Variation of Soil Nitrogen, Organic Carbon, and Waxy Wheat Yield Using Liquid Organic and Mineral Fertilizers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Soil
2.2. Experimental Design and Details
- Control (N0);
- N60 mineral fertilizer–ammonium nitrate (AN60);
- N60 pig slurry (PS60);
- N60 liquid anaerobic digestate (LD60);
- N120 mineral fertilizer–ammonium nitrate (AN120);
- N120 pig slurry (PS120);
- N120 liquid anaerobic digestate (LD120);
- N120 ammonium nitrate and N50 ammonium nitrate (AN120 + 50);
- N120 pig slurry and N50 ammonium nitrate (PS120 + 50);
- N120 liquid anaerobic digestate and N50 ammonium nitrate (LD120 + 50).
2.3. Sampling, Preparation, and Analyses
2.4. Meteorological Conditions
2.5. Statistical Analysis
3. Results
3.1. Analysis of Variance
3.2. Plant Available and Total Soil Nitrogen
3.2.1. Mineral Nitrogen
3.2.2. Total Nitrogen
3.3. Soil Organic Carbon and Its Forms
3.3.1. Water-Extractable Organic Carbon
3.3.2. Mobile Humic Substances
3.3.3. Soil Organic Carbon
3.3.4. Carbon-to-Nitrogen Ratio
3.4. Productivity of Waxy Winter Wheat
3.5. PCA Loadings Based on Correlations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gross, C.D.; Harrison, R.B. The case for digging deeper: Soil organic carbon storage, dynamics, and controls in our changing world. Soil Syst. 2019, 3, 28. [Google Scholar] [CrossRef] [Green Version]
- Bolinder, M.A.; Crotty, F.; Elsen, A.; Frac, M.; Kismányoky, T.; Lipiec, J.; Tits, M.; Tóth, Z.; Kätterer, T. The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: A synthesis of reviews. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 929–952. [Google Scholar] [CrossRef]
- Page, K.L.; Dang, Y.P.; Dalal, R.C. The ability of conservation agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield. Front. Sustain. Food Syst. 2020, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Kochiieru, M.; Lamorski, K.; Feizienė, D.; Feiza, V.; Šlepetienė, A.; Volungevičius, J. Land use and soil types affect macropore network, organic carbon and nutrient retention, Lithuania. Geoderma Reg. 2022, 28, e00473. [Google Scholar] [CrossRef]
- Lal, R. Soil health and carbon management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Grass roots of soil carbon sequestration. Carbon Manag. 2012, 3, 9–11. [Google Scholar] [CrossRef]
- Lal, R. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Glob. Chang. Biol. 2018, 24, 3285–3301. [Google Scholar] [CrossRef] [PubMed]
- Slepetiene, A.; Kochiieru, M.; Jurgutis, L.; Mankeviciene, A.; Skersiene, A.; Belova, O. The effect of anaerobic digestate on the soil organic carbon and humified carbon fractions in different land-use systems in Lithuania. Land 2022, 11, 133. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, A.; Kahlon, C.S.; Brar, A.S.; Grover, K.K.; Dia, M.; Steiner, R.L. The role of cover crops towards sustainable soil health and agriculture—A review paper. Am. J. Plant Sci. 2018, 09, 1935–1951. [Google Scholar] [CrossRef] [Green Version]
- Mehra, P.; Baker, J.; Sojka, R.E.; Bolan, N.; Desbiolles, J.; Kirkham, M.B.; Ross, C.; Gupta, R.A. Review of Tillage Practices and Their Potential to Impact the Soil Carbon Dynamics. Adv. Agron. 2018, 150, 185–230. [Google Scholar] [CrossRef]
- Šlepetienė, A.; Kadžiulienė, Ž.; Feizienė, D.; Liaudanskienė, I.; Amalevičiūtė-Volungė, K.; Šlepetys, J.; Velykis, A.; Armolaitis, K.; Skersienė, A. The distribution of organic carbon, its forms and macroelements in agricultural soils. Zemdirbyste-Agriculture 2020, 107, 291–300. [Google Scholar] [CrossRef]
