Next Article in Journal
Effects of Mechanical Transplanting Methods and Planting Geometry on Yield Formation and Canopy Structure of Indica Rice under Rice-Crayfish Rotation
Previous Article in Journal
Pyramiding Submergence Tolerance and Three Bacterial Blight Resistance Genes in Popular Rice Variety Hasanta through Marker-Assisted Backcross Breeding
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Habitat Suitability of Fig (Ficus carica L.) in Mexico under Current and Future Climates

by
Karla Janeth Martínez-Macias
1,
Selenne Yuridia Márquez-Guerrero
1,*,
Aldo Rafael Martínez-Sifuentes
2 and
Miguel Ángel Segura-Castruita
3
1
Programa Agua-Suelo, Tecnológico Nacional de México, Instituto Tecnológico de Torreón, División de Estudios de Posgrado e Investigación, Torreón 27000, Coahuila, Mexico
2
Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Centro Nacional de Investigación Disciplinaria en Relación Agua, Suelo, Planta, Atmósfera (CENID-RASPA), Gomez Palacio 35150, Durango, Mexico
3
Programa Agrobiotecnología, Tecnológico Nacional de México, Instituto Tecnológico de Tlajomulco, División de Estudios de Posgrado e Investigación, Tlajomulco de Zúñiga 45640, Jalisco, Mexico
*
Author to whom correspondence should be addressed.
Agriculture 2022, 12(11), 1816; https://doi.org/10.3390/agriculture12111816
Submission received: 2 September 2022 / Revised: 10 October 2022 / Accepted: 18 October 2022 / Published: 31 October 2022
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)

Abstract

:
Emerging or alternative crops are those that have been recently introduced in response to new demands and commercial opportunities. The fig has been introduced as an alternative fruit crop in Mexico due to its high nutritional, nutraceutical, and antioxidant capacity. A total of 644 points of presence were downloaded and filtered according to climatic ranges and agricultural areas, leaving 68 records. The MaxEnt algorithm was used to develop the habitat suitability models for current and future climate. The bioclimatic variables of the global circulation models, Hadley Centre Global Environment Model version 2-EarthSystem (HADGEM2-ES) and Max Planck Institute for Meteorology-Earth System Model Low Resolution (MPI-ESM-LR), were used under scenarios 2.6 and 8.5. The changes in the fig area for Mexico were analyzed based on the generated models. Under the current climate, 359,575.76 km2 were estimated for 2050, and a loss of area for the excellent category was estimated for both models and scenarios; however, for the MPI-ESM-LR model projected to 2070, an increase of 5.51% and 0.39% was estimated for scenarios 2.6 and 8.5, respectively. The effect of climate change on agronomic species such as figs will be expressed in variations in climatic ranges and areas suitable for their development. The results of this study reveal the negative and positive effects of climate change on fig habitat suitability in Mexico. The dynamics of changes in surface area will be reflected mainly in northern and central Mexico.

1. Introduction

Soil-based agricultural production is the main source of food for all countries in the world [1]; therefore, it requires specific attention to maintain its productivity due to the remarkable diversity in size, complexity, economy, and type of crop in each country [2,3].
The increase in temperature reduces crop production, availability, and distribution and facilitates the proliferation of weeds and pests, affecting human well-being [4,5,6]. By 2100, the mean sea level is projected to rise 0.1 m, while the temperature will increase from 1.5 °C to 2 °C from intensified anthropogenic activities [5,6,7].
Environmental problems are complex and require a combination of new methods and tools, such as geographic information systems, which allow handling greater amounts of data to develop and generate knowledge through cartographic products [8]. Ecological Niche Modeling is a useful tool for risk assessment potential development of plant species as a response to environmental conditions [5]. This model is based on computer technology development, which allows a methodological approach for an extensive question solution in different fields, improving their interpretations [9].
Emerging or alternative crops have been recently introduced in response to new demands and commercial opportunities [10]. Alternatives crops have characteristics that allow them to replace or complement the crops traditionally produced and to improve profits from either higher commercial price, higher international demand, or both [11].
The fig, a fruit tree native to the Mediterranean basin, has expanded rapidly throughout the world due to its adaptability to different soils and climates, and the economic importance of its fruit, due to its excellent source of nutrients and antioxidants) [12,13], and its varied consumption option (fresh, dried, or processed) [14].
Bare-root fig plants can be transplanted during the dormant season, from December to the end of February [15]. However, asexual propagation, by rooting stem cuttings, is the main method of propagation of this crop because it is a simple method, which allows to multiply and obtain in a relatively short time, homogeneous plants of good commercial quality [16].
De Fina (1979) points it out as one of the fruit trees with greater plasticity to behave satisfactorily between 23°19′ and 40°50′ Latitude [17] and at elevations of 900–1800 m above sea level [18], being a typically Mediterranean species, which prefers subtropical climates with warm winters and dry and cool summers, but it is also able to withstand non-extreme cold [19].
Fig represents a potential alternative crop because of its tolerance to salt and its adaptability to climatic and edaphic conditions in semi-arid areas. This fruit tree is traditionally considered rainfed since, under these conditions, it produces sweeter fruit, but in case of extreme drought, its harvest will be null, and it will have a reduced number of small leaves [17,20]. Excess irrigation in this fruit tree is detrimental because it produces figs that are too thick, very watery, rot easily, and are difficult to dry. In addition, the tree is quite sensitive to root rot [20,21].
Mexico, with favorable climatic conditions, where July is the warmest month, with an average of 26.7 °C, and December is the coldest, with an average of 16.3 °C [22], has the potential to cultivate fig trees with parthenocarpic fruits in the absence of their natural pollinator (Blastophaga psenes) [23]. The most common varieties are Mission Black, Black Turkey, Sierra, and White Kadota, which are characterized by being bifeda; that is, they produce fruit at two times of the year, from June to July, early figs and from August to September, figs, and the tiger, which only produces figs (unifeda), although Mexican figs are generally believed to be of the European Black Mission variety [23,24,25].
Research on fig dorp has been developed in different aspects; in India, fig crops are more common in arid areas [26], and its range in the northwest [27] in Africa Fig (Ficus carica L.) vulnerability to climate change: Combined effects of water stress and high temperature on ecophysiological behavior of different cultivars [28], in Palestine Impact of bioclimatic and climatic factors on Ficus carica L. yield: increasing the economy and maintaining the food security of Jerusalem [29], while in Mexico research has focused on the evaluation of crop establishment and fruit quality [30,31], on the analysis of biostimulants and nutrients [32] and on the seasonal variation of foliar nutrient concentration [33]; however, there is no research related to climate change and fig cultivation in this country.
According to data from FAOSTAT (2020), in 2018, the world production of figs exceeded one million tons (t), with Turkey being the main producer with almost 270 thousand t. Mexico has recently increased fig production to 7 thousand tons, obtaining half from Morelos state [34,35].
The MaxEnt program is a specialized algorithm that is frequently used to predict the current and future habitat suitability of various species. This is a program that employs absence-presence records and has been widely used to estimate the habitat suitability of species of various biological groups [36], useful for the development of programs focused on conservation and/or ecological restoration [37,38,39].
Analysis of potential areas for the establishment of crops such as figs is necessary, as it is important for the sustainable agricultural planning of the species, the conservation of natural ecosystems, and the achievement of food security [40].
The determination of climate change scenarios aims to determine the impacts on land properties [41,42]; therefore, the objective of this research was to determine areas of fig (Ficus carica L.) crop habitat suitability under current climate conditions and climate change scenarios for the 2050 and 2070 horizons with the HADGEM2-ES and MPI-ESM-LR models for the RCP 2.6 and 8.5 scenarios.

2. Materials and Methods

2.1. Study Area

The study area was delimited by the extreme coordinates 32°17′44.52″ latitude and 92°30′00″ longitude, with an estimated surface area of 721,990 km2 and an elevation gradient from 0 to 5417 m above sea level. Precipitation ranges from 800 to 1600 mm per year, with an average of 1200 mm, while the mean annual temperature ranges from 16 °C to 25 °C [43].

2.2. Fig Geographic Records

A total of 644 fig crop occurrence records for Mexico were obtained from the Global Biodiversity Information Facility database [44]. A first filter was performed to eliminate data that were within 1 km of each other using CONABIO’s NicheToolBox platform [45]. Then, a second filter was conducted using ArcGIS ver. 10.8 software [46] by the vector layer of land use and vegetation series VII of INEGI from CONABIO [47], the points of crop presence within agricultural areas were selected, reducing the number of data points to 68. This process avoids spatial autocorrelation and overestimation in distribution models [48,49].

