Response of Rice Yield and Grain Quality to Combined Nitrogen Application Rate and Planting Density in Saline Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Designs
2.2. Determination of Rice Yield and Yield Components
2.3. Leaf Area Index (LAI), N Concentration and Nitrogen Use Efficiency
2.4. Determination of Grain Quality
2.4.1. Processing Quality
2.4.2. Appearance Quality
2.4.3. Nutritive Quality
2.4.4. Cooking/Eating Quality
2.4.5. Pasting Properties of Starch
2.5. Statistical Analysis
3. Results
3.1. Rice Grain Yield and Yield Components
3.2. Rice Leaf Area Index
3.3. Nitrogen Use Efficiency
3.4. Rice Grain Quality
3.4.1. Processing Quality
3.4.2. Appearance Quality
3.4.3. Nutritive Quality and Protein Content of Rice Grain
3.4.4. Cooking/Eating Quality
3.4.5. Pasting Quality
4. Discussion
4.1. Effects of Combined Nitrogen Rate and Planting Density on Rice Yield and NUE
4.2. Effects of Combined Nitrogen Rate and Planting Density on Grain Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Munns, R.; Tester, M. Mechanisms Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, M.; Ahmad, S.; Hussain, S.; Lal, R.; Ul-Allah, S.; Nawaz, A. Rice in Saline Soils: Physiology, Biochemistry, Genetics, and Management. Adv. Agron. 2018, 148, 231–287. [Google Scholar]
- Qin, H.; Huang, R. The phytohormonal regulation of Na+/K+ and reactive oxygen species homeostasis in rice salt response. Mol. Breed. 2020, 40, 47. [Google Scholar] [CrossRef]
- Chen, Y.; Li, R.; Ge, J.; Liu, J.; Wang, W.; Xu, M.; Zhang, R.; Hussain, S.; Wei, H.; Dai, Q. Exogenous melatonin confers enhanced salinity tolerance in rice by blocking the ROS burst and improving Na+/K+ homeostasis. Env. Exp. Bot. 2021, 189, 104530. [Google Scholar] [CrossRef]
- Hossain, M.S. Present Scenario of Global Salt Affected Soils, its Management and Importance of Salinity Research. Int. J. Biol. Sci. 2019, 1, 1–3. [Google Scholar]
- Onyango, D.A.; Entila, F.; Egdane, J.; Pacleb, M.; Drame, K.N. Mechanistic understanding of iron toxicity tolerance in contrasting rice varieties from Africa: 2. Root oxidation ability and oxidative stress control. Funct. Plant Biol. 2020, 47, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Ganie, S.A.; Molla, K.A.; Henry, R.J.; Bhat, K.V.; Mondal, T.K. Advances in understanding salt tolerance in rice. Appl. Genet. 2019, 132, 851–870. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, Y.; Hussain, S.; Yang, S.; Li, R.; Liu, S.; Chen, Y.; Wei, H.; Dai, Q.; Hou, H. Study on the Effect of Salt Stress on Yield and Grain Quality Among Different Rice Varieties. Front. Plant Sci. 2022, 13, 918460. [Google Scholar] [CrossRef]