- Bhowmik, A.; Fortuna, A.M.; Cihacek, L.J.; Bary, A.I.; Cogger, C.G. Use of biological indicators of soil health to estimate reactive nitrogen dynamics in long-term organic vegetable and pasture systems. Soil Biol. Biochem. 2016, 103, 308–319. [Google Scholar] [CrossRef] [Green Version]
- Fortuna, A.; Harwood, R.; Kizilkaya, K.; Paul, E.A. Optimizing nutrient availability and potential carbon sequestration in an agroecosystem. Soil Biol. Biochem. 2003, 35, 1005–1013. [Google Scholar] [CrossRef]
- Iqbal, M.; van Es, H.M.; Anwar-ul-Hassan; Schindelbeck, R.; Moebius-Clune, B.N. Soil health indicators as affected by long-term application of farm manure and cropping patterns under semi-arid climates. Int. J. Agric. Biol. 2014, 16, 242–250. [Google Scholar]
- López-Garrido, R.; Madejón, E.; León-Camacho, M.; Girón, I.; Moreno, F.; Murillo, J.M. Reduced tillage as an alternative to no-tillage under Mediterranean conditions: A case study. Soil Tillage Res. 2014, 140, 40–47. [Google Scholar] [CrossRef]
- Bhowmik, A.; Fortuna, A.M.; Cihacek, L.J.; Bary, A.I.; Carr, P.M.; Cogger, C.G. Potential carbon sequestration and nitrogen cycling in long-term organic management systems. Renew. Agric. Food Syst. 2017, 32, 498–510. [Google Scholar] [CrossRef] [Green Version]
- Lithuanian Department of Statistics. 2022. Available online: https://osp.stat.gov.lt/statistiniu-rodikliu-analize#/ (accessed on 8 November 2022).
- Lithuania National Inventory Report. 2022, p. 275. Available online: https://unfccc.int/documents/461952/ (accessed on 14 November 2022).
- Lazcano, C.; Zhu-Barker, X.; Decock, C. Effects of organic fertilizers on the soil microorganisms responsible for N2O emissions: A review. Microorganisms 2021, 9, 983. [Google Scholar] [CrossRef]
- Lazcano, C.; Gómez-Brandón, M.; Revilla, P.; Domínguez, J. Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function: A field study with sweet corn. Biol. Fertil. Soils 2013, 49, 723–733. [Google Scholar] [CrossRef]
- Ling, N.; Zhu, C.; Xue, C.; Chen, H.; Duan, Y.; Peng, C.; Guo, S.; Shen, Q. Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biol. Biochem. 2016, 99, 137–149. [Google Scholar] [CrossRef]
- García-Gil, J.C.; Plaza, C.; Soler-Rovira, P.; Polo, A. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol. Biochem. 2000, 32, 1907–1913. [Google Scholar] [CrossRef]
- Staugaitis, G.; Poškus, K.; Brazienė, Z.; Paltanavičius, V. Optimization of nitrogen fertilisation of winter wheat. Zemdirbyste-Agriculture 2021, 108, 203–208. [Google Scholar] [CrossRef]
- Cesevičienė, J.; Gorash, A.; Liatukas, Ž.; Armonienė, R.; Ruzgas, V.; Statkevičiūtė, G.; Jaškūnė, K.; Brazauskas, G. Grain yield performance and quality characteristics of waxy and non-waxy winter wheat cultivars under high and low-input farming systems. Plants 2022, 11, 882. [Google Scholar] [CrossRef]
- Makhammadiev, S.; Djurakul, S.; Bakhtiyor, A.; Jabbarov, Z.; Jobborov, B.; Mirzarakhmatovich, T.M.; Gulomovich, M.K. The formation of the nutrient medium in the soil is influenced by varieties and fertilizer and its impact on grain yield of winter wheat. Ann. Rom. Soc. Cell Biol. 2021, 25, 5218–5230. [Google Scholar]
- Skudra, I.; Linina, A. The influence of meteorological conditions and nitrogen fertilizer on wheat grain yield and quality. In Proceedings of the 6th Baltic Conference on Food Science and Technology: Innovations for Food Science and Production, FOODBALT-2011-Conference Proceedings, Jelgava, Latvia, 5–6 May 2011; pp. 23–26. [Google Scholar]
- Marinciu, C.M.; Şerban, G.; Ittu, G.; Mustăţea, P.; Mandea, V.; Păunescu, G.; Voica, M.; Săulescu, N.N. Response of several winter wheat cultivars to reduced nitrogen fertilization. Rom. Agric. Res. 2018, 2018, 177–182. [Google Scholar]