2.3. Current and Future Climate Variables

Climate data were obtained from the WorldClim v. 2.0 database [50], with a resolution of ~1 km2 (30 arc seconds) per pixel, with global average information from 1970 to 2000. For future climate, information from CMIP5 (Coupled Model Intercomparison Project Phase 5 2013) was downloaded for the periods 2041–2060 (2050 horizon) and 2061–2080 (2070 horizon), with a spatial resolution of 30 arc seconds, using the Global Climate Models (GCMs) HADGEM2-ES and MPI-ESM-LR, models recommended by the National Institute of Ecology and Climate Change for the Mexican Republic [6], using the Representative Concentration Pathways (RCP) 2.6 y 8.5.

2.4. Topographic and Edaphological Variables

Topographic elevation information (ELE) was extracted from WorldClim 2.0 with a spatial resolution of 30 arc seconds (~1 km2), while edaphology data were obtained from the CONABIO information portal [4]. Values for sand (ARE), silt (LIM), clay (ARC), rock fragments (FR), pH (PH), and organic matter (MO) were downloaded at 90 cm depth, with a resolution of 90 m2, that were re-scaled to 30 arc seconds (~1 km2). All variables were then transformed into ASCII format.

2.5. Variable Selection

To select the variables, a minimum convex polygon (MCP) was generated with the points of presence of the crop in agricultural areas. In total, 10,000 background points were positioned based on a non-discriminatory test (without duplication) of information relevant to the environmental heterogeneity of fig tree climatic information, and information was extracted for each variable according to Becerra-López [51].
To avoid autocorrelation between variables, those with a correlation higher than 0.70 (p < 0.05) were excluded, thus avoiding the effect of multilinearity between variables [52]. The selected variables were determined at the same spatial resolution of 30 arc seconds (~1 km2), taking into account the minimum convex polygon (Figure 1), which covers the geographic space where the species is recorded and delimits its biology and distribution [53].

2.6. Model Calibration

The model was calibrated using the standardized Akaike information criterion coefficient (AICc), with the lowest value fit selection [54]. This calibration was performed with the ENMeval library [55] in R statistical environment v. 3.5.3 [56].

2.7. Modeling of the Current Climate

The MaxEnt ver. 3.4.4 software algorithm was used [36]. The variables selected after cleaning were BIO5, BIO9, BIO12, BIO17, MO, ELE, FR, and ARC (Table 1). The MaxEnt setup criteria consisted of internal replication by cross-validation (1000 iterations), logistic type output (100 repetitions), and a convergence threshold of 0.0001, where 75% of the records were selected for training the model and 25% for validation [57].

2.8. Modeling under Climate Change Scenarios

To obtain the habitat suitability models under climate change conditions, the calibration parameters of the model with the best fit from the current climate to future climate were transferred to MaxEnt v. 3.4.4 [58].
To estimate the area of current and future fig tree habitat suitability zones, a reclassification was performed with ArcMap software ver. 10.8 through the reclass tool [46] of the continuous values in each of the projections, using the four-level Likert scale for suitability (poor, fair, good, and excellent) [59].

2.9. Validation of the Models

The distribution models were evaluated using the statistical test of the area under the standard ROC curve (AUC), which ranges from 0 to 1, where values of 0.7–0.9 indicate a good fit and values above 0.9 classify it as excellent. Additionally, the models were evaluated with the partial ROC, with values ranging from 1 to 2, where a mean value of radius 1 represents a random model, and a value of 2 represents the best model performance [60] and with the TSS statistic, which considers the specificity and sensitivity of the model [45].

2.10. Percentage Change in Surface Area due to the Effects of Climate Change

The trend of surface area change due to the climate change effects was quantified using the equation proposed by Gutiérrez and Trejo [61], both RCP 2.6 and 8.5 scenarios, considering the current climate as a reference, as well as the change between scenarios.
%   C h a n g e = [ S 1 S 0 S 0 ] × 100
where S0 is the total area, according to the baseline scenario, and S1 is the area under climate change conditions.

2.11. Relevant Variables in the Modeling of Habitat Suitability

The contribution of environmental variables to the present and future distribution of the species was estimated by the Jackknife test, identifying the percentage contribution of the variable to the development of the crop in Mexico [36].
To statistically validate the partial ROC ratios, z-tests of the models were performed, and the best model with the highest partial ROC test value, lowest standard error, and reliable z-value was selected. The results of the selected models for each period were produced as distribution maps in ArcMap 10.8 software [46].

3. Results

Habitat suitability modeling for the current climate. For the 100 replicates performed of the current habitat suitability models, AUC values were obtained between 0.918 and 0.924 for training and from 0.831 to 0.981 for validation, indicating that the models performed adequately. The partial ROC value for the best model was 1.85, with an AUC of 0.924 for training and 0.846 for validation (Standard deviation = 0.0001).
The estimated area of fig cultivation for the current climate was 719,097.84 km2 and is located mainly in the north, through the Sierra Madre Occidental, to the Neo volcanic Transversal Axis (Figure 2). The states with the largest surface area were Chihuahua (86,978.20 km2, 12.10%), Jalisco (35,346.02 km2, 4.95%), Michoacán and Coahuila with 33,302.92 km2 (4.62%) each. The values of surface area by the state for current climate can be found in the Appendix A.

3.1. Habitat Suitability Modeling under Climate Change Effects (RCP 2.6 and 8.5)

The values obtained from the standard ROC AUC test for the HADGEM2-ES and MPI-ESM-LR global circulation models for the periods 2050 and 2070 were 0.918 to 0.924 for model training and 0.831 to 0.981 for validation (Figure 3a–d and Figure 4a–d). The partial ROC values for both general circulation models and the two RCP 4.5 and 8.5 scenarios were between 1.81 and 1.83, in all cases significant (p < 0.01).

3.2. Relevant Variables in Current and Future Distribution

The most relevant variables for fig crop distribution in Mexico for the current climate were BIO12, MO, BIO9, ELE, BIO17, and FR, which explain a total variability of 92.1% of the model. The most important variables for the HADGEM2-ES and MPI-ESM-LR model for RCPs 2.6 and 8.5 projected to the 2050 and 2070 horizons were BIO12, MO, BIO9, ELE, BIO17, and FR, which explain a total variability of 95.4%.

3.3. Percentage Change of Fig Area in Mexico

The areas classified as optimum for the establishment of fig cultivation in Mexico for the current and future climate are shown in Table 2. The analysis of the percentage change in the surface area predicted a decrement for all possible scenarios, finding a percentage loss considering the current climate as the base period of 4.11% when considering the HADGEM2-ES model (2050; RCP 2.6), 8.17% for HADGEM2-ES (2070; RCP 2.6), 14.40% for HADGEM2-ES (2050; RCP 8.5), 5.91% for HADGEM2-ES (2070; RCP 8.5), 13.18% for MPI-ESM-LR (2050; RCP 2.6), 14.94% for MPI-ESM-LR (2070; RCP 2.6), 12.82% for MPI-ESM-LR (2050; RCP 8.5) and 1.56% for MPI-ESM-LR (2070; RCP 8.5). Habitat suitability maps for Mexico considering future climate are shown in Figure 3a–d and Figure 4a–d.
According to the future projections of the two models and the scenarios analyzed, the current fig distribution areas prevail in all scenarios (Appendix A), increasing in some regions and decreasing in others (Table 3).

4. Discussion

4.1. Spatial Modeling

Sixty-eight points of fig occurrence were used in the present study subsequent to debugging. According to Stockwell and Townsend [62], accuracy for habitat suitability modeling increases when the number of records is greater than fifty. The results found in this study allowed the identification of areas with environmental characteristics suitable for the establishment of fig crops, which agreed with the geographical areas of fig production in Mexico [54]. Methods have been developed to model habitat suitability for the current climate [63,64,65] and for climate change scenarios [66,67,68,69,70]. However, these studies have focused mainly on timber and non-timber forest species, while there is scarce or no information on agricultural crops.