- Peng, S.B.; Buresh, R.J.; Huang, J.L.; Yang, J.C.; Zou, Y.B.; Zhong, X.H.; Wang, G.H.; Zhang, F.S. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res. 2006, 96, 37–47. [Google Scholar] [CrossRef]
- Ju, X.T.; Xing, G.X.; Chen, X.P.; Zhang, S.L.; Zhang, L.J.; Liu, X.J.; Cui, Z.L.; Yin, B.; Christie, P.; Zhu, Z.L.; et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.B.; Huang, J.L.; Zhong, X.H.; Yang, J.C.; Wang, G.H.; Zou, Y.B.; Zhang, F.S.; Zhu, Q.S.; Buresh, R.; Witt, C. Challenge and Opportunity in Improving Fertilizer-nitrogen Use Efficiency of Irrigated Rice in China. J. Integr. Agric. 2002, 1, 776–785. [Google Scholar]
- Samonte, S.; Wilson, L.T.; Medley, J.C.; Pinson, S.R.M.; McClung, A.M.; Lales, J.S. Nitrogen utilization efficiency: Relationships with grain yield, grain protein, and yield-related traits in rice. Agron. J. 2006, 98, 168–176. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Liu, Y.; Ge, J.; Li, R.; Zhang, R.; Zhang, Y.; Huo, Z.; Xu, K.; Wei, H.; Dai, Q. Improved physiological and morphological traits of root synergistically enhanced salinity tolerance in rice under appropriate nitrogen application rate. Front. Plant Sci. 2022, 13, 982637. [Google Scholar] [CrossRef]
- Lu, J.; Wang, D.; Liu, K.; Chu, G.; Huang, L.; Tian, X.; Zhang, Y. Inbred varieties outperformed hybrid rice varieties under dense planting with reducing nitrogen. Sci. Rep. 2020, 10, 8769. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Khan, M.R.; Zhang, J.; Lu, J.; Ren, T.; Cong, R.; Li, X. Nitrogen rate and plant density interaction enhances radiation interception, yield and nitrogen use efficiency of mechanically transplanted rice. Agric. Ecosyst. Environ. 2019, 269, 183–192. [Google Scholar] [CrossRef]
- Nkonge, C.; Ballance, G.M. A sensitive colorimetric procedure for nitrogen determination in micro-Kjeldahl digests. J. Agric. Food Chem. 1982, 30, 416–420. [Google Scholar] [CrossRef]
- Luthe, D.S. Storage protein accumulation in developing rice (Oryza sativa L.) seeds. Plant Sci. Lett. 1983, 32, 147–158. [Google Scholar]
- Zhang, X.; Fu, L.; Tu, Y.; Zhao, H.; Kuang, L.; Zhang, G. The Influence of Nitrogen Application Level on Eating Quality of the Two Indica-Japonica Hybrid Rice Cultivars. Plants 2020, 9, 1663. [Google Scholar] [CrossRef]
- Zhu, D.W.; Zhang, H.C.; Guo, B.W.; Ke, X.U.; Dai, Q.G.; Wei, H.Y.; Gao, H.; Ya-Jie, H.U.; Cui, P.Y.; Huo, Z.Y. Effects of nitrogen level on yield and quality of japonica soft super rice. J. Integr. Agric. 2017, 16, 1018–1027. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, Y.; Zhai, W.; Tong, Z.; Shen, T.; Li, Y.C.; Zhang, M.; Sigua, G.C.; Chen, J.; Ding, F. Controlled-Release Nitrogen Fertilizer Improved Lodging Resistance and Potassium and Silicon Uptake of Direct-Seeded Rice. Crop Sci. 2019, 59, 2733–2740. [Google Scholar]