- Whalen, J.K.; Thomas, B.W.; Sharifi, M. Novel Practices and Smart Technologies to Maximize the Nitrogen Fertilizer Value of Manure for Crop Production in Cold Humid Temperate Regions. Adv. Agron. 2019, 153, 1–85. [Google Scholar] [CrossRef]
- Hung, V.P.; Maeda, T.; Morita, N. Waxy and high-amylose wheat starches and flours—Characteristics, functionality and application. Trends Food Sci. Technol. 2006, 17, 448–456. [Google Scholar] [CrossRef]
- Zi, Y.; Ding, J.; Song, J.; Humphreys, G.; Peng, Y.; Li, C.; Zhu, X.; Guo, W. Grain Yield, Starch Content and Activities of Key Enzymes of Waxy and Non-waxy Wheat (Triticum aestivum L.). Sci. Rep. 2018, 8, 4548. [Google Scholar] [CrossRef] [Green Version]
- Liatukas, Ž.; Ruzgas, V.; Gorash, A.; Cecevičienė, J.; Armonienė, R.; Statkevičiūtė, G.; Jaškūnė, K.; Brazauskas, G. Development of the new waxy winter wheat cultivars Eldija and Sarta. Czech J. Genet. Plant Breed. 2021, 57, 149–157. [Google Scholar] [CrossRef]
- Slepetiene, A.; Volungevicius, J.; Jurgutis, L.; Liaudanskiene, I.; Amaleviciute-Volunge, K.; Slepetys, J.; Ceseviciene, J. The potential of digestate as a biofertilizer in eroded soils of Lithuania. Waste Manag. 2020, 102, 441–451. [Google Scholar] [CrossRef]
- Jurgutis, L.; Šlepetienė, A.; Amalevičiūtė-Volungė, K.; Volungevičius, J.; Šlepetys, J. The effect of digestate fertilisation on grass biogas yield and soil properties in field-biomass-biogas-field renewable energy production approach in Lithuania. Biomass Bioenergy 2021, 153, 106211. [Google Scholar] [CrossRef]
- Baethgen, W.E.; Alley, M.M. A manual colorimetric procedure for measuring ammonium nitrogen in soil and plant Kjeldahl digests. Commun. Soil Sci. Plan. 1989, 20, 961–969. [Google Scholar] [CrossRef]
- Saez-Plaza, P.; Navas, M.J.; Wybraniec, S.; Michałowski, T.; Asuero, A.G. An overview of the Kjeldahl method of nitrogen determination. Part II. Sample preparation, working scale, instrumental finish, and quality control. Crit. Rev. Anal. Chem. 2013, 43, 224–272. [Google Scholar] [CrossRef]
- Nikitin, B.A. A method for soil humus determination. Agric. Chem. 1999, 3, 156–158. [Google Scholar]
- Ponomareva, V.V.; Plotnikova, T.A. Humus and Soil-Forming; Publishing house Nauka: Leningrad, Russia, 1980. [Google Scholar]
- Jokubauskaite, I.; Amaleviciute, K.; Lepane, V.; Slepetiene, A.; Slepetys, J.; Liaudanskiene, I.; Karcauskiene, D.; Booth, C.A. High performance liquid chromatography (HPLC)-size exclusion chromatography (SEC) for qualitative detection of humic substances and natural organic matter in mineral soils and peats in Lithuania. Int. J. Environ. Anal. Chem. 2014, 95, 508–519. [Google Scholar] [CrossRef]
- Volungevičius, J.; Amalevičiūtė, K.; Liaudanskienė, I.; Šlepetienė, A.; Šlepetys, J. Chemical properties of Pachiterric Histosol as influenced by different land use. Zemdirbyste-Agriculture 2015, 102, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Klages, S.; Heidecke, C.; Osterburg, B. The impact of agricultural production and policy on water quality during the dry year 2018, a case study from Germany. Water 2020, 12, 1519. [Google Scholar] [CrossRef]
- Mahmud, K.; Panday, D.; Mergoum, A.; Missaoui, A. Nitrogen losses and potential mitigation strategies for a sustainable agroecosystem. Sustainability 2021, 13, 2400. [Google Scholar] [CrossRef]
- Yan, M.; Pan, G.; Lavallee, J.M.; Conant, R.T. Rethinking sources of nitrogen to cereal crops. Glob. Change Biol. 2020, 26, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Rochette, P.; Liang, C.; Pelster, D.; Bergeron, O.; Lemke, R.; Kroebel, R.; MacDonaldb, D.; Yanf, W.; Flemming, C. Soil nitrous oxide emissions from agricultural soils in Canada: Exploring relationships with soil, crop and climatic variables. Agr. Ecosyst. Environ. 2018, 254, 69–81. [Google Scholar] [CrossRef]