4.2. Relevant Environmental Variables

BIO12 variable (annual rainfall) was the most relevant variable for the fig habitat suitability model in Mexico, with a contribution of (23.2%). The variable presented ranges from 36–1073 mm for Mexico, which according to the crop water requirement, can allow unrestricted development.
According to Interián-Ku et al. [71] and Rocha-Loredo [72], annual accumulated precipitation has been demonstrated to be important for deciduous trees because high precipitation leads to the vigorous growth of the tree, reduced flowering, and thick-watery figs hard to dry. The deficit of water in fig crops results in poor tree growth and a reduction of fruit size and crop yield from the reduction of cell expansion and limited stomatal opening and CO2 uptake [20,73,74,75].
However, excessive rainfall can cause fruit cracking and the proliferation of pests and diseases as a result of high humidity [15]. This agrees with Mergalejo [20], who mentions that rainy climates or prolonged and intense periods of rain are detrimental to the quality of sycones. Annual rainfall of 800 mm spread throughout the year allows good fig production [17].
Organic matter represented 17.8% of the variability of the model; this edaphological variable is directly related to precipitation because low humidity reduces plant growth, which limits the production of food for the fauna that inhabits the deciduous forests, as well as the slow decomposition of organic matter, causing low nutrient productivity [76].
Organic matter stabilizes soil structure and favors erosion resistance, air, water, and nutrient flow through pore spaces; as organic matter increases, pore space increases, so it is considered an indicator of the volume occupied by porosity [77,78,79,80,81].
The fig tree is a crop considered a great generator of organic matter due to the drooping of leaves and ripe fruits to the soil surface; however, it is advisable to increase this contribution through fertilizers to improve the availability of nutrients, improve infiltration, aeration, and favor root development [19,20,21].
The variable BIO9 (average temperature of the driest quarter), with 17.5% of participation in the model, presented a temperature range from −2.4 to 22.6 °C, where temperatures between 32 and 37 °C aid fruit ripening and quality, conditions that occur mainly in January and the first half of February [21]. Temperatures above 38 °C can cause fruit drooping and faster ripening, while temperatures below −7 °C cause fruit loss and death of trees [20,21,82].
The edaphological variables were insignificant considering that the fig tree is an undemanding species, being able to adapt to infertile soils such as saline, semi-desert, limestone, poor and rocky soils, as well as resistant to iron chlorosis, and active limestone, tolerating levels up to 4.20 dS/m of electrical conductivity and pH of 8.5, the optimum being from 6 to 8; however, it does not tolerate drainage problems because it is sensitive to root rot [20,21,81].

4.3. Climate Change Scenarios

The models used for the scenarios under climate change have been used for the prediction of habitat suitability of vegetative species in Mexico because they show representative climatic variability for the country [6].
It is important to note that future projections of suitability refer only to environmental conditions (climate change) and not to other conditions to which the species will be exposed, such as biological interactions with other organisms (pests, competition, etc.) and threats such as deforestation, overexploitation, and dispersal [83].
Several authors have reported results with the use of the MaxEnt program for different species under natural conditions of development and under agricultural practices, such as peanut, cotton, peanut, cocoa, and passion fruit [5,69,84], among others, obtaining good predictions with few bioclimatic variables but representing more than 90% of the variability.
The results obtained in this research work for the climate change scenarios are similar to those obtained by Durán-Puga et al. [85], who studied the distribution of Morus alba L. with the HadGEM2 model for the years 2050 and 2070, observing a reduction rate of the crop in the Mexican Republic, excluding Chihuahua, Baja California, and Sonora states, where it was found an increment or this crop. Altamirano and Leon [86] and Martinez-Sifuentes (2020); also reported a reduction in the distribution of tree species among pinus greggi in the mesophilic mountain forest of Oaxaca, Mexico.
The percentage change in the HADGEM2-ES model indicates an increase in the unsuitable and moderately suitable of fig cultivation in the country by 2050 and a decrease in the adequacy and the optimum of fig cultivation in the country by 2050 for both RCP 2.6 and 8.5, while by 2070 an increase in the optimum is observed for RCP 2.6, while for 8.5 an increase in the inadequacy and a decrease in the other ranges.
Martinez-Sifuentes (2020) Prasetyo et al. [87], and Priyanco et al. [88] suggest that an increase in precipitation and temperature (0.7–2.1 °C) in all RCP of this model allows monitoring and planning strategies to minimize the negative changes that could be caused by climate change in diverse species and different environmental areas.
The MPI-ESM-LR model obtained a higher aptitude in the suitability for the most catastrophic scenario (RCP 8.5) for the year 2070 than the observed for 2050 and 2070 by the HadGEM2-ES model with RCP 4.5; these results agreed with the reported by Martínez-Sifuentes [69] and Vargas-Piedra et al. [89].
In the percentage change for the MPI-ESM-LR model, there is an increase in the unsuitable area and a decrease in the moderately suitable, suitable, and optimum for RCP 2.6 in the year 2050, while in RCP 8.5 the increase is in the unsuitable and moderately suitable, while the suitable and optimum show a decrease.
There is greater variability with this model for the year 2070 since, for RCP 2.6, there is an increase of 5.41% in the optimal area and a decrease in the other ranges, and for 8.5, all ranges increase except the suitable area.
The predictions of both models and scenarios indicate that fig crop distribution will be present in northern Mexico, through the Sierra Madre Occidental and Eje Neovolcánico transversal, in a consistent way to the mean annual temperature range of 7–26 °C and precipitation of 580–2233 mm, considering warm temperatures and precipitation of up to 800 mm as ideal conditions for the crop [89,90,91]. Martínez-Meyer et al. [92] indicated that nutrient concentration, soil chemical and physical variables, species restriction, and some other type of disturbance that is not detected in the field can help to support the location of the suitability of the crop with respect to the analyzed variables.

5. Conclusions

The results of this study are of great importance because they represent an advance in the study of fig cultivation in our country and, at the same time, serve as a guide to take advantage of the areas where this crop has potential for its current and especially future production, since, due to the diversity of Mexico in flora, fauna, soils, and climate, it is susceptible to changes, which can harm or favor the production of this crop. The central region of Mexico, the Yucatan Peninsula, and Baja California North and South do not present positive changes in the future, being unsuitable for fig production, unlike the northern region, the Neo-volcanic axis, and the Sierra Madre Occidental, which present positive variations for the future of the crop in Mexico, which can be seen represented in the future projection maps and in the data contained in the tables of the Appendix A.
In addition, the results of the present work can be extended by taking into account other variables such as bulk density, cation exchange capacity, evapotranspiration, radiation, and nutrition, among others, which could positively or negatively modify the projections of habitat suitability for fig cultivation in Mexico and other regions of the world with similar or different climates in the future.

Author Contributions

K.J.M.-M. participated in the conceptualization, methodology, data collection, data processing in software, writing—original draft preparation. S.Y.M.-G. participated in project administration, conceptualization, supervision, writing—original draft preparation. A.R.M.-S. participated in project administration, methodology, data processing in software, formal analysis, validation, writing—review and editing. M.Á.S.-C. participated in writing—review and editing, validation, supervision. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Databases can be collected from https://www.worldclim.org/data/bioclim.html (accessed on 20 January 2022), and http://www.conabio.gob.mx/informacion/gis/ (accessed on 2 February 2022).