- Zhang, Y.; Tang, Q.; Zou, Y.; Li, D.; Qin, J.; Yang, S.; Chen, L.; Xia, B.; Peng, S. Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions. Field Crops Res. 2009, 114, 91–98. [Google Scholar] [CrossRef]
- Ahmed, S.; Humphreys, E.; Salim, M.; Chauhan, B.S. Growth, yield and nitrogen use efficiency of dry-seeded rice as influenced by nitrogen and seed rates in Bangladesh. Field Crops Res. 2016, 186, 18–31. [Google Scholar] [CrossRef]
- Huang, M.; Chen, J.; Cao, F.; Zou, Y. Increased hill density can compensate for yield loss from reduced nitrogen input in machine-transplanted double-cropped rice. Field Crops Res 2018, 221, 333–338. [Google Scholar] [CrossRef]
- Liu, Y.; Li, C.; Fang, B.; Fang, Y.; Chen, K.; Zhang, Y.; Zhang, H. Potential for high yield with increased seedling density and decreased N fertilizer application under seedling-throwing rice cultivation. Sci. Rep. 2019, 9, 731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, H.; Thobakgale, T.; Li, Y.; Liu, L.; Su, Q.; Cang, B.; Bai, C.; Li, J.; Song, Z.; Wu, M.; et al. Construction of dominant rice population under dry cultivation by seeding rate and nitrogen rate interaction. Sci. Rep. 2021, 11, 7189. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Zhou, Q.; Shen, Y.; Yan, J.; Xu, Y.; Wang, Z.; Yang, J. Agronomic and physiological performance of an indica–japonica rice variety with a high yield and high nitrogen use efficiency. Crop Sci. 2020, 60, 1556–1568. [Google Scholar] [CrossRef]
- Liu, C.; Chen, F.; Li, Z.; Cocq, K.L.; Liu, Y.; Wu, L. Impacts of nitrogen practices on yield, grain quality, and nitrogen-use efficiency of crops and soil fertility in three paddy-upland cropping systems. J. Sci. Food Agric. 2021, 101, 2218–2226. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.Y.; Song, N.Y.; Chen, Q.L.; Sun, H.Z.; Peng, T.; Huang, S.; Zhao, Q.Z. Response of grain-filling rate and grain quality of mid-season indica rice to nitrogen application. J. Integr. Agric. 2021, 20, 1465–1473. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, G.; Chen, Y.; Jiang, Y.; Shi, Y.; Zhao, L.; Liao, P.; Wang, W.; Xu, K.; Dai, Q.; et al. Excessive Nitrogen Application Leads to Lower Rice Yield and Grain Quality by Inhibiting the Grain Filling of Inferior Grains. Agriculture 2022, 12, 962. [Google Scholar] [CrossRef]
- Leesawatwong, M.; Jamjod, S.; Kuo, J.; Dell, B.; Rerkasem, B. Nitrogen fertilizer increases seed protein and milling quality of rice. Cereal Chem. 2005, 82, 588–593. [Google Scholar] [CrossRef] [Green Version]
- Perez, C.M.; Juliano, B.O.; Liboon, S.P.; Alcantara, J.M.; Cassman, K.G. Effects of late nitrogen fertilizer application on head rice yield, protein content, and grain quality of rice. Cereal Chem. 1996, 73, 556–560. [Google Scholar]