- Zsolnay, Á. Dissolved organic matter: Artefacts, definitions, and functions. Geoderma 2003, 113, 187–209. [Google Scholar] [CrossRef]
- Liaudanskiene, I.; Šlepetienė, A.; Šlepetys, J. Distribution of organic carbon in humic and granulodensimetric fractions of soil as influenced by tillage and crop rotation. EST J. Ecol. 2013, 62, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Slepetiene, A.; Slepetys, J. Status of humus in soil under various long-term tillage systems. Geoderma 2005, 127, 207–215. [Google Scholar] [CrossRef]
- Bogužas, V.; Mikučionienė, R.; Šlepetienė, A.; Sinkevičienė, A.; Feiza, V.; Steponavičienė, V.; Adamavičienė, A. Long-term effect of tillage systems, straw and green manure combinations on soil organic matter. Zemdirbyste-Agriculture 2015, 102, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Zavarzina, A.G.; Kravchenko, E.G.; Konstantinov, A.I.; Perminova, I.V.; Chukov, S.N.; Demin, V.V. Comparison of the Properties of Humic Acids Extracted from Soils by Alkali in the Presence and Absence of Oxygen. Eurasian Soil Sci. 2019, 52, 880–891. [Google Scholar] [CrossRef]
- Jokubauskaitė, I.; Šlepetienė, A.; Karčauskienė, D. Organinė anglis ir kiti svarbūs makroelementai rūgščiame ir kalkintame dirvožemyje. Žemės Ūkio Moksl. 2014, 21, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Filcheva, E.; Hristova, M.; Nikolova, P.; Popova, T.; Chakalov, K.; Savov, V. Quantitative and qualitative characterisation of humic products with spectral parameters. J. Soils Sediments 2018, 18, 2863–2867. [Google Scholar] [CrossRef]
- King, A.E.; Blesh, J. Crop rotations for increased soil carbon: Perenniality as a guiding principle: Perenniality. Ecol. Appl. 2018, 28, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Hadas, A.; Kautsky, L.; Goek, M.; Kara, E.E. Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover. Soil Biol. Biochem. 2004, 36, 255–266. [Google Scholar] [CrossRef]
- Crème, A.; Rumpel, C.; Le Roux, X.; Romian, A.; Lan, T.; Chabbi, A. Ley grassland under temperate climate had a legacy effect on soil organic matter quantity, biogeochemical signature and microbial activities. Soil Biol. Biochem. 2018, 122, 203–210. [Google Scholar] [CrossRef]
- Riva, C.; Orzi, V.; Carozzi, M.; Acutis, M.; Boccasile, G.; Lonati, S.; Tambone, F.; D'Imporzano, G.; Adani, F. Short-term experiments in using digestate products as substitutes for mineral (N) fertilizer: Agronomic performance, odours, and ammonia emission impacts. Sci. Total Environ. 2016, 547, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Baştabak, B.; Koçar, G. Biogas digestates in substitution for chemical fertilizers: A comparative study on Lactuca sativa seedling cultivation in Turkey. 2020. Available online: https://d1wqtxts1xzle7.cloudfront.net/63828389/BiogasdigestatesinsubstitutionforchemicalfertilizersAcomparativestudyonLactucasativaseedlingcultivationinTurkey20200704-10875-bgw153-with-cover-page-v2.pdf?Expires=1669364927&Signature=g1fw3lG3oK7Ra39KRnevgrZZojAt3JBg3ylXJhBZ4GgKL~k3YfDA6BEHx877kqpL0T6xAwHcyb3gzorAaHDGMEyIwo7LFcYRem~O0YNNkWWaP79t6TpLF0fMKwXPPGGWcVIM52EhoS42jbkpLVjqS0XUIrRFTKU5mrLAk9dA8a07yC1qreMDNbun9JUOgBqX1N~mAMyD~DVu5IFfvcPp1dtOBfI8KmmN6dFll-appOSS8MhrtD7~RvG3fYaWDtavLwFvMxLL6Gk8sSmpOLBCiZ7mwtSVrQ0QxSqf2LsFKZzmJYqASYSKBpS~uITVw0GJ1q3X~5WYpUInepw1VtLrNQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA (accessed on 10 November 2022).