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

Table A1. Area estimated of fig crop for the year 2050 for the HADGEM2-ES Model with RCP 2.6.
Table A1. Area estimated of fig crop for the year 2050 for the HADGEM2-ES Model with RCP 2.6.
HE2650
StateStable (km2)Increase (km2)Loss (km2)
Aguascalientes224.10-204.30
Baja California3565.38-2711.69
Baja California Sur26.2114.93-
CampecheNot suitable for fig cultivation
Chiapas10,990.855149.11-
Chihuahua86,978.20-12,946.06
CDMX1384.85-150.35
Coahuila33,302.92-8547.01
Colima610.573.14-
Durango17,612.85-5819.47
Guanajuato3715.348318.36-
Guerrero25,425.959625.67-
Hidalgo7975.52-5216.67
Jalisco35,346.022262.41-
México17,241.17-755.84
Michoacán33,320.335527.22-
Morelos4774.5638.32-
Nayarit8652.70-830.38
Nuevo León800.88-768
Oaxaca29,991.67-3847.36
Puebla21,377.90-6359.40
Querétaro2091.49311.73-
Quintana RooNot suitable for fig cultivation
San Luis Potosí12.44308.46-
Sinaloa159.922319.61-
Sonora812.804104.57-
Tabasco-1.86-
Tamaulipas564.79-537.40
Tlaxcala3904.01-440.25
Veracruz3584.48-670.17
YucatánNot suitable for fig cultivation
Zacatecas5101.02-2971.16
Table A2. Area estimated of fig crop for the year 2050 for the HADGEM2-ES Model with RCP 8.5.
Table A2. Area estimated of fig crop for the year 2050 for the HADGEM2-ES Model with RCP 8.5.
HE8550
StateStable (km2)Increase (km2)Loss (km2)
Aguascalientes224.10-222.21
Baja California3565.38-2873.39
Baja California Sur26.2144.73-
CampecheNot suitable for fig cultivation
Chiapas10,990.855773.22-
Chihuahua86,978.20-15,204.30
CDMX1384.85-512.11
Coahuila33,302.92-7184.78
Colima610.5787.14-
Durango17,612.85-8570.95
Guanajuato3715.34-88.32
Guerrero25,425.9512,002.01-
Hidalgo7975.52-7345.27
Jalisco35,346.02-3048.21
México17,241.17-8417.14
Michoacán33,320.33823.61
Morelos4774.56-28.88
Nayarit8652.70-1297.14
Nuevo León800.88-757.67
Oaxaca29,991.67-9810.27
Puebla21,377.90-9107.74
Querétaro2091.49-1331.67
Quintana RooNot suitable for fig cultivation
San Luis Potosí12.44155.20-
Sinaloa159.924082.17-
Sonora812.808832.56-
TabascoNot suitable for fig cultivation
Tamaulipas564.79-559.74
Tlaxcala3904.01-1301.23
Veracruz3584.48-2432.95
YucatánNot suitable for fig cultivation
Zacatecas5101.02-3494.16
Table A3. Area estimated of fig crop for the year 2050 for the MPI-ESM-LR Model with RCP 2.6.
Table A3. Area estimated of fig crop for the year 2050 for the MPI-ESM-LR Model with RCP 2.6.
MP2650
StateStable (km2)Increase (km2)Loss (km2)
Aguascalientes224.10-204.51
Baja California3565.38-2642.63
Baja California Sur26.21-8.93
CampecheNot suitable for fig cultivation
Chiapas10,990.8510,062.58-
Chihuahua86,978.20-17,064.29
CDMX1384.85-191.86
Coahuila33,302.92-23,181.12
Colima610.5755.05-
Durango17,612.85-6985.24
Guanajuato3715.34-2117.78
Guerrero25,425.9510,735.50-
Hidalgo7975.52-5556.10
Jalisco35,346.02-256.68
México17,241.17-3917.02
Michoacán33,320.3346.27-
Morelos4774.562.81-
Nayarit8652.70476.77-
Nuevo León800.88-719.79
Oaxaca29,991.671498.55-
Puebla21,377.90-4062.13
Querétaro2091.49-1666.79
Quintana RooNot suitable for fig cultivation
San Luis Potosí12.447.63-
Sinaloa159.92751.76-
Sonora812.80594.80-
Tabasco-2.19-
Tamaulipas564.79-505.32
Tlaxcala3904.01-96.82
Veracruz3584.48494.87-
YucatánNot suitable for fig cultivation
Zacatecas5101.02-2955.64
Table A4. Area estimated of fig crop for the year 2050 for the MPI-ESM-LR Model with RCP 8.5.
Table A4. Area estimated of fig crop for the year 2050 for the MPI-ESM-LR Model with RCP 8.5.
MP8550
StateStable (km2)Increase (km2)Loss (km2)
Aguascalientes224.10-221.95
Baja California3565.38-2831.34
Baja California Sur26.21-10.73
CampecheNot suitable for fig cultivation
Chiapas10,990.8512,078.85-
Chihuahua86,978.20-26,307.98
CDMX1384.85-419.65
Coahuila33,302.92-8104.99
Colima610.5753.79-
Durango17,612.85-5867.55
Guanajuato3715.34-1174.99
Guerrero25,425.9512,882.56-
Hidalgo7975.52-7122.74
Jalisco35,346.02-2814.86
México17,241.17-5419.90
Michoacán33,320.334219.24-
Morelos4774.56-48.75
Nayarit8652.70137.08-
Nuevo León800.88-320.22
Oaxaca29,991.67-3941.75
Puebla21,377.90-9438.45
Querétaro2091.49-1165.97
Quintana RooNot suitable for fig cultivation
San Luis Potosí12.44167.13-
Sinaloa159.923706.85-
Sonora812.802910.86-
TabascoNot suitable for fig cultivation
Tamaulipas564.79-564.79
Tlaxcala3904.01-843.70
Veracruz3584.48-2274.53
YucatánNot suitable for fig cultivation
Zacatecas5101.02-3377.50
Table A5. Area estimated of fig crop for the year 2070 for the HADGEM2-ES Model with RCP 2.6.
Table A5. Area estimated of fig crop for the year 2070 for the HADGEM2-ES Model with RCP 2.6.
HE2670
StateStable (km2)Increase (km2)Loss (km2)
Aguascalientes224.10-213.88
Baja California3565.38-2832.38
Baja California Sur26.21-14.96
CampecheNot suitable for fig cultivation
Chiapas10,990.855843.26-
Chihuahua86,978.20-10,452.96
CDMX1384.85-273.58
Coahuila33,302.92-10,891.53
Colima610.57-26.36
Durango17,612.85-6356.39
Guanajuato3715.342218.70-
Guerrero25,425.9510,163.09-
Hidalgo7975.52-5696.01
Jalisco35,346.02-1454.66
México17,241.17-3315.78
Michoacán33,320.332801.57-
Morelos4774.5622.47-
Nayarit8652.70-644.47
Nuevo León800.88-751.35
Oaxaca29,991.67-2740.96
Puebla21,377.90-6850.77
Querétaro2091.49-475.26
Quintana RooNot suitable for fig cultivation
San Luis Potosí12.44155.82-
Sinaloa159.923103.12-
Sonora812.804439.86-
TabascoNot suitable for fig cultivation
Tamaulipas -515.58
Tlaxcala -554.88
Veracruz -685.81
YucatánNot suitable for fig cultivation
Zacatecas5101.02-3378.62
Table A6. Area estimated of fig crop for the year 2070 for the HADGEM2-ES Model with RCP 8.5.
Table A6. Area estimated of fig crop for the year 2070 for the HADGEM2-ES Model with RCP 8.5.
HE8570
StateStable (km2)Increase (km2)Loss (km2)
Aguascalientes224.10-220.88
Baja California3565.38-3180.30
Baja California Sur26.21-10.69
CampecheNot suitable for fig cultivation
Chiapas10,990.855459.62-
Chihuahua86,978.20-11,517.22
CDMX1384.85-738.49
Coahuila33,302.9213,492.89-
Colima610.5765.61-
Durango17,612.85-3750.19
Guanajuato3715.343155.71-
Guerrero25,425.9512,388.06-
Hidalgo7975.52-7480.22
Jalisco35,346.02-4073.29
México17,241.17-9954.34
Michoacán33,320.33416.24-
Morelos4774.56-80.74
Nayarit8652.70-398.20
Nuevo León800.88-163.76
Oaxaca29,991.67-12,815.60
Puebla21,377.90-9988.54
Querétaro2091.49-779.91
Quintana RooNot suitable for fig cultivation
San Luis Potosí12.441075.99-
Sinaloa159.926366.20-
Sonora812.8011,745.73-
Tabasco-1.08-
Tamaulipas564.79-548.11
Tlaxcala3904.01-2768.16
Veracruz3584.48-3400.08
YucatánNot suitable for fig cultivation
Zacatecas5101.02-3552.77
Table A7. Area estimated of fig crop for the year 2070 for the MPI-ESM-LR Model with RCP 2.6.
Table A7. Area estimated of fig crop for the year 2070 for the MPI-ESM-LR Model with RCP 2.6.
MP2670
StateStable (km2)Increase (km2)Loss (km2)
Aguascalientes224.10-204.23
Baja California3565.38-2717.98
Baja California Sur26.21-22.07
CampecheNot suitable for fig cultivation
Chiapas10,990.859449.50-
Chihuahua86,978.20-22,493.05
CDMX1384.85-241.55
Coahuila33,302.92-16,400.75
Colima610.5753.28-
Durango17,612.85-4787.07
Guanajuato3715.34-1141.85
Guerrero25,425.9510,506.89-
Hidalgo7975.52-5369.91
Jalisco35,346.02-3610.68
México17,241.17-3551.82
Michoacán33,320.33-734.85
Morelos4774.56-18.22
Nayarit8652.70-473.09
Nuevo León800.88-484.05
Oaxaca29,991.67-1984.61
Puebla21,377.90-4999.18
Querétaro2091.49-1377.15
Quintana RooNot suitable for fig cultivation
San Luis Potosí12.4421.78-
Sinaloa159.92206.83-
Sonora812.80-353.40
Tabasco-1.85-
Tamaulipas564.79-328.53
Tlaxcala3904.01-176.69
Veracruz3584.48629.06-
YucatánNot suitable for fig cultivation
Zacatecas5101.02-3136.13
Table A8. Area estimated of fig crop for the year 2070 for the MPI-ESM-LR Model with RCP 8.5.
Table A8. Area estimated of fig crop for the year 2070 for the MPI-ESM-LR Model with RCP 8.5.
MP8570
StateStable (km2)Increase (km2)Loss (km2)
Aguascalientes224.10-222.20
Baja California3565.38-3099.75
Baja California Sur26.21-24.40
CampecheNot suitable for fig cultivation
Chiapas10,990.8515,792.40-
Chihuahua86,978.20-12,912.77
CDMX1384.85-681.85
Coahuila33,302.927165.73-
Colima610.57111.53-
Durango17,612.85-5053.69
Guanajuato3715.343083.49-
Guerrero25,425.9513,842.31-
Hidalgo7975.52-7649.53
Jalisco35,346.02-3568.19
México17,241.17-5613.10
Michoacán33,320.336003.61-
Morelos4774.56-122.91
Nayarit8652.70-576.79
Nuevo León800.88596.51-
Oaxaca29,991.67-4272.06
Puebla21,377.90-10,568.51
Querétaro2091.49-1179.60
Quintana RooNot suitable for fig cultivation
San Luis Potosí12.44304.99-
Sinaloa159.925944.70-
Sonora812.806012.21-
Tabasco-2.19-
Tamaulipas564.79-563.77
Tlaxcala3904.01-1993.44
Veracruz3584.48-3174.47
YucatánNot suitable for fig cultivation
Zacatecas5101.02-3218.81