- Wei, H.; Ge, J.; Zhang, X.; Zhu, W.; Chen, Y.; Meng, T.; Dai, Q. Agronomic and Physicochemical Properties Facilitating the Synchronization of Grain Yield and the Overall Palatability of Japonica Rice in East China. Agriculture 2022, 12, 969. [Google Scholar] [CrossRef]
- Laenoi, S.; Rerkasem, B.; Lordkaew, S.; Prom-u-Thai, C. Seasonal variation in grain yield and quality in different rice varieties. Field Crops Res. 2018, 221, 350–357. [Google Scholar] [CrossRef]
- Kaneda, I.; Tanaka, H.; Iwasaki, T. The Effect of the Amylose Contents on the Rheological Properties of Rice Flour Pastes. Nihon Reoroji Gakkaishi 2020, 48, 169–175. [Google Scholar] [CrossRef]
- Shi, S.; Wang, E.; Li, C.; Cai, M.; Cheng, B.; Cao, C.; Jiang, Y. Use of Protein Content, Amylose Content, and RVA Parameters to Evaluate the Taste Quality of Rice. Front. Nutr. 2021, 8, 758547. [Google Scholar] [CrossRef]
- Cheng, X.Y.; Hai, X.U.; Zuo-Bin, M.A.; Guang-Sheng, H.E.; Liu, D.; Jing-Bo, L.I.; Chen, W.F. Effects of Nitrogen Rate and Transplanting Density on Grain Quality of Japonica Rice. Hybrid Rice 2011, 37, 121–128. [Google Scholar]
- Chuangen, L. Effects of Crop Density and Fertilization on Rice Grain Quality (Oryza satica L.). Chin. J. Rice Sci. 1988, 3, 141–144. [Google Scholar]
Nitrogen Rate | Plant Density | Panicles per m2 | Spikelets per Panicle | Filled Kernel Percentage (%) | Kernel Weight (mg) | Actual Grain Yield (kg ha−1) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | ||
N0 | D1 | 182.5h | 181.8j | 92.7i | 90.7j | 94.0b | 92.2b | 27.0a | 24.0a | 4013.6j | 3589.9j |
D2 | 173.8i | 169.4k | 96.1h | 92.6i | 94.9a | 93.5a | 26.6b | 23.8b | 3872.4k | 3415.4k | |
N210 | D1 | 270.8fg | 271.6h | 100.1g | 97.1h | 91.9d | 90.2d | 26.3bc | 23.6c | 6061.4h | 5518.1h |
D2 | 260.0g | 260.0i | 104.9f | 100.9g | 92.4c | 91.0c | 26.1cd | 23.4d | 5727.0i | 5305.2i | |
N255 | D1 | 290.9e | 306.1f | 108.9e | 104.3f | 89.7f | 88.8f | 25.9d | 23.2e | 6915.4f | 6249.2f |
D2 | 283.9ef | 287.3g | 110.5d | 106.8e | 90.5e | 89.4e | 25.8de | 23.0f | 6816.5g | 6058.0g | |
N300 | D1 | 363.0a | 361.4a | 117.2b | 114.4b | 86.8gh | 86.5h | 25.6ef | 22.7g | 8060.4a | 7869.8a |
D2 | 360.4ab | 351.4b | 119.8a | 117.3a | 87.3g | 87.4g | 25.3f | 22.5h | 7893.8b | 7638.5b | |
N345 | D1 | 343.5bc | 338.7c | 114.3c | 112.0c | 85.0i | 84.6j | 24.9g | 22.2i | 7597.6d | 6801.5d |
D2 | 334.0cd | 334.1cd | 116.1b | 113.3bc | 86.8h | 85.7i | 24.8g | 22.1j | 7814.6c | 7010.1c | |
N390 | D1 | 327.9cd | 328.4de | 109.6de | 106.6e | 83.1k | 83.0l | 24.7g | 21.8k | 6980.9f | 6110.2g |
D2 | 316.5d | 323.7e | 114.8c | 109.3d | 84.5j | 84.0k | 24.1h | 21.6l | 7076.2e | 6329.7e | |