- Głowacka, A.; Szostak, B.; Klebaniuk, R. Effect of biogas digestate and mineral fertilisation on the soil properties and yield and nutritional value of switchgrass forage. Agronomy 2020, 10, 490. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Singh, S.; Singh, M.; Singh, A.; Ali, H.M.; Siddiqui, M.H.; Bhattarai, D. Changes in wheat rhizosphere carbon pools in response to nitrogen and straw incorporation. Agronomy 2022, 12, 2774. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; de la Fuente, C.; Campoy, M.; Carrasco, L.; Nájera, I.; Baixauli, C.; Caravaca, F.; Roldán, A.; Cegarra, J.; Bernal, M.P. Agricultural use of digestate for horticultural crop production and improvement of soil properties. Eur. J. Agron. 2012, 43, 119–128. [Google Scholar] [CrossRef]
- Makádi, M.; Tomócsik, A.; Orosz, V. Digestate: A New Nutrient Source—Review. In Biogas; Kumar, B.S., Ed.; InTech: Rijeca, Croatia, 2012; pp. 295–310. Available online: http://www.intechopen.com/books/biogas/digestate-a-new-nutrient-source-review (accessed on 10 November 2022).
- Cavalli, D.; Corti, M.; Baronchelli, D.; Bechini, L.; Marino Gallina, P. CO2 emissions and mineral nitrogen dynamics following application to soil of undigested liquid cattle manure and digestates. Geoderma 2017, 308, 26–35. [Google Scholar] [CrossRef]
- Möller, K.; Stinner, W.; Deuker, A.; Leithold, G. Effects of different manuring systems with and without biogas digestion on nitrogen cycle and crop yield in mixed organic dairy farming systems. Nutr. Cycl. Agroecosystems 2008, 82, 209–232. [Google Scholar] [CrossRef]
- Barłóg, P.; Hlisnikovský, L.; Kunzová, E. Effect of digestate on soil organic carbon and plant-available nutrient content compared to cattle. Agronomy 2020, 10, 379. [Google Scholar] [CrossRef] [Green Version]
- Karimi, B.; Sadet-Bourgeteau, S.; Cannavacciuolo, M.; Chauvin, C.; Flamin, C.; Haumont, A.; Jean-Baptiste, V.; Reibel, A.; Vrignaud, G.; Ranjard, L. Impact of biogas digestates on soil microbiota in agriculture: A review. Environ. Chem. Lett. 2022, 20, 3265–3288. [Google Scholar] [CrossRef]
- Liu, F.; Wang, D.; Zhang, B.; Huang, J. Concentration and biodegradability of dissolved organic carbon derived from soils: A global perspective. Sci. Total Environ. 2021, 754, 142378. [Google Scholar] [CrossRef]
- Manninen, N.; Soinne, H.; Lemola, R.; Hoikkala, L.; Turtola, E. Effects of agricultural land use on dissolved organic carbon and nitrogen in surface runoff and subsurface drainage. Sci. Total Environ. 2018, 618, 1519–1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, M.Z.; Robertson, G.P.; Basso, B.; Hamilton, S.K. Leaching losses of dissolved organic carbon and nitrogen from agricultural soils in the upper US Midwest. Sci. Total Environ. 2020, 734, 139379. [Google Scholar] [CrossRef]