References

  1. Bula, A. Importancia de la Agricultura en el Desarrollo Socio-Económico; Observatorio Económico Social; Puente Académico N° 16; Informes del Observatorio; Universidad Nacional del Rosario: Santa Fe, Argentina, 2020; pp. 3–28. ISSN 2683-9067. [Google Scholar]
  2. Castañeda-Hidalgo, E.; Vásquez-Cruz, M.A.; Santiago-Martínez, G.M.; Robles-Pérez, C.; Lozano-Trejo, S.; Villegar-Aparicio, Y. Valoración sustitutiva de biofertilizantes en el cultivo de maíz en cinco regiones del estado de Oaxaca. Rev. Mex. Agroecosistemas 2021, 8, 25–35. [Google Scholar]
  3. Economic Commission for Latin America and the Caribbean (ECLAC); Food and Agriculture Organization of the United Nations (FAO); Inter-American Institute for Cooperation on Agriculture (IICA). Prospects for Agriculture and Rural Development in the Americas: A Look at Latin America and the Caribbean 2021–2022; Natural Resources; Economic Commission for Latin America and the Caribbean (ECLAC): Santiago, Chile; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy; Inter-American Institute for Cooperation on Agriculture (IICA): Manesar, Indian, 2021; p. 132. ISBN 978-92-9248-920-5. [Google Scholar]
  4. Centro de Estudios para el Desarrollo Rural Sustentable y Soberanía Alimentaria (CEDRSSA). Reporte: El Cambio Climático y el Sector Agropecuario en México; Palacio Legislativo de San Lázaro: Ciudad de México, Mexico, 2019; p. 11. [Google Scholar]
  5. Rivera-Aguirre, D.; Ortiz-Acosta, M.; Bernal-Mendoza, H.; Sánchez-Rojas, G.; Ramírez-Bravo, E.; Jímenez-García, D. Impacto del cambio climático en la distribución potencial de tres cultivos agrícolas en México. Acta Agrícola Y Pecu. 2021, 7, 1–16. [Google Scholar] [CrossRef]
  6. Instituto Nacional de Ecología y Cambio Climático (INECC). Guía de Escenarios de Cambio Climático Para Tomadores de Decisiones; INECC: Ciudad de México, Mexico, 2022; p. 65.
  7. Intergovernmental Panel on Climate Change (IPCC). Informe Especial del IPCC Sobre Los Impactos del Calentamiento Global de 1.5 °C Con Respecto a Los Niveles Preindustriales y Las Trayectorias Correspondientes que Deberían Seguir Las Emisiones Mundiales de Gases de Efecto Invernadero, en el Contexto del Reforzamiento de la Respuesta Mundial a la Amenaza del Cambio Climático, el Desarrollo Sostenible y Los Esfuerzos por Erradicar la Pobreza; IPCC: Geneva, Switzerland, 2019; p. 32. ISBN 978-92-9169-353-5.
  8. Bautista-Zúñiga, F.; Palacio-Prieto, J.L.; Delfín-González, H. Sistemas de Información Geográfica. Técnicas de Muestreo Para Manejadores de Recursos Naturales, 2nd ed.; Centro de Investigaciones en Geografía Ambiental: Morelia: Mexico; Universidad Nacional Autónoma de México: Ciudad de México, Mexico, 2011; ISBN 978607-02-2127-9. [Google Scholar]
  9. Mota-Vargas, C.; Encarnación-Luévano, A.; Ortega-Andrade, H.M.; Prieto-Torres, D.A.; Peña-Peniche, A.; Rojas-Soto, O.R. Una Breve Introducción a Los Modelos de Nicho Ecológico. La Biodiversidad en un Mundo Cambiante: Fundamentos Teóricos y Metodológicos Para su Estudio; Universidad Autónoma Del Estado De Hidalgo/Libermex: Ciudad De México, Mexico, 2019; pp. 39–63. [Google Scholar]
  10. González, M. Abran paso a los cultivos emergentes. Agric. Rev. Agropecu. 2021, 10, 6–21. [Google Scholar]
  11. Neri-Ortega, J.C.; Medina-Ortega, M.A. Cultivos alternativos como un mecanismo para el desarrollo de zonas áridas. El caso de la jojoba en el Altiplano potosino. Rev. Int. Est. Geo. 2019, 10, 44–63. [Google Scholar]
  12. Márquez-Guerrero, S.Y.; Figueroa-Viramontes, U.; Zegbe-Guerrero, J.A.; Arreola-Ávila, J.G.; Cueto-Wong, J.A.; Trejo-Calzada, R. Concentración foliar de nutrientes y biomasa seca de plantas de higo modificadas por la aplicación de NPK: Un estudio preliminar. Asian J. Agric. Hortic. Res. 2020, 7, 30–41. [Google Scholar]
  13. Bisi, B.R.; Locatell, G.; de Alcântara, B.; Pio, R.; Balbi, V. Enraizamiento de segmentos de tallos de cultivares de higuera. Acta Sci. Agron. 2016, 38, 379–385. [Google Scholar] [CrossRef] [Green Version]
  14. Peraza-Padilla, W.; Rosales-Flores, J.; Esquivel-Hernández, A.; Hilje-Rodríguez, I.; Molina-Bravo, R.; Castillo-Castillo, P. Identificación morfológica, morfométrica y molecular de Meloidogyne incógnita en higuera (Ficus carica L.) en Costa Rica. Agron. Mesoam. 2013, 24, 337–346. [Google Scholar] [CrossRef] [Green Version]
  15. Sarkhosh, A.; Andersen, P. Historia del Cultivo de Higo; EDIS: Singapore, 2020; Volume 2, pp. 1–8. [Google Scholar] [CrossRef]
  16. Sisaro, D.; Hagiwara, J.C. Propagación Vegetativa por Medio de Estacas de Tallo; 1st ed.; Ediciones INTA: Hurlingham, Buenos Aires, 2016; ISBN 978-987-521-681-5. [Google Scholar]
  17. InfoAgro México. Principales Requerimientos del Cultivo. Available online: https://mexico.infoagro.com/principales-requerimientos-del-cultivo/ (accessed on 3 September 2021).
  18. Gutiérrez, N. 22 de Enero de 2014. Higuera. Secretaría de Agricultura y Desarrollo Rural. Available online: https://sader.jalisco.gob.mx/catalogo-plantas/higuera (accessed on 23 September 2021).
  19. Von-Lineo, C. Ficus carica L. Species Plantarum 2, 1753. 1059.
  20. Mergarejo Moreno, P. Cultivo de la Higuera (Ficus carica L.); IRAGRA S.A.: Madrid, España, 1999; p. 118. ISBN 84-89922-37-3. [Google Scholar]
  21. Nievas, W.E.; Villarreal, P.; Rodríguez, A.B.; Gómez, G. El Cultivo de la Higuera (Ficus carica). Aspectos Ambientales y Económicos Para el Alto Valle del río Negro; Ediciones INTA: Ciudad Autónoma de Buenos Aires, Argentina, 2021; p. 48. ISBN 978-987-8333-71-7. [Google Scholar]
  22. CONAGUA (Comisión Nacional del Agua). Reporte anual 2020. Coordinación General del Servicio Meteorológico Nacional. Available online: https://smn.conagua.gob.mx/tools/DATA/Climatolog%C3%ADa/Diagn%C3%B3stico%20Atmosf%C3%A9rico/Reporte%20del%20Clima%20en%20M%C3%A9xico/Anual2020.pdf (accessed on 6 October 2022).
  23. Mendoza-Castillo, V.M. Fisiología y Manejo de la Higuera (Ficus carica L.) en Producción Forzada Bajo Cubierta Plástica. Ph.D. Thesis, Colegio de Postgraduados, Montecillo, México, 2013. [Google Scholar]
  24. Nieto, C.C.; Jarrín, A.P.; Pinto, E.N. El Higo Ficus carica L. “Manual de Producción, Uso y Aprovechamiento”, 1st ed.; Secretaría Nacional de Ciencia y Tecnología Impresiones Industria Gráfica: Quito, Ecuador, 2007; 10 p. [Google Scholar]
  25. García, R.M.T. Caracterización Morfológica y Genética de Variedades Mexicanas de Higo (Ficus carica L.). Ph.D. Thesis, Colegio de Postgraduados, Montecillo, México, 2014. [Google Scholar]
