; Kesinger, M.C. Bud union incompatibilities and associate declines observed in Florida among trees on Swingle citrumelo and other trifoliate orange-related rootstocks. Proc. Fla. State Hort. Soc. 2001, 114, 121–127. [Google Scholar]
- Georgiou, A. Evaluation of rootstocks for ‘Clementine’ mandarin in Cyprus. Sci. Hortic. 2002, 93, 29–38. [Google Scholar] [CrossRef]
- Carvalho, D.U.; Neves, C.S.V.J.; Cruz, M.A.; Yada, I.F.U.; Leite Junior, R.P.; Tazima, Z.H. Evaluation of multiple rootstocks for ‘Montenegrina’ mandarin in Londrina, Paraná, Brazil. Rev. Bras. Frutic. 2022, 44, e-817. [Google Scholar] [CrossRef]
- Cruz, M.A.; Neves, C.S.V.J.; Carvalho, D.U.; Colombo, R.C.; Bai, J.; Yada, I.F.U.; Leite Junior, R.P.; Tazima, Z.H. Five rootstocks for “Emperor” mandarin under subtropical climate in southern Brazil. Front. Plant Sci. 2021, 12, 777871. [Google Scholar] [CrossRef]
- Agustí, M.; Primo-Millo, E. Flowering and fruit set. In The Genus Citrus, 1st ed.; Talon, M., Caruso, M., Gmitter, F.G., Jr., Eds.; Woodhead Publishing: Cambridge, UK, 2020; pp. 219–244. [Google Scholar] [CrossRef]
- Forner-Giner, M.A.; Alcaide, A.; Primo-Millo, E.; Forner, J.B. Performance of ‘Navelina’ orange on 14 rootstocks in Northern Valencia. Sci. Hortic. 2003, 98, 223–232. [Google Scholar] [CrossRef]
- Al-Jaleel, A.; Zekri, M.; Hammam, Y. Yield, fruit quality, and tree health of ‘Allen Eureka’ lemon on seven rootstocks in Saudi Arabia. Sci. Hortic. 2005, 105, 457–465. [Google Scholar] [CrossRef]
- Perez-Perez, J.G.; Porras, I.; Garcia-Lidon, A.; Botia, P.; Garcia-Sanchez, F. Fino lemon clones compared with the lemon varieties Eureka and Lisbon on two rootstocks in Murcia (Spain). Sci. Hortic. 2005, 106, 530–538. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development (OECD). International Standards for Fruit and Vegetables: Citrus; OECD: Paris, France, 2010. [Google Scholar]
- Alferez, F.; Carvalho, D.U.; Boakye, D. Interplay between abscisic acid and gibberellins, as related to ethylene and sugars, in regulating maturation of non-climacteric fruit. Int. J. Mol. Sci. 2021, 22, 669. [Google Scholar] [CrossRef] [PubMed]
- Castle, W.S.; Baldwin, J.C. Young-tree performance of juvenile sweet orange scions on Swingle citrumelo rootstock. HortScience 2011, 46, 541–552. [Google Scholar] [CrossRef]
- Chitarra, M.I.F.; Chitarra, A.B. Pós-Colheita de Frutas e Hortaliças: Fisiologia e Manuseio, 2nd ed.; UFLA: Lavras, Brazil, 2005. [Google Scholar]
- Pozzan, M.; Triboni, H.R. Colheita e qualidade do fruto. In Citrus, 1st ed.; Mattos Junior, D., De Negri, J.D., Pio, R.M., Pompeu Junior, J., Eds.; Fundag: Campinas, Brazil, 2005; pp. 801–822. [Google Scholar]
Rootstock | Tree Height (m) | Canopy Diameter (m) | Canopy Volume (m3) | Rootstock Trunk Diameter 1 (cm) | Scion Trunk Diameter 1 (cm) | Trunk Diameter Index 2 |
---|---|---|---|---|---|---|
Rangpur | 4.24 ± 0.10 b 3 | 5.04 ± 0.17 ab | 56.5 ± 4.38 abc | 24.9 ± 1.32 | 19.3 ± 0.69 a | 0.776 ± 0.05 a |
Cleopatra | 4.26 ± 0.13 ab | 5.08 ± 0.12 ab | 57.7 ± 4.06 ab | 25.3 ± 0.69 | 19.5 ± 0.59 a | 0.770 ± 0.02 a |
Sunki | 4.63 ± 0.25 a | 5.12 ± 0.24 a | 64.1 ± 9.40 a | 25.9 ± 1.81 | 20.5 ± 1.19 a | 0.792 ± 0.02 a |
Swingle | 3.88 ± 0.21 b | 4.60 ± 0.27 b | 43.4 ± 6.59 c | 27.1 ± 2.18 | 14.3 ± 0.97 b | 0.527 ± 0.01 c |
C-13 | 3.91 ± 0.33 b | 4.85 ± 0.50 ab | 49.3 ± 12.9 bc | 25.8 ± 2.16 | 15.2 ± 1.47 b | 0.589 ± 0.02 b |
CV (%) | 5.39 | 5.80 | 15.17 | 6.83 | 5.87 | 4.16 |
F value | 10.9 *** | 3.34 * | 5.71 ** | 1.31 ns | 43.6 *** | 110.9 *** |
Rootstocks | CV (%) | F Value | |||||
---|---|---|---|---|---|---|---|
Rangpur | Cleopatra | Sunki | Swingle | C-13 | |||
Annual yield (kg·tree–1) | |||||||
2009 | 1.04 ± 1.9 ab 2 | 0.56 ± 0.2 b | 2.25 ± 1.3 ab | 5.24 ± 5.4 a | 1.90 ± 0.9 ab | 119.0 | 2.92 * |
2010 | 11.8 ± 7.8 bc | 7.23 ± 6.2 c | 16.7 ± 10.0 bc | 49.0 ± 20.7 a | 27.5 ± 13.0 b | 49.1 | 13.7 *** |
2011 | 21.9 ± 9.1 a | 1.05 ± 0.8 c | 3.51 ± 2.1 bc | 9.43 ± 5.2 bc | 13.4 ± 12.1 ab | 70.7 | 8.50 *** |
2012 | 28.1 ± 7.3 bc | 11.2 ± 7.8 c | 28.1 ± 8.4 bc | 64.5 ± 10.0 a | 45.2 ± 18.0 b | 30.8 | 20.5 *** |
2013 | 77.0 ± 14.8 a | 37.1 ± 12.1 b | 66.0 ± 20.4 ab | 66.5 ± 25.3 ab | 77.1 ± 21.9 a | 28.4 | 4.74 ** |
2014 | 126.1 ± 12.5 | 95.3 ± 6.3 | 131.9 ± 14.1 | 116.4 ± 45.3 | 117.9 ± 22.4 | 20.5 | 2.01 ns |
2015 | 48.1 ± 21.0 ab | 28.1 ± 12.0 b | 61.6 ± 15.2 a | 62.4 ± 13.0 a | 46.6 ± 11.1 ab | 30.4 | 5.19 ** |
2016 | 81.9 ± 13.1 a | 46.2 ± 8.5 b | 81.3 ± 10.1 a | 77.6 ± 17.4 a | 73.5 ± 17.2 a | 19.2 | 6.90 ** |
2017 | 71.8 ± 48.0 ab | 28.6 ± 27.1 b | 71.4 ± 37.9 ab | 98.3 ± 28.5 a | 78.3 ± 31.7 ab | 54.2 | 2.72 * |
Cumulative yield (kg) | 467.7 ± 71.7 a | 255.2 ± 36.1 b | 462.7 ± 52.6 a | 549.3 ± 112.7 a | 481.4 ± 43.7 a | 16.1 | 14.3 *** |
Yield efficiency (kg·m−3) 1 | 1.35 ± 0.5 abc | 0.65 ± 0.3 c | 1.23 ± 0.3 bc | 2.03 ± 0.4 a | 1.58 ± 0.4 ab | 22.1 | 8.44 *** |
Alternate bearing index | 0.399 ± 0.07 b | 0.556 ± 0.08 a | 0.456 ± 0.04 a | 0.402 ± 0.03 b | 0.414 ± 0.07 b | 14.4 | 6.32 ** |
Rootstock | Fruit Length FL (mm) | Fruit Diameter FD (mm) | Fruit Shape (FL/FD) | Fruit Weight (g) | Number of Seeds |
---|---|---|---|---|---|
Rangpur | 78.4 ± 2.2 b 1 | 72.6 ± 1.6 b | 1.079 ± 0.01 ab | 208 ± 10.5 bc | 7 ± 0.6 ab |
Cleopatra | 77.7 ± 0.9 b | 72.2 ± 0.9 b | 1.075 ± 0.01 b | 205 ± 5.0 c | 6 ± 0.6 b |
Sunki | 80.0 ± 0.9 b | 73.2 ± 0.6 b | 1.092 ± 0.01 a | 220 ± 4.5 b | 8 ± 0.9 a |
Swingle | 83.8 ± 1.6 a | 77.8 ± 1.0 a | 1.077 ± 0.01 ab | 259 ± 11.0 a | 7 ± 0.8 ab |
C-13 | 84.4 ± 0.8 a | 76 9 ± 0.9 a | 1.097 ± 0.01 a | 256 ± 7.8 a | 6 ± 0.7 b |
CV (%) | 1.83 | 1.33 | 1.10 | 3.11 | 11.6 |
F value | 26.3 *** | 41.9 *** | 3.89 * | 78.9 *** | 6.02 ** |
Rootstock | Juice Content (%) | Soluble Solids SS (°Brix) | Titratable Acidity TA (g 100·mL−1) | Ratio (SS/TA) | Technological Index (kg SS·box−1) |
---|---|---|---|---|---|
Rangpur | 46.0 ± 0.8 bc 1 | 9.58 ± 0.4 | 1.06 ± 0.03 bc | 9.27 ± 0.2 a | 1.80 ± 0.06 |
Cleopatra | 47.8 ± 0.3 a | 9.42 ± 0.1 | 1.03 ± 0.01 bc | 9.33 ± 0.1 a | 1.78 ± 0.03 |
Sunki | 47.1 ± 0.6 ab | 9.59 ± 0.1 | 1.13 ± 0.02 a | 8.69 ± 0.2 b | 1.84 ± 0.05 |
Swingle | 47.1 ± 0.6 ab | 9.49 ± 0.1 | 1.07 ± 0.03 b | 9.10 ± 0.2 ab | 1.83 ± 0.05 |
C-13 | 45.1 ± 0.8 c | 9.48 ± 0.5 | 1.02 ± 0.03 c | 9.55 ± 0.4 a | 1.75 ± 0.12 |
CV (%) | 1.49 | 3.11 | 2.31 | 2.99 | 3.36 |
F value | 14.3 *** | 0.37 ns | 19.0 *** | 8.28 *** | 2.48 ns |
Rootstock | Row Spacing (m) | Tree Spacing (m) | Tree Density (Trees·ha−1) | Estimate Yield (t·ha−1) | SS Yield (t SS·ha−1) |
---|---|---|---|---|---|
Rangpur | 7.54 ± 0.1 ab 2 | 4.28 ± 0.1 ab | 311 ± 18.6 ab | 23.0 ± 5.6 a | 1.015 ± 0.2 a |
Cleopatra | 7.58 ± 0.1 ab | 4.31 ± 0.1 ab | 307 ± 12.4 ab | 12. 1 ± 3.5 b | 0.545 ± 0.1 b |
Sunki | 7.62 ± 0.2 a | 4.35 ± 0.2 a | 303 ± 22.4 b | 23.0 ± 4.9 a | 1.041 ± 0.2 a |
Swingle | 7.10 ± 0.2 b | 3.91 ± 0.2 b | 363 ± 28.5 a | 28.4 ± 4.6 a | 1.270 ± 0.2 a |
C-13 | 7.35 ± 0.5 ab | 4.12 ± 0.4 ab | 337 ± 60.7 ab | 24.1 ± 3.5 a | 1.030 ± 0.1 a |
CV (%) | 3.85 | 5.80 | 10.7 | 20.9 | 21.5 |
F value | 3.34 * | 3.34 * | 3.22 * | 10.1 *** | 9.40 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, D.U.d.; Junior, R.P.L.; Yada, I.F.U.; Tazima, Z.H. Trifoliate Orange-Related Rootstocks Enhance the Horticultural Performance of ‘Shamouti’ Sweet Orange under Humid Subtropical Condition. Agriculture 2022, 12, 1782. https://doi.org/10.3390/agriculture12111782
Carvalho DUd, Junior RPL, Yada IFU, Tazima ZH. Trifoliate Orange-Related Rootstocks Enhance the Horticultural Performance of ‘Shamouti’ Sweet Orange under Humid Subtropical Condition. Agriculture. 2022; 12(11):1782. https://doi.org/10.3390/agriculture12111782
Chicago/Turabian StyleCarvalho, Deived Uilian de, Rui Pereira Leite Junior, Inês Fumiko Ubukata Yada, and Zuleide Hissano Tazima. 2022. "Trifoliate Orange-Related Rootstocks Enhance the Horticultural Performance of ‘Shamouti’ Sweet Orange under Humid Subtropical Condition" Agriculture 12, no. 11: 1782. https://doi.org/10.3390/agriculture12111782
APA StyleCarvalho, D. U. d., Junior, R. P. L., Yada, I. F. U., & Tazima, Z. H. (2022). Trifoliate Orange-Related Rootstocks Enhance the Horticultural Performance of ‘Shamouti’ Sweet Orange under Humid Subtropical Condition. Agriculture, 12(11), 1782. https://doi.org/10.3390/agriculture12111782