- Monard, C.; Jeanneau, L.; Le Garrec, J.L.; Le Bris, N.; Binet, F. Short-term effect of pig slurry and its digestate application on biochemical properties of soils and emissions of volatile organic compounds. Appl. Soil Ecol. 2020, 147, 103376. [Google Scholar] [CrossRef]
- Mickan, B.S.; Abbott, L.K.; Solaiman, Z.M.; Mathes, F.; Siddique, K.H.M.; Jenkins, S.N. Soil disturbance and water stress interact to influence arbuscular mycorrhizal fungi, rhizosphere bacteria and potential for N and C cycling in an agricultural soil. Biol. Fertil. Soils 2019, 55, 53–66. [Google Scholar] [CrossRef]
Year | pH | DM | Ntot | N-NH4 | N-NO3 | Corg | MHSs | MHAs | MHAs:MFAs | C:N |
---|---|---|---|---|---|---|---|---|---|---|
g·kg−1 | ||||||||||
Pig Slurry | ||||||||||
2020 | 7.65 | 31.6 | 2.36 | 1.65 | 0.018 | 7.41 | 3.4 | 1.18 | 0.53 | 3.14 |
2021 | 6.86 | 40.4 | 4.74 | 2.94 | 0.012 | 12.87 | 7.66 | 1.78 | 0.30 | 2.72 |
Mean | 7.26 | 36.0 | 3.55 | 2.30 | 0.015 | 10.14 | 5.53 | 1.48 | 0.42 | 2.93 |
SE | 0.40 | 4.4 | 1.19 | 0.65 | 0.003 | 2.73 | 2.13 | 0.30 | 0.12 | 0.21 |
Liquid Anaerobic Digestate | ||||||||||
2020 | 7.72 | 27.5 | 2.76 | 1.66 | 0.017 | 10.44 | 4.18 | 1.78 | 0.74 | 3.78 |
2021 | 7.77 | 13.9 | 2.38 | 1.79 | 0.017 | 4.46 | 3.12 | 1.37 | 0.78 | 1.87 |
Mean | 7.75 | 20.7 | 2.57 | 1.73 | 0.017 | 7.45 | 3.65 | 1.58 | 0.76 | 2.83 |
SE | 0.02 | 6.8 | 0.19 | 0.07 | 0.000 | 2.99 | 0.53 | 0.20 | 0.02 | 0.95 |
Effect | Degrees of Freedom | N-NO3 | N-NH4 | Ntot | WEOC | MHSs | SOC | C:N |
---|---|---|---|---|---|---|---|---|
Fertilizer | 2 | 4.95 ** | 0.90 | 0.68 | 10.75 ** | 8.24 ** | 8.59 ** | 6.25 ** |
N rate | 2 | 18.00 ** | 0.80 | 1.65 | 0.79 | 1.57 | 2.47 | 10.17 ** |
Time | 4 | 211.3 ** | 873.0 ** | 58.47 ** | 14.49 ** | 11.97 ** | 56.96 ** | 89.94 ** |
Fertilizer × N rate | 4 | 0.23 | 0.89 | 6.55 ** | 4.33 ** | 5.54 ** | 6.63 ** | 2.53 * |
Fertilizer × time | 8 | 5.14 ** | 3.18 ** | 2.04 * | 4.21 ** | 2.74 ** | 2.89 ** | 2.37 * |
N rate × time | 8 | 6.29 ** | 1.05 | 2.24 * | 3.57 ** | 2.08 * | 1.29 | 2.61 * |
Fertilizer × N rate × time | 16 | 1.25 | 0.45 | 1.68 | 1.51 | 0.95 | 1.00 | 3.85 ** |
Treatment | 2020 | 2021 | ||||
---|---|---|---|---|---|---|
AV | IG | AH | AV | IG | AH | |
N rate × time | ||||||
N0 | 2.67 ± 0.19 | 5.52 ± 0.61 | 10.27 ± 0.39 | 3.56 ± 0.34 | 3.79 ± 0.59 | 2.25 ± 0.23 |
N60 | 6.88 ± 0.59 cd | 9.52 ± 0.27 b | 3.67 ± 0.13 efg | 4.82 ± 0.30 defg | 3.06 ± 0.25 g | |
N120 | 7.06 ± 0.68 c | 12.35 ± 0.32 a | 3.63 ± 0.35 efg | 5.36 ± 0.38 cdef | 3.41 ± 0.47 fg | |
N120 + 50 | 7.06 ± 0.62 c | 12.21 ± 0.49 a | 3.77 ± 0.17 efg | 5.60 ± 0.35 cde | 6.29 ± 0.57 cd | |
Fertilizer × time | ||||||
N0 | 2.67 ± 0.19 | 5.52 ± 0.61 | 10.27 ± 0.39 | 3.56 ± 0.34 | 3.79 ± 0.59 | 2.25 ± 0.23 |