  26. Meghwal, P.R.; Kummar, P. Common Fig Cultivation in Indian arid Zone; Intensive agricultura; ICAR-Central Arid Zone Research Institute (CAZRI): Rajasthan, India, 2009. [Google Scholar]
  27. Kumari, N.; Sharma, A.; Gupta, N. Scope of fig (Ficus carica L.) cultivation in north west India. Int. J. Plant Sci. 2020, 14, 73–74. [Google Scholar]
  28. Ammar, A.; Aissa, I.B.; Gouiaa, M.; Mars, M. Fig (Ficus carica L.) vulnerability to climate change: Combined effects of water stress and high temperature on ecophysiological behaviour of different cultivars, South Africa. J. Bot. 2022, 147, 482–492. [Google Scholar] [CrossRef]
  29. Ighbareyeh, J.; Suliemieh, A.; Ighbareyeh, M.; Abel-Qader, D.; Cano-Ortiz, A.; Cano-Carmona, E. Impact of bioclimatic and climatic factors on Ficus carica L. yield: Increasing the economy and maintaining the food security of Jerusalem in Palestine. Transylv. Rev. J. 2018, 26, 8717–8725. [Google Scholar]
  30. Flores-Mora, D.M.; Jiménez-Bonilla, V.; Chacón-Cerdas, R. Cultivo de tejidos en Ficus carica con miniestacas. Agron. Mesoam. 2009, 20, 319–325. [Google Scholar] [CrossRef] [Green Version]
  31. Pereira, C.; Serradilla, M.; Pérez-Gragera, M.; Martín, A.; Villalobos, M.C.; López-Corrales, M. Evaluation of agronomic and fruit quality traits of fig tree varieties (Ficus carica L.) grown in Mediterranean conditions. J. Agric. Res. 2017, 15, e0903. [Google Scholar] [CrossRef] [Green Version]
  32. Becerril-Román, A. Bioestimulantes y nutrimentos foliares en la producción de higo (Ficus carica L.) ‘Café de Turquía’. Agron. Prod. 2018, 11, 15–19. [Google Scholar] [CrossRef]
  33. Márquez-Guerrero, S.Y.; Figueroa-Viramonetes, U.; Cueto-Wong, J.A.; Arreola-Ávila, J.G.; Zegbe-Domínguez, J.A.; Trejo-Calzada, R. Variación estacional de la concentración foliar de nutrimentos en huertas de higuera bajo sistemas de producción intensiva. Rev. Mex. Cienc. Agríc. 2019, 10, 525–537. [Google Scholar] [CrossRef] [Green Version]
  34. Márquez-Guerrero, S.Y. Dinámica Nutrimental del Cultivo de Higo (Ficus carica L.) Bajo Sistemas de Producción Intensiva. Ph.D. Thesis, Universidad Autónoma de Chapingo, Durango, México, 2019. [Google Scholar]
  35. Secretaría de Agricultura y Desarrollo Rural (SADER). Morelos Principal Productor de Higo a Nivel Nacional. Available online: https://www.gob.mx/agricultura%7Cmorelos/articulos/morelos-principal-productor-de-higo-a-nivel-nacional#:~:text=Morelos%20es%20el%20principal%20productor,boom%20en%20los%20%C3%BAltimos%20a%C3%B1os (accessed on 23 January 2021).
  36. Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
  37. Sáenz-Romero, C.; Rehfeldt, G.E.; Ortega-Rodríguez, J.M.; Marín-Togo, M.C. Madrigal-Sánchez X. Pinus leiophylla Suitable Habitat For 1961–1990 and Future Climate. Bot. Sci. 2015, 93, 709–718. [Google Scholar] [CrossRef] [Green Version]
  38. Hu, W.; Wang, Y.; Dong, P.; Zhang, D.; Yu, W.; Ma, Z.; Chen, G.; Liu, Z.; Du, J.; Chen, B.; et al. Predicting potential mangrove distribution at the global northern distribution margin using an ecological niche model: Determining conservation and reforestation involvement. For. Ecol. Manag. 2020, 478, 118517. [Google Scholar] [CrossRef]
  39. Martínez-Sifuentes, A.R.; Hernández-Herrera, J.A.; Valenzuela-Núñez, L.M.; Briceño-Contreras, E.A.; Manzanilla-Quiñones, U.; Gastélum-Arellánez, A.; Trucíos-Caciano, R.; López Calderón, M.J. Climate Change Impact on the Habitat Suitability of Pseudotsuga menziesii Mirb. Franco in Mexico: An Approach for Its Conservation. Sustainability 2022, 14, 8888. [Google Scholar] [CrossRef]
  40. Charre-Medellín, J.F.; Mas, J.F.; Chang-Martínez, L.A. Potential expansion of Hass avocado cultivation under climate change scenarios threatens Mexican mountain ecosystems. Crop. Pasture Sci. 2020, 72, 291–301. [Google Scholar] [CrossRef]
  41. Economic Commission for Latin America and the Caribbean (ECLAC). Agricultura y cambio climático: Instituciones, política e innovación. In Proceedings of the Seminario Internacional, Santiago, Chile, 10–11 November 2010. [Google Scholar]
  42. Red de Desarrollo Sostenible (RDS). Escenarios de Cambio Climático (2011–2100): Qué Son y Para Qué Sirven? Available online: https://www.rds.org.co/es/novedades/escenarios-de-cambio-climatico-2011-2100-que-son-y-para-que-sirven (accessed on 23 March 2022).
  43. García, E. Isotermas Medias Anuales. Escala 1:1,000,000; INEGI: Aguascalientes, México, 1998.
  44. GBIF (Global Biodiversity Information Facility). GBIF Occurrence Download. 2021. Available online: https://www.gbif.org/ (accessed on 2 September 2021).
  45. Osorio-Olvera, L.; Vijay, B.; Narayani, B.; Soberón, J.; Falconi, M. Ntbox: From getting biodiversity data to evaluating species distributions models in a friendly GUI environment. R package version 0.2.5.4. Available online: https://github.com/luismurao/ntbox (accessed on 24 April 2022).
  46. ESRI (Environmental Systems Research Institute). ArcGIS Desktop, ArcGIS Desktop: Redlands, CA, USA, 2019.
  47. CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad). Portal de Geoinformación 2022. Acervo del Sistema Nacional de Información Sobre Biodiversidad [SNIB]. Available online: http://www.conabio.gob.mx/informacion/gis/ (accessed on 20 February 2022).
  48. Peterson, A.T.; Nakazawa, Y. Environmental data sets matter in ecological niche modelling: An example with Solenopsis invicta and Solenopsis richteri. Glob. Ecol. Biogeogr. 2008, 17, 135–144. [Google Scholar] [CrossRef]
  49. Monterrubio-Rico, T.C.; Charre-Medellín, J.F.; Pacheco-Figueroa, C.; Arriaga-Weiss, S.; Valdez-Leal, J.D.; Cancino-Murillo, R.; Escalona-Segura, G.; Bonilla-Ruíz, C.; Rubio-Rocha, Y. Distribución potencial histórica y contemporánea de la familia Psittacidae en México. Rev. Mex. Biod. 2016, 87, 1103–1117. [Google Scholar] [CrossRef] [Green Version]
  50. Fick, S.E.; Hijmans, R.J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Inter. J. Clim. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
  51. Becerra-López, J.L.; Esparza-Estrada, C.E.; Romero-Méndez, U.; Sigala-Rodríguez, J.J.; Mayer-Goyenechea, I.G.; Castillo-Cerón, J.M. Evidence of niche shift and invasion potential of Lithobates catesbeianus in the habitat of Mexican endemic frogs. PLoS ONE 2017, 12, e0185086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  52. Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