Significance of factors | |||||||||||
Nitrogen rate (N) | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | |
Density (D) | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | |
N × D | ns | ns | * | ** | * | ** | ns | ns | ** | ** |
Nitrogen Rate | Plant Density | Booting Stage (m2 m−2) | Heading Stage (m2 m−2) | Maturity Stage (m2 m−2) | |||
---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | ||
N0 | D1 | 1.91g | 1.74g | 4.02f | 3.85f | 1.60f | 1.54f |
D2 | 1.67h | 1.46h | 3.82f | 3.61f | 1.56f | 1.41g | |
N210 | D1 | 3.30e | 3.12e | 6.58d | 6.37d | 2.78d | 2.67d |
D2 | 2.78f | 2.63f | 6.21e | 6.05e | 2.46e | 2.30e | |
N255 | D1 | 3.91c | 3.71d | 6.95c | 6.84c | 3.24c | 3.18c |
D2 | 3.52d | 3.27e | 6.61cd | 6.39d | 3.13c | 3.02c | |
N300 | D1 | 4.17b | 4.05b | 8.03a | 7.90a | 3.45b | 3.43b |
D2 | 3.80c | 3.72d | 7.97a | 7.85a | 3.42b | 3.39b | |
N345 | D1 | 4.23b | 4.19b | 7.33b | 7.10b | 3.69a | 3.66a |
D2 | 4.07b | 3.96c | 7.56b | 7.37b | 3.67a | 3.72a | |
N390 | D1 | 4.40a | 4.28a | 7.39b | 7.24b | 3.78a | 3.76a |
D2 | 4.16b | 4.05b | 7.48b | 7.46b | 3.74a | 3.72a |
Nitrogen Rate | Plant Density | Nitrogen Uptake (kg ha−1) | PFP (kg kg−1) | AE (kg kg−1) | RE (%) | PE (kg kg−1) | IE (kg kg−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | ||
N0 | D1 | 53.9h | 50.4j | / | / | / | / | / | / | / | / | 74.5b | 71.2a |
D2 | 50.7i | 48.6k | / | / | / | / | / | / | / | / | 76.4a | 70.3a | |
N210 | D1 | 112.8f | 107.8h | 28.9a | 26.3a | 9.8d | 9.2d | 28.1e | 27.3e | 34.7c | 33.6e | 53.7b | 51.2b |
D2 | 109.4g | 103.4i | 27.3b | 25.3b | 8.8e | 9.0e | 28.0e | 26.6e | 31.6e | 33.9d | 52.3b | 50.8b | |
N255 | D1 | 136.7d | 125.7f | 27.1b | 24.5c | 11.4b | 10.4b | 32.5d | 29.5d | 35.1b | 35.3c | 50.6c | 49.7c |
D2 | 131.5e | 120.0g | 26.7c | 23.8d | 11.5b | 10.4b | 31.7d | 28.0d | 36.4a | 37.0b | 51.8c | 50.5b | |
N300 | D1 | 178.1b | 164.9d | 26.9c | 26.2a | 13.5a | 14.3a | 41.4a | 38.2a | 32.6d | 37.4a | 45.3d | 47.7d |
D2 | 174.3c | 160.6e | 26.3d | 25.5b | 13.4a | 14.1a | 41.2a | 37.3a | 32.5d | 37.7a | 45.3d | 47.6d | |
N345 | D1 | 174.2c | 167.2c | 22.0f | 19.7f | 10.4c | 9.3c | 34.9c | 33.9b | 29.8g | 27.5g | 43.6e | 40.7e |
D2 | 179.4b | 167.8c | 22.7e | 20.3e | 11.4b | 10.4b | 37.3b | 34.6b | 30.6f | 30.2f | 43.5e | 41.8e | |
N390 | D1 | 178.2b | 175.7b | 17.9h | 15.7g | 7.6g | 6.5g | 31.9d | 32.1c | 23.9i | 20.1i | 39.2f | 34.8f |
D2 | 182.0a | 177.9a | 18.1g | 16.2g | 8.2f | 7.5f | 33.7c | 33.2c | 24.4h | 22.5h | 38.9f | 35.6f | |
Significance of factors | |||||||||||||
Nitrogen rate (N) | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | |
Density (D) | ** | ** | ** | ** | ** | ** | ns | ns | ns | ns | ns | ns | |
N × D | ** | ** | ** | ** | ** | ** | ns | ns | ns | ns | ns | ns |
Nitrogen Rate | Plant Density | Brown Rice Rate (%) | Milled Rice Rate (%) | Head Milled Rice Rate (%) | |||
---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | ||
N0 | D1 | 79.8d | 79.4e | 69.9d | 68.7f | 61.1c | 60.4d |
D2 | 80.7d | 79.8e | 71.1cd | 69.8f | 61.4c | 60.5d | |
N210 | D1 | 82.4c | 81.6d | 71.8bcd | 71.2e | 63.4bc | 61.2cd |
D2 | 82.7c | 82.1bcd | 73.1abc | 72.9d | 64.3bc | 61.4cd | |
N255 | D1 | 83.0bc | 82.9bc | 73.3abc | 73.0d | 64.8abc | 62.3c |
D2 | 83.0bc | 83.1bc | 73.6abc | 73.2d | 64.9abc | 62.7c | |
N300 | D1 | 83.2abc | 83.5b | 74.0abc | 74.0c | 66.4abc | 66.2b |
D2 | 83.3abc | 83.4b | 74.4ab | 74.2c | 68.0ab | 67.5b | |
N345 | D1 | 83.4abc | 83.6b | 75.1a | 75.3b | 68.3ab | 68.6ab |
D2 | 84.1ab | 84.0ab | 75.4a | 75.3b | 69.8ab | 68.9ab | |
N390 | D1 | 84.4a | 84.5a | 76.1a | 76.6a | 70.0ab | 70.4a |
D2 | 84.6a | 84.5a | 75.8a | 76.3a | 71.16a | 70.8a |
Nitrogen Rate | Plant Density | Grain Length (mm) | Grain Width (mm) | Length/Width | Chalkiness Rate (%) | Chalkiness Degree (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | ||
N0 | D1 | 4.32b | 4.33b | 2.55a | 2.56a | 1.70ab | 1.69a | 18.8fg | 18.4g | 4.7g | 4.5e |
D2 | 4.34ab | 4.33b | 2.58a | 2.55a | 1.68ab | 1.70a | 16.9g | 16.2g | 4.6g | 4.5e | |
N210 | D1 | 4.33b | 4.34b | 2.59a | 2.57a | 1.67b | 1.69a | 22.0def | 22.7f | 5.1ef | 4.9d |
D2 | 4.36ab | 4.34b | 2.55a | 2.54a | 1.71ab | 1.71a | 20.1efg | 21.6f | 4.9fg | 5.0d | |
N255 | D1 | 4.35ab | 4.34b | 2.55a | 2.56a | 1.70ab | 1.70a | 25.8bcd | 26.8d | 5.4cdef | 5.5c |
D2 | 4.36ab | 4.34b | 2.60a | 2.55a | 1.68ab | 1.70a | 23.3cde | 24.2e | 5.3def | 5.2d | |
N300 | D1 | 4.37ab | 4.36b | 2.58a | 2.55a | 1.69ab | 1.71a | 27.1abc | 28.0d | 5.7cd | 5.8b |
D2 | 4.37ab | 4.36b | 2.56a | 2.55a | 1.71ab | 1.71a | 26.0bcd | 26.3d | 5.5cde | 5.5c | |
N345 | D1 | 4.37ab | 4.41a | 2.60a | 2.58a | 1.68ab | 1.71a | 29.1ab | 29.2c | 6.2ab | 6.4a |
D2 | 4.41ab | 4.42a | 2.58a | 2.56a | 1.71ab | 1.73a | 28.9ab | 28.9c | 5.9bc | 5.9b | |
N390 | D1 | 4.45a | 4.44a | 2.57a | 2.56a | 1.73a | 1.73a | 31.2a | 32.0a | 6.5a | 6.5a |
D2 | 4.42ab | 4.42a | 2.58a | 2.58a | 1.72ab | 1.71a | 29.6ab | 31.2b | 6.4a | 6.5a |
Nitrogen Rate | Plant Density | Amylose Content (%) | Gel Consistency (mm) | Protein Content (%) | |||
---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | ||
N0 | D1 | 17.0a | 17.0a | 97.5a | 97.2a | 6.6hi | 6.4g |
D2 | 16.7b | 16.6b | 97.0a | 96.8a | 6.3i | 6.0h | |
N210 | D1 | 16.3c | 16.1c | 94.5b | 94.7b | 6.9gh | 7.0f |
D2 | 16.1d | 15.8d | 94.0b | 94.3b | 6.6hi | 6.5g | |
N255 | D1 | 15.9e | 15.6e | 91.5c | 92.0c | 7.4ef | 7.4e |
D2 | 15.8e | 15.3f | 90.5c | 91.6c | 7.2fg | 7.2ef | |
N300 | D1 | 15.1f | 14.8g | 86.5d | 86.2d | 7.9cd | 8.1c |
D2 | 14.9g | 14.5h | 85.5d | 86.3d | 7.7de | 7.7d | |
N345 | D1 | 14.5h | 14.4h | 83.5e | 83.1e | 8.5b | 8.6b |
D2 | 14.2i | 14.1i | 82.5e | 82.7e | 8.2bc | 8.0c | |
N390 | D1 | 13.6j | 13.6j | 80.5f | 80.2f | 9.2a | 9.4a |
D2 | 13.3k | 13.2k | 79.5f | 79.7f | 8.9a | 9.2a |
Nitrogen Rate | Plant Density | Albumin (%) | Globulin (%) | Gliadin (%) | Glutelin (%) | ||||
---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | ||
N0 | D1 | 0.31e | 0.32e | 0.41de | 0.41d | 0.52g | 0.50f | 4.8ef | 4.9e |
D2 | 0.30e | 0.31e | 0.40e | 0.41d | 0.51g | 0.51f | 4.6f | 4.6f | |
N210 | D1 | 0.32cde | 0.32e | 0.42cd | 0.42cd | 0.58ef | 0.56e | 5.2def | 5.1d |
D2 | 0.31de | 0.32e | 0.41de | 0.42cd | 0.57f | 0.56e | 5.1def | 5.1d | |
N255 | D1 | 0.35bc | 0.36c | 0.43bc | 0.43c | 0.61de | 0.62d | 5.3cde | 5.2d |
D2 | 0.33bcde | 0.34d | 0.42cd | 0.43c | 0.60ef | 0.60d | 5.3cde | 5.3d | |
N300 | D1 | 0.35b | 0.36c | 0.43bc | 0.44bc | 0.67bc | 0.66c | 5.8bc | 5.9c |
D2 | 0.34bcd | 0.34d | 0.43bc | 0.45b | 0.64cd | 0.65c | 5.7bcd | 5.7c | |
N345 | D1 | 0.36b | 0.38b | 0.44bc | 0.45b | 0.71ab | 0.69b | 6.1ab | 6.2b |
D2 | 0.35b | 0.37b | 0.43bc | 0.45b | 0.70ab | 0.69b | 6.0ab | 6.2b | |
N390 | D1 | 0.41a | 0.42a | 0.45a | 0.47a | 0.73a | 0.73a | 6.6a | 6.8a |
D2 | 0.39a | 0.41a | 0.44ab | 0.45b | 0.72a | 0.72a | 6.6a | 6.6a |
Nitrogen Rate | Plant Density | Appearance | Hardness | Viscosity | Degree of Balance | Taste Value | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | ||
N0 | D1 | 9.0a | 9.2a | 5.4f | 5.3e | 9.4a | 9.5a | 9.1a | 9.2a | 87.0a | 87.8a |
D2 | 9.2a | 9.1a | 5.2f | 5.4e | 9.5a | 9.3a | 9.2a | 9.2a | 88.3a | 88.0a | |
N210 | D1 | 8.4b | 8.6b | 5.9d | 5.7d | 8.8b | 8.8b | 8.5b | 8.4b | 80.3c | 81.5c |
D2 | 8.9a | 8.8b | 5.7e | 5.7d | 9.3a | 8.7b | 9.0a | 8.9a | 82.3b | 83.5b | |
N255 | D1 | 7.8c | 7.7c | 6.1cd | 6.2c | 8.2c | 8.4c | 7.9c | 8.2c | 76.0e | 76.5e |
D2 | 8.0c | 7.8c | 6.1cd | 6.0c | 8.4bc | 8.3c | 8.0c | 8.0c | 78.3d | 78.8d | |
N300 | D1 | 7.0d | 7.2d | 6.6b | 6.7b | 7.7de | 7.6d | 7.0e | 7.1e | 73.0fg | 73.7f |
D2 | 7.1d | 6.9d | 6.2c | 6.2c | 8.1cd | 8.1c | 7.4d | 7.5d | 74.3f | 74.5f | |
N345 | D1 | 6.4e | 6.4e | 6.8b | 6.7b | 7.4ef | 7.5e | 6.5fg | 6.4f | 69.5h | 69.7h |
D2 | 6.8d | 6.3e | 6.7b | 6.8b | 7.6e | 7.5e | 6.7f | 6.5f | 72.3g | 71.4g | |
N390 | D1 | 6.2e | 6.3e | 7.1a | 7.2a | 7.1f | 7.4e | 6.0h | 6.1g | 65.5i | 65.1i |
D2 | 6.3e | 6.2e | 7.0a | 7.2a | 7.2f | 7.5e | 6.3g | 6.1g | 68.3h | 66.8h |
Nitrogen Rate | Plant Density | Peak Viscosity (cP) | Trough Viscosity (cP) | Break Down (cP) | Final Viscosity (cP) | Subtractive Value (cP) | Peak Time (min) | Pasting Temperature (°C) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | ||
N0 | D1 | 3088c | 3074c | 2119bcd | 2106b | 969bc | 978bc | 2687c | 2681c | −401g | −393g | 6.18b | 6.17b | 73.0a | 72.8 a |
D2 | 3181a | 3201a | 2173a | 2167a | 1008a | 1014a | 2738a | 2735a | −444i | −466i | 6.17b | 6.17b | 72.7a | 72.8a | |
N210 | D1 | 3029d | 3011d | 2107cde | 2100b | 922d | 917d | 2647de | 2640de | −382f | −371f | 6.33ab | 6.35ab | 72.8a | 72.8a |
D2 | 3138b | 3154b | 2150ab | 2154a | 988ab | 987b | 2720ab | 2726b | −418h | −428h | 6.37ab | 6.36ab | 73.0a | 72.9a | |
N255 | D1 | 2990e | 2976e | 2089de | 2062cd | 901de | 914d | 2637de | 2621d | −353e | −355e | 6.37ab | 6.37ab | 73.4a | 73.3a |
D2 | 3087c | 3072c | 2127bc | 2112bc | 960c | 963c | 2701bc | 2689c | −386f | −383f | 6.43ab | 6.45a | 72.9a | 73.1a | |
N300 | D1 | 2920g | 2918g | 2044g | 2028e | 877f | 884e | 2604f | 2597f | −316c | −321c | 6.30ab | 6.31ab | 73.1a | 73.1a |
D2 | 3019d | 3030d | 2099cde | 2034de | 920d | 918d | 2660d | 2685c | −359e | −345e | 6.30ab | 6.32ab | 73.3a | 73.2a | |
N345 | D1 | 2854i | 2846i | 2027gh | 2020ef | 827g | 834f | 2565g | 2549g | −289b | −297b | 6.33ab | 6.32ab | 73.6a | 73.3a |
D2 | 2961f | 2950f | 2079ef | 2066cd | 882ef | 890e | 2629e | 2613e | −332d | −337d | 6.47a | 6.46a | 73.8a | 73.4a | |
N390 | D1 | 2799j | 2812j | 2010h | 2006f | 790h | 786g | 2549g | 2568g | −251a | −244a | 6.40ab | 6.41ab | 73.2a | 73.1a |
D2 | 2888h | 2924h | 2053fg | 2057cd | 835g | 841f | 2596f | 2630d | −292b | −294b | 6.27ab | 6.32ab | 71.7a | 73.2a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Liu, Y.; Dong, S.; Liu, J.; Wang, Y.; Hussain, S.; Wei, H.; Huo, Z.; Xu, K.; Dai, Q. Response of Rice Yield and Grain Quality to Combined Nitrogen Application Rate and Planting Density in Saline Area. Agriculture 2022, 12, 1788. https://doi.org/10.3390/agriculture12111788
Chen Y, Liu Y, Dong S, Liu J, Wang Y, Hussain S, Wei H, Huo Z, Xu K, Dai Q. Response of Rice Yield and Grain Quality to Combined Nitrogen Application Rate and Planting Density in Saline Area. Agriculture. 2022; 12(11):1788. https://doi.org/10.3390/agriculture12111788
Chicago/Turabian StyleChen, Yinglong, Yang Liu, Shiqi Dong, Juge Liu, Yang Wang, Shahid Hussain, Huanhe Wei, Zhongyang Huo, Ke Xu, and Qigen Dai. 2022. "Response of Rice Yield and Grain Quality to Combined Nitrogen Application Rate and Planting Density in Saline Area" Agriculture 12, no. 11: 1788. https://doi.org/10.3390/agriculture12111788
APA StyleChen, Y., Liu, Y., Dong, S., Liu, J., Wang, Y., Hussain, S., Wei, H., Huo, Z., Xu, K., & Dai, Q. (2022). Response of Rice Yield and Grain Quality to Combined Nitrogen Application Rate and Planting Density in Saline Area. Agriculture, 12(11), 1788. https://doi.org/10.3390/agriculture12111788