AN | 6.11 ± 0.56 c | 10.88 ± 0.58 ab | 3.43 ± 0.18 d | 6.15 ± 0.26 c | 4.36 ± 0.56 cd | |
PS | 6.07 ± 0.21 c | 11.34 ± 0.66 a | 4.00 ± 0.30 cd | 4.68 ± 0.28 cd | 4.04 ± 0.52 cd | |
LD | 8.82 ± 0.55 b | 11.86 ± 0.46 a | 3.64 ± 0.18 d | 4.95 ± 0.30 cd | 4.36 ± 0.90 cd |
Treatment | 2020 | 2021 | ||||
---|---|---|---|---|---|---|
AV | IG | AH | AV | IG | AH | |
Fertilizer × time | ||||||
N0 | 2.43 ± 0.23 | 3.94 ± 0.03 | 3.00 ± 0.12 | 0.55 ± 0.06 | 0.89 ± 0.04 | 0.14 ± 0.05 |
AN | 4.25 ± 0.12 b | 3.27 ± 0.12 c | 0.83 ± 0.07 e | 1.50 ± 0.12 d | 0.17 ± 0.04 f | |
PS | 4.87 ± 0.22 a | 3.21 ± 0.06 c | 0.84 ± 0.07 e | 1.19 ± 0.06 de | 0.13 ± 0.02 f | |
LD | 4.79 ± 0.10 a | 3.34 ± 0.10 c | 1.02 ± 0.17 de | 1.20 ± 0.07 de | 0.13 ± 0.05 f |
Treatment | 2020 | 2021 | ||||
---|---|---|---|---|---|---|
AV | IG | AH | AV | IG | AH | |
N rate × time | ||||||
N0 | 1.13 ± 0.02 | 1.17 ± 0.03 | 1.18 ± 0.05 | 1.28 ± 0.03 | 1.11 ± 0.02 | 1.27 ± 0.01 |
N60 | 1.23 ± 0.03 abc | 1.18 ± 0.02 bc | 1.31 ± 0.03 ab | 1.13 ± 0.03 c | 1.34 ± 0.02 a | |
N120 | 1.34 ± 0.03 a | 1.10 ± 0.02 c | 1.37 ± 0.03 a | 1.12 ± 0.02 c | 1.37 ± 0.04 a | |
N120 + 50 | 1.34 ± 0.03 a | 1.14 ± 0.02 c | 1.36 ± 0.03 a | 1.14 ± 0.02 c | 1.35 ± 0.03 a | |
Fertilizer × time | ||||||
N0 | 1.13 ± 0.02 | 1.17 ± 0.03 | 1.18 ± 0.05 | 1.28 ± 0.03 | 1.11 ± 0.02 | 1.27 ± 0.01 |
AN | 1.25 ± 0.06 ab | 1.16 ± 0.03 bc | 1.34 ± 0.03 a | 1.15 ± 0.03 bc | 1.37 ± 0.03 a | |
PS | 1.30 ± 0.01 a | 1.14 ± 0.02 bc | 1.35 ± 0.03 a | 1.15 ± 0.02 bc | 1.38 ± 0.04 a | |
LD | 1.36 ± 0.01 a | 1.12 ± 0.03 bc | 1.35 ± 0.03 a | 1.10 ± 0.03 c | 1.31 ± 0.02 a | |
Fertilizer × N rate | ||||||
N60 | N120 | N120 + 50 | ||||
AN | 1.24 ± 0.03 ab | 1.31 ± 0.04 a | 1.21 ± 0.03 b | |||
PS | 1.26 ± 0.03 ab | 1.23 ± 0.03 ab | 1.31 ± 0.04 a | |||
LD | 1.22 ± 0.03 ab | 1.26 ± 0.04 ab | 1.27 ± 0.04 ab |
Treatment | 2020 | 2021 | ||||
---|---|---|---|---|---|---|
Grain Number per Unit Area (m−2) | 1000-Grain Weight (g) | Grain Yield (kg·ha−1) | Grain Number per Unit Area (m−2) | 1000-Grain Weight (g) | Grain Yield (kg·ha−1) | |
N0 | 14,972 b | 34.21 c | 3943 b | 8582 b | 29.51 a | 1754 b |
AN60 | 18,555 ab | 35.53 abc | 5131 ab | 11,411 ab | 29.74 a | 2345 ab |
PS60 | 21,105 a | 35.47 abc | 5649 a | 9803 ab | 30.01 a | 2397 ab |
LD60 | 17,370 ab | 36.32 ab | 5598 a | 9164 ab | 29.98 a | 2004 ab |
AN120 | 15,953 aba | 34.78 bc | 4649 ab | 13,920 a | 29.79 a | 2774 a |
PS120 | 19,505 ab | 35.02 abc | 5684 a | 11,601 ab | 30.86 a | 2556 ab |
LD120 | 18,059 aba | 35.61 abc | 5440 a | 10,037 ab | 29.73 a | 2486 ab |
AN120 + 50 | 18,563 ab | 35.39 abc | 5262 ab | 12,492 ab | 31.24 a | 2727 a |
PS120 + 50 | 19,636 ab | 35.76 abc | 5946 a | 10,535 ab | 30.26 a | 2527 ab |
LD120 + 50 | 18,371 ab | 36.48 a | 5538 a | 12,388 ab | 30.42 a | 2549 ab |
Mean | 18,209 | 35.46 | 5284 | 10,993 | 30.15 | 2412 |
Year | 2020 | 2021 | ||
---|---|---|---|---|
Principal Component | PC1 | PC2 | PC1 | PC2 |
Variability (%) | 23.8 | 17.9 | 30.6 | 14.1 |
WEOC_AV | −0.488 | −0.549 | ||
MFAs_AV | −0.567 | −0.403 | ||
MHAs_AV | −0.453 | −0.157 | ||
MHSs_AV | −0.716 | −0.423 | ||
SOC_AV | −0.831 | 0.066 | ||
Ntot_AV | −0.600 | −0.336 | ||
C:N_AV | −0.268 | 0.478 | ||
N-NO3_AV | −0.554 | −0.223 | ||
N-NH4_AV | −0.110 | −0.067 | ||
WEOC_IG | −0.697 | 0.263 | −0.448 | 0.589 |
MFAs_IG | −0.612 | 0.212 | −0.624 | 0.129 |
MHAs_IG | −0.636 | 0.405 | −0.667 | 0.497 |
MHSs_IG | −0.836 | 0.405 | −0.794 | 0.393 |
SOC_IG | −0.807 | 0.132 | −0.797 | 0.361 |
Ntot_IG | −0.264 | 0.253 | −0.807 | −0.108 |
C:N_IG | −0.418 | −0.117 | 0.033 | 0.702 |
N-NO3_IG | 0.031 | 0.256 | −0.324 | −0.298 |
N-NH4_IG | −0.541 | 0.026 | −0.461 | −0.035 |
WEOC_AH | −0.186 | 0.060 | −0.642 | 0.281 |
MFAs_AH | −0.108 | −0.632 | −0.504 | −0.079 |
MHAs_AH | −0.577 | −0.553 | −0.776 | 0.037 |
MHSs_AH | −0.487 | −0.748 | −0.784 | −0.023 |
SOC_AH | −0.320 | −0.837 | −0.600 | 0.624 |
Ntot_AH | 0.070 | −0.860 | −0.623 | −0.287 |
C:N_AH | −0.633 | −0.031 | −0.121 | 0.757 |
N-NO3_AH | −0.493 | 0.360 | −0.317 | −0.518 |
N-NH4_AH | −0.211 | −0.460 | −0.373 | −0.093 |
Grain number per unit area | −0.487 | −0.302 | −0.300 | −0.247 |
1000-grain weight | −0.017 | 0.129 | −0.390 | −0.261 |
Grain yield | −0.444 | −0.020 | −0.274 | −0.355 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petraityte, D.; Ceseviciene, J.; Arlauskiene, A.; Slepetiene, A.; Skersiene, A.; Gecaite, V. Variation of Soil Nitrogen, Organic Carbon, and Waxy Wheat Yield Using Liquid Organic and Mineral Fertilizers. Agriculture 2022, 12, 2016. https://doi.org/10.3390/agriculture12122016
Petraityte D, Ceseviciene J, Arlauskiene A, Slepetiene A, Skersiene A, Gecaite V. Variation of Soil Nitrogen, Organic Carbon, and Waxy Wheat Yield Using Liquid Organic and Mineral Fertilizers. Agriculture. 2022; 12(12):2016. https://doi.org/10.3390/agriculture12122016
Chicago/Turabian StylePetraityte, Danute, Jurgita Ceseviciene, Ausra Arlauskiene, Alvyra Slepetiene, Aida Skersiene, and Viktorija Gecaite. 2022. "Variation of Soil Nitrogen, Organic Carbon, and Waxy Wheat Yield Using Liquid Organic and Mineral Fertilizers" Agriculture 12, no. 12: 2016. https://doi.org/10.3390/agriculture12122016
APA StylePetraityte, D., Ceseviciene, J., Arlauskiene, A., Slepetiene, A., Skersiene, A., & Gecaite, V. (2022). Variation of Soil Nitrogen, Organic Carbon, and Waxy Wheat Yield Using Liquid Organic and Mineral Fertilizers. Agriculture, 12(12), 2016. https://doi.org/10.3390/agriculture12122016