  53. Soberón, J.; Townsend Peterson, A. Interpretation of models of fundamental ecological niches and species distributions areas. Biodivers. Inform. 2005, 2, 1–10. [Google Scholar] [CrossRef]
  54. Warren, D.L.; Seifert, S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  55. Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef] [Green Version]
  56. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015; Available online: http://www.R-project.org/ (accessed on 17 April 2022).
  57. Phillips, S.J.; Dudik, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
  58. Morrone, J.J.; Escalante, T. Introducción a la Biogeografía; Universidad Nacional Autónoma de México: México City, México, 2016; ISBN 968-36-9463-2. [Google Scholar]
  59. Matas, A. Diseño del formato de escalas tipo Likert: Un estado de la cuestión. Rev. Electrónica Investig. Educ. 2016, 20, 38–47. [Google Scholar] [CrossRef] [Green Version]
  60. Garza-López, M.; Ortega-Rodríguez, J.M.; Zamudio-Sánchez, F.J.; López-Toledo, J.F.; Domíguez-Álvarez, F.A.; Sáenz Romero, C. Calakmul como refugio de Swietenia macrophylla King ante el cambio climático. Bot. Sci. 2016, 94, 43–50. [Google Scholar] [CrossRef] [Green Version]
  61. Gutiérrez, E.; Trejo, I. Efecto del cambio climático en la distribución potencial de cinco especies arbóreas de bosque templado en México. Rev. Mex. Biodivers. 2014, 85, 179–188. [Google Scholar] [CrossRef] [Green Version]
  62. Stockwell, R.B.; Townsend Peterson, A. Effects of sample size on accuracy of species distribution models. Ecol. Model. 2002, 148, 1–13. [Google Scholar] [CrossRef]
  63. Manzanilla-Quiñones, U.; Delgado-Valerio, P.; HernándezRamos, J.; Molina-Sánchez, A.; García-Magaña, J.J.; de Rocha-Granados, M.C. Similaridad del nicho ecológico de Pinus montezumae y P. pseudostrobus (Pinaceae) en México: Implicaciones para la selección de áreas productoras de semillas y de conservación. Act. Bot. Mex. 2019, 126, 1–25. [Google Scholar] [CrossRef]
  64. Reynoso-Santos, R.; Pérez-Hernández, M.J.; López-Báez, W.; Hernández-Ramos, J.; Muñoz-Flores, H.J.; Cob-Uicad, J.V.; Reynoso-Santos, M.D. El nicho ecológico como herramienta para predecir áreas potenciales de dos especies de pino. Rev. Mex. Cienc. For. 2018, 9, 47–70. [Google Scholar] [CrossRef] [Green Version]
  65. Suárez-Mota, M.E.; Hernández-Ramírez, J.M.; Luna-Bautista, L.; Mendoza-Díaz, M.M.; Santiago-García, W.; Ruíz-Aquimo, F. Distribución potencial de árboles de ribera en la subcuenca Bajo Río Grijalva. Bot. Sci. 2022, 100, 534–549. [Google Scholar] [CrossRef]
  66. Manzanilla-Quiñones, U.; Aguirre-Calderón, O.A.; Jiménez-Pérez, J.; Treviño-Garza, E.J.; Yerena-Yamallel, J.I. Escenarios de cambio climátic (CMIP-5) para tres áreas naturales protegidas en el Eje Neovolcánico Transversal. Rev. Mex. Cienc. For. 2018, 9, 514–537. [Google Scholar] [CrossRef] [Green Version]
  67. Mena-Rentería, D.; Cañon-Ramon, M.A.; Suárez-Rodríguez, A.M. Modelación de los impactos de los escenarios de cambio climático en la cuenca del río Pamplonita en Norte de Santander. Rev. EIA 2020, 17, 182–193. [Google Scholar] [CrossRef] [Green Version]
  68. Romero-Sánchez, M.E. Editorial escenarios de cambio climático en el sector forestal. Rev. Mex. Cienc. For. 2016, 7, 4–6. [Google Scholar]
  69. Martínez-Sifuentes, A.R.; Villanueva-Díaz, J.; Crisantos de la Rosa, E.; Stahle, D.W. Current and future spatial modeling of habitat suitability of the Mexican baldcypress (Taxodium mucronatum Ten.): A proposal for conservation in Mexico. Bot. Sci. 2021, 99, 752–770. [Google Scholar] [CrossRef]
  70. Martínez-Sifuentes, A.R.; Villanueva-Díaz, J.V.; Manzanilla-Quiñones, U.; Becerra-López, J.L.; Hernández-Herrera, J.A.; Estrada-Ávalos, J.; Velázquez-Pérez, A.H. Spatial modeling of the ecological niche of Pinus greggii Engelm. (Pinaceae): A species conservation proposal in Mexico under climatic change scenarios. iForest Biogeosci. For. 2020, 13, 426–434. [Google Scholar] [CrossRef]
  71. Interián-Ku, V.M.; Vaquera-Huerta, H.; Valdez-Hernández, J.L.; García-Moya, E.; Romero-Manzanares, A.; Borja-De la Rosa, A. Influencia de factores morfológicos y ambientales sobre el crecimiento en diámetro de Caesalpinia gaumeri Greenm en un bosque tropical caducifolio, en México. Rev. Chapingo Ser. Cienc. For. Y Ambiente 2014, 20, 255–270. [Google Scholar] [CrossRef]
  72. Rocha-Loredo, A.G.; Ramírez-Marcial, N.; González-Espinosa, M. Riqueza y diversidad de árboles del bosque tropical caducifolio en la depresión central de Chiapas. Bol. Soc. Bot. Mex. 2010, 87, 89–103. [Google Scholar]
  73. Fischer, G. Comportamiento de los frutales caducifolios en el trópico. In Los Frutales Caducifolios en Colombia—Situación Actual, Sistemas de Cultivo y Plan de Desarrollo; Miranda, D., Fischer, G., Carranza, C., Eds.; Sociedad Colombiana de Ciencias Hortícolas: Bogotá, Colombia, 2013; pp. 31–46. [Google Scholar]
  74. Gariglio, N.F.; Pilatti, R.A.; Agustí, M. Requerimientos ecofisiológicos de los árboles frutales. In Árboles Frutales: Ecofisiología, Cultivo y Aprovechamiento; Editorial Facultad de Agronomía, Universidad de Buenos Aires: Buenos Aires, Argentina, 2007; Sozzi, G.O., Ed.; Editorial Facultad de Agronomía, Universidad de Buenos Aires: Buenos Aires, Argentina, 2007; pp. 41–82. [Google Scholar]
  75. Hernando-Pinzón, E.; Cruz-Morillo, A.; Fischer, G. Aspectos fisiológicos del duraznero (Prunus persica [L.] Batsch) en el trópico alto. Rev. U.D.C.A Actual. Divulg. Científica 2014, 17, 401–411. [Google Scholar]
  76. López-Hernández, J.M.; González-Rodríguez, H.; Ramírez-Lozano, R.G.; Cantú-Silva, I.; Gómez-Meza, M.V.; Pando-Moreno, M.; Estrada-Castillón, A.E. Producción de hojarasca y retorno potencial de nutrientes en tres sitios del estado de Nuevo León, México. Polibotánica 2013, 35, 41–64. [Google Scholar]
  77. Castellanos, R.J.Z.; Muñóz, V.J.A. Efecto del Estiércol de Bovino Sobre las Características de un Suelo Arcilloso y el Rendimiento del Alfalfa; Secretaría de Agricultura y Recursos Hidráulicos: EdoMex, México, 1987; p. 40. [Google Scholar]
  78. Fernández-Rueda, M.J.; Paz-González, A. Influencia del contenido de materia orgánica sobre las propiedades físicas del suelo. Cad. Lab. Xeolóxico Laxe Coruña 1998, 23, 101–119. [Google Scholar]
  79. González-Barrios, J.L.; González-Cervantes, G.; Chávez-Ramírez, E. Soil porosity for three typical surfaces in the Nazas River upper watershed. Water Tech. Sci. 2012, 3, 21–32. [Google Scholar]
  80. Meza-Pérez, E.; Geissert Kientz, D. Estructura, agregación y porosidad en suelos forestales y cultivados de origen volcánico del Cofre De Perote, Veracruz, México. For. Veracruzana 2013, 5, 57–60. [Google Scholar]
  81. Salamanca-Jiménez, A.; Sadeghian-Khalajabadi, S. La densidad aparente y su relación con otras propiedades de los suelos de la zona cafetera colombiana. Cenicafé 2005, 56, 381–397. [Google Scholar]
  82. Hydro Enviroment. Guía de Cultivo de Higo. Available online: https://www.hydroenv.com.mx/catalogo/index.php?main_page=page&id=466. (accessed on 3 September 2021).
  83. SERFOR. Efectos del Cambio Climático en la Distribución de 20 Especies Forestales Maderables de la Región Amazónica del Perú; SERFOR: Lima, Perú, 2020; p. 48. [Google Scholar]
  84. Munar, A.; Rodríguez, A.; Muñoz, J. Potenciales áreas cultivables de pasifloras en una región tropical bajo escenarios de cambio climático. Rev. Investig. Agric. Amb. 2020, 13, 109–129. [Google Scholar] [CrossRef]
  85. Duraàn-Puga, N.; Loya-Olguin, J.L.; Ruiz-Corral, J.A.; Gonzaàlez-Eguiarte, D.R.; Garciàa-Paredes, J.D.; Martiànez-Gonzaàlez, S. Impactos del cambio climaàtico en la distribucioàn potencial de Morus alba L. en Meàxico. Rev. Mex. Cienc. Agrícolas 2017, 13, 2511–2521. [Google Scholar] [CrossRef] [Green Version]
  86. Altamirano-León, S.; Balam-Narváez, R.; Ramírez-Martínez, J.C.; Díaz-Porras, D.F.; Luna-Vega, I.; Contreras-Medina, R. Climate change and impact on distribution of tree species in the cloud forest of Oaxaca. Rev. Chapingo Ser. Cienc. For. 2022, 28, 271–287. [Google Scholar] [CrossRef]
  87. Prasetyo, E.; Setiawan, F.; Na’iem, M.; Ohashi, H.; Tsumura, Y.; Tsuyama, I.; Matsui, T. Predicting Tectona grandis Suitability to Evaluate Potential Plantation Areas under Future Climate on Java, Indonesia. JARQ 2022, 56, 269–281. [Google Scholar] [CrossRef]
  88. Das, P.; Zhang, Z.; Ren, H. Evaluation of four bias correction methods and random forest model for climate change projection in the Mara River Basin, East Africa. J. Water Clim. Change 2022, 13, 1900–1919. [Google Scholar] [CrossRef]
  89. Vargas-Piedra, G.; Váldez-Cepeda, R.D.; López-Santos, A.; Flores-Hernández, A.; Hernández-Quiroz, N.S.; Martínez-Salvador, N. Current and Future Potential Distribution of the Xerophytic Shrub Candelilla (Euphorbia antisyphilitica) under Two Climate Change Scenarios. Forest 2020, 11, 530. [Google Scholar] [CrossRef]
  90. Macias-Rodríguez, M.A.; Azcárate-Cornide, J.G.; Gopar-Merino, L.F. Sistematización bioclimática de la Sierra Madre Occidental (México) y su relación con los pisos de vegetación. Polibotánica 2017, 43, 125–163. [Google Scholar] [CrossRef]
  91. Suárez-Mota, M.E.; Téllez-Valdés, O.; Martínez-Meyer, E. Dominios climáticos de las áreas naturales protegidas del eje volcánico transversal de México. Geofocus 2014, 20, 120–143. [Google Scholar]
  92. Martínez-Meyer, E. Implementación de Herramientas Computacionales Para la Predicción Espacial de la Abundancia de las Especies; Informe final SNIBCONABIO Proyecto No. JE015; Universidad Nacional Autónoma de México; Instituto de Biología: Ciudad de México, México, 2016. [Google Scholar]
Figure 1. Minimum Convex Polygon and points of occurrence of fig crop in agricultural areas.
Figure 1. Minimum Convex Polygon and points of occurrence of fig crop in agricultural areas.
Agriculture 12 01816 g001
Figure 2. Areas of fig crop suitability for current climate.
Figure 2. Areas of fig crop suitability for current climate.
Agriculture 12 01816 g002
Figure 3. (a) HADGEM2-ES 2050 RCP 2.6, (b) HADGEM2-ES 2050 RCP 8.5, (c) HADGEM2-ES 2070 RCP 2.6 y, and (d) HADGEM2-ES 2070 RCP 8.5.
Figure 3. (a) HADGEM2-ES 2050 RCP 2.6, (b) HADGEM2-ES 2050 RCP 8.5, (c) HADGEM2-ES 2070 RCP 2.6 y, and (d) HADGEM2-ES 2070 RCP 8.5.
Agriculture 12 01816 g003
Figure 4. (a) MPI-ESM-LR 2050 RCP 2.6, (b) MPI-ESM-LR 2050 RCP 8.5, (c) MPI-ESM-LR 2070 RCP 2.6 y, and (d) MPI-ESM-LR 2070 RCP 8.5.
Figure 4. (a) MPI-ESM-LR 2050 RCP 2.6, (b) MPI-ESM-LR 2050 RCP 8.5, (c) MPI-ESM-LR 2070 RCP 2.6 y, and (d) MPI-ESM-LR 2070 RCP 8.5.
Agriculture 12 01816 g004
Table 1. Variables used in ecological niche modeling in MaxEnt.
Table 1. Variables used in ecological niche modeling in MaxEnt.
VariableDescriptionRange (Unit)
BIO12Annual precipitation54–4816 (mm)
MOOrganic matter1–3 (%)
BIO9Mean temperature of driest quarter−2.4–28.5 (°C)
ELEElevation0–5417 (msnm)
BIO17Precipitation of driest quarter0–335 (mm)
FRRock fragments1–3 (%)
BIO5Max temperature of warmest month5.4–42.4 (°C)
ARCClay1–3 (%)
Table 2. Optimum suitable area for fig cultivation under current and climate change scenarios.
Table 2. Optimum suitable area for fig cultivation under current and climate change scenarios.
ScenarioArea km2
Current359,575.76
HADGEM2-ES 2050 (RCP 2.6)344,784.20
HADGEM2-ES 2070 (RCP 2.6)330,195.82
HADGEM2-ES 2050 (RCP 8.5)307,785.98
HADGEM2-ES 2070 (RCP 8.5)338,323.05
MPI-ESM-LR 2050 (RCP 2.6)312,171.10
MPI-ESM-LR 2070 (RCP 2.6)305,834.01
MPI-ESM-LR 2050 (RCP 8.5)313,462.54
MPI-ESM-LR 2070 (RCP 8.5)353,942.12
Table 3. Percentage change in fig crop area under different climatic scenarios.
Table 3. Percentage change in fig crop area under different climatic scenarios.
CurrentHADGEM2-ES 2050HADGEM2-ES 2070MPI-ESM-LR 2050MPI-ESM-LR 2070
2.68.52.68.52.68.52.68.5
km2%
Unsuitable1,237,798.811.102.941.3710.105.703.64−3.620.22
Mod. Suit.367,165.520.324.18−5.18−3.74−6.300.27−12.620.16
Suitable230,353.83−2.51−12.35−13.51−9.77−13.12−13.02−19.10−4.64
Optimum129,221.93−6.97−18.061.96−1.29−13.29−12.485.410.39
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Martínez-Macias, K.J.; Márquez-Guerrero, S.Y.; Martínez-Sifuentes, A.R.; Segura-Castruita, M.Á. Habitat Suitability of Fig (Ficus carica L.) in Mexico under Current and Future Climates. Agriculture 2022, 12, 1816. https://doi.org/10.3390/agriculture12111816

AMA Style

Martínez-Macias KJ, Márquez-Guerrero SY, Martínez-Sifuentes AR, Segura-Castruita MÁ. Habitat Suitability of Fig (Ficus carica L.) in Mexico under Current and Future Climates. Agriculture. 2022; 12(11):1816. https://doi.org/10.3390/agriculture12111816

Chicago/Turabian Style

Martínez-Macias, Karla Janeth, Selenne Yuridia Márquez-Guerrero, Aldo Rafael Martínez-Sifuentes, and Miguel Ángel Segura-Castruita. 2022. "Habitat Suitability of Fig (Ficus carica L.) in Mexico under Current and Future Climates" Agriculture 12, no. 11: 1816. https://doi.org/10.3390/agriculture12111816

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop