Uniform Root Layer Application at Optimal Timing Can Effectively Improve Root-Knot Nematode Disease Control in Rui Yam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pathogen Identification
2.3. Dynamic Monitoring of Root-Knot Nematode J2 Population in Soil
2.4. Dynamic Investigation of Disease Occurrence in the Field
2.5. Visual In Situ Observation of Absorbing Root Disease Incidence
2.6. Trials on the Optimal Time of Chemical Control
2.7. Application Method Test
3. Results
3.1. Identification of Root-Knot Nematode Species
3.2. Dynamics of the M. incognita J2 Population in Soil
3.3. Dynamics of Yam Root-Knot Nematode Disease in the Field
3.4. Visual In Situ Observation of Root-Knot Nematode Diseasee
3.5. Control Effect of Chemical Application at Different Periods on Root-Knot Nematode Disease of Yam
3.6. Control Effect of Different Application Methods on Root-Knot Nematode Disease in Yam
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mondo, J.M.; Agre, P.A.; Edemodu, A.; Adebola, P.; Asiedu, R.; Akoroda, M.O.; Asfaw, A. Floral Biology and Pollination Efficiency in Yam (Dioscorea spp.). Agriculture 2020, 10, 560. [Google Scholar] [CrossRef]
- Verter, N.; Bečvářová, V. An Analysis of Yam Production in Nigeria. Acta Univ. Agric. Silv. Mendel. Brun. 2015, 63, 659–665. [Google Scholar] [CrossRef] [Green Version]
- Asiedu, R.; Sart, A. Crops that feed the World: Yams for income and food security. Food Sec. 2010, 2, 305–315. [Google Scholar] [CrossRef]
- Price, E.J.; Bhattacharjee, R.; Lopez-Montes, A.; Fraser, P.D. Carotenoid profiling of yams: Clarity, comparisons and diversity. Food Chem. 2018, 259, 130–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ijato, J.; Tedela, P. Phytotoxic Potentials of Cold and Hot Aqueous Extracts of Chromolaena odorata against Fungal Deteriorating Agents of Yam Tubers (Dioscorea rotundata, Poir) after Harvest. Am. J. Exp. Agric. 2015, 5, 262–266. [Google Scholar] [CrossRef]
- Okigbo, R.N.; Nmeka, I. Control of yam tuber rot with leaf extracts of Xylopia aethiopica and Zingiber ocinale. Afr. J. Biotechnol. 2005, 4, 804–807. [Google Scholar]
- Mckoy, M.L.; Thomas, P.G.; Asemota, H.; Omoruyi, F.; Simon, O. Effects of Jamaican Bitter Yam (Dioscorea polygonoides) and Diosgenin on Blood and Fecal Cholesterol in Rats. J. Med. Food 2014, 17, 1183–1188. [Google Scholar] [CrossRef] [PubMed]
- Kolombia, Y.A.; Ogundero, O.; Olajide, E.; Viaene, N.; Lava-Kumar, P.; Coyne, D.L.; Bert, W. Morphological and molecular characterization of Pratylenchus species from yam (Dioscorea spp.) in West Africa. J. Nematol. 2021, 52, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-Lopez, R.; Palomares-Rius, J.E.; Wesemael, W.M.L. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef] [Green Version]
- Conye, D.L.; Affokpon, A. Nematode parasites of tropical root and tuber crops (excluding potatoes). Plant Parasit. Nematodes Subtrop. Trop. Agric. 2018, 3, 252–289. [Google Scholar]
- Wu, W.Q.; Chen, C.; Zhang, Q.; Ahmed, J.Z.; Xu, Y.; Huang, X.L.; Xie, J.; Xia, W.; Huang, D.Y. A comparative assessment of diversity of greater yam (Dioscorea alata) in China. Sci. Hortic. 2019, 243, 116–124. [Google Scholar] [CrossRef]
- Gao, Q.K. The observation of occurrence of root knot nematodes on Chinese yam. Chin. Veg. 1992, 5, 24–25. [Google Scholar]
- Xu, J.H.; Liu, P.L.; Meng, Q.P.; Hai, L. Characterisation of Meloidogyne species from china using isozyme phenotypes and amplified mitochondrial DNA restriction fragment length polymorphism. Eur. J. Plant Pathol. 2004, 110, 309–315. [Google Scholar] [CrossRef]
- Coyne, D.L.; Tchabi, A.; Baimey, H.; Labuschagne, N.; Rotifa, I. Distribution and prevalence of nematodes (Scutellonema bradys and Meloidogyne spp.) on marketed yam (Dioscorea spp.) in West Africa. Field Crop Res. 2006, 96, 142–150. [Google Scholar] [CrossRef]
- Adesiyan, S.O.; Odihirin, R.A. Root-knot nematodes as pests of yams (Dioscorea spp.) in southern Nigeria. Nematologica 1978, 24, 132–134a. [Google Scholar] [CrossRef]
- Mohandas, C.; Ramakrishnan, S. Pathogenic effect of root-knot nematode, Meloidogyne incognita on African white yam, Dioscorea rotundata. Indian J. Nematol. 1997, 27, 233–236. [Google Scholar]
- Su, L.M. Diversity and Characterization of Plant-Parasitic Nematodes Associated with Cereals and Yam (Dioscorea spp.). Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2021. [Google Scholar]
- Institute of Plant Protection; Chinese Academy of Agricultural Sciences; China Society of Plant Protection. Crop Diseases and Insect Pests in China, 3rd ed.; China Agriculture Press: Beijing, China, 2015; pp. 1163–1167. [Google Scholar]
- Ren, Y.P. Feasibility Evaluation of Applying Abamectin by Drip Irrigation for Control Meloidogyne incognita Disease. Master’s Thesis, Shandong Agricultural University, Taian, China, 2016. [Google Scholar]
- Subbotin, S.A.; Sturhan, D.; Chizhov, V.N.; Vovlns, N.; Baldwin, J.G. Phylogenetic analysis of Tylenchida Thorne, 1949 as inferred from D2 and D3 expansion fragments of the 28S rRNA gene sequences. Nematology 2006, 8, 455–474. [Google Scholar] [CrossRef] [Green Version]
- Vrain, T.C.; Wakarchuk, D.A.; Lévesque, A.C.; Hamilton, R.I. Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fundam. Appl. Nematol. 1992, 15, 563–573. [Google Scholar]
- Meng, Q.P.; Long, H.; Xu, J.H. PCR assays for rapid and sensitive identification of three major root-knot nematodes, Meloidogyne incognita, M. javanica and M. arenaria. Acta Phytopathol. Sin. 2004, 34, 204–210. [Google Scholar]
- Zijlstra, C.; Donkers-Venne, D.T.H.M.; Fargette, M. Identification of Meloidogyne incognita, M. javanica and M. arenaria using sequence characterised amplified region (SCAR) based PCR assays. Nematology 2000, 2, 847–853. [Google Scholar]
- Long, H.; Liu, H.; Xu, J.H. Development of a PCR diagnostic for the root-knot nematode Meloidogyne enterolobii. Acta Phytopathol. Sin. 2006, 36, 109–115. [Google Scholar]
- Zijlstra, C. Identification of Meloidogyne chitwoodi, M. fallax and M. hapla based on SCAR-PCR: A powerful way of enabling reliable identification of populations or individuals that share common traits. Eur. J. Plant Pathol. 2000, 106, 283–290. [Google Scholar] [CrossRef]
- Hallmann, J.; Subbotin, S.A. Methods for extraction, processing and detection of plant and soil nematodes. In Plant Parasitic Nematodes in Subtropical and Tropical Agriculture, 3rd ed.; Sikora, R.A., Coyne, D., Hallmann, J., Timper, P., Eds.; CABI Publishing: Wallingford, UK, 2005; pp. 53–86. [Google Scholar]
- Mao, Z.C.; Yang, Y.H.; Xu, D.H.; Xie, B.Y.; Ling, J.; Li, Y. Technical Code of practice for Evalution of Potato Resistance Against Southern Root-Knot Nematode (Meloidogyne incognita) NY/T 3623—2020; Chinese Agriculture Press: Beijing, China, 2020. [Google Scholar]
- Hua, J.L.; Li, X.S.; Shen, A.X.; Hua, X.Z.; Hua, J.L.; Chen, J.; Huang, J.H. A Medicine Applicator Device for Plant Protection: ZL201921477225.0. 2020–05–08. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=SCPD&dbname=SCPD202001&filename=CN210470789U&uniplatform=NZKPT&v=Twy9h8xcgeAsp9HRVXHxIsoe0wunFBmwl6-vyfBmBHql6CNmLE5xaT5OKgEtkzg_ (accessed on 1 November 2022).
- FAOSTAT. FAO Food and Agriculture Organization of the United Nations Statistics Database. 2020. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 2 February 2022).
- Wang, P.T.; Shan, N.; Zhu, Q.L.; Sun, J.Y.; Zhang, H.Y.; Huang, Y.J.; Xie, G.Q.; Zhou, Q.H. Analysis of Genetic Diversity and Quality Variation of Ruichang Yam. Chin. Veg. 2020, 8, 57–63. [Google Scholar]
- Kolombia, Y.A.; Karssen, G.; Viaene, N.; Kumar, P.L.; Sutter, N.D.; Joos, L.; Coyne, D.L.; Bert, W. Diversity of Root-knot Nematodes Associated with Tubers of Yam (Dioscorea spp.) Established Using Isozyme Analysis and Mitochondrial DNA-based Identification. J. Nematol. 2017, 49, 177–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.Y.; Fan, L.J.; Xu, X.L.; Liu, Z.R.; Yu, J.S.; Kang, H.B.; Hu, P.H.; Tu, N.S.; Peng, D.L.; Yao, Y.J. Identification and geographical distribution of pathogenic nematodes on Chinese yam in Jiangxi province. Plant Prot. 2022, 48, 302–309. [Google Scholar]
- Chen, L.J.; Wei, F.; Duan, Y.X.; Bai, C.M.; Huo, J.X.; Zhu, X.F. Effects of temperature and moisture on egg hatching and the second instars of Meloidogyne incognita. Plant Prot. 2009, 35, 48–52. [Google Scholar]
- Curtis, R.H.C. Plant-nematode interactions: Environmental signals detected by the nematode’s chemosensory organs control changes in the surface cuticle and behaviour. Parasite 2008, 15, 310–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, H.; Levy, S.; Flavell, S.W.; Mende, F.; Latham, R.; Zimmer, M.; Bargmann, C.I. Dissection of neuronal gap junction circuits that regulate social behavior in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2017, 114, E1263–E1272. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.L.; Sun, Q.H.; Quentin, M.; Ling, J.; Abad, P.; Zhang, X.P.; Li, Y.; Yang, Y.H.; Favery, B.; Mao, Z.C.; et al. A Meloidogyne incognita c-type lectin effector targets plant catalases to promote parasitism. New Phytol. 2021, 232, 2124–2137. [Google Scholar] [CrossRef] [PubMed]
- Teillet, A.; Dybal, K.; Kerry, B.R.; Miller, A.J.; Curtis, R.H.C.; Hedden, P. Transcriptional changes of the root-knot nematode Meloidogyne incognita in response to arabidopsis thaliana root signals. PLoS ONE 2013, 8, e61259. [Google Scholar] [CrossRef] [Green Version]
- Sikder, M.M.; Vestergård, M. Impacts of root metabolites on soil nematodes. Front. Plant Sci. 2019, 10, 1792. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.Z.; Wang, J.J.; Ren, Z.H.; Hu, Z.K.; Tian, S.Y.; Fan, W.Q.; Chen, X.Y.; Griffiths, B.S.; Hu, F.; Liu, M.Q. Root traits mediate functional guilds of soil nematodes in an ex-arable field. Soil Biol. Biochem. 2020, 151, 108038. [Google Scholar] [CrossRef]
- Cox, D.E.; Dyer, S.; Weir, R.; Cheseto, X.; Sturrock, M.; Coyne, D.; Torto, B.; Maule, A.G.; Dalzell, J.J. ABC transporter genes ABC-C6 and ABC-G33 alter plant-microbe-parasite interactions in the rhizosphere. Sci. Rep. 2019, 9, 19899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, X.; Chen, X.Y.; Geisen, S.; Zhang, J.R.; Zhu, H.M.; Hu, F.; Liu, M.Q. Agricultural habitats are dominated by rapidly evolving nematodes revealed through phylogenetic comparative methods. Soil Biol. Biochem. 2021, 155, 108183. [Google Scholar] [CrossRef]
- Chi, Y.K.; Wang, T.; Zhao, W.; Ye, M.D.; Farman, A.; Qi, R.D. Control effect of 41.7% fluopyram SC against Trichosanthes kirilowii root-knot nematode. J. Anhui Agric. Sci. 2019, 47, 150–152. [Google Scholar]
- Shi, L.B.; Wang, Z.H.; Wu, H.Y.; Liu, J. Influence of continuous tomato-cropping on second-stage juveniles of root-knot nematode and free-living nematodes from rhizosphere soil in plastic greenhouse. Acta Phytopathol. Sin. 2010, 40, 1–89. [Google Scholar]
- Zhao, W.T.; Lei, P.; Liu, X.Y.; Zhu, X.F.; Wang, Y.Y.; Fan, H.Y.; Chen, L.J.; Duan, Y.X. Diversity and spatial distribution of rhizosphere soil nematodes in a tomato greenhouse uring different growing period. J. Shenyang Agric. Univ. 2019, 50, 34–42. [Google Scholar]
- Qi, F.; Li, G.S. A preliminary report on the determination of nematodes in rhizosphere soil of different crops. Chin. Agric. Sci. Bull. 2002, 18, 87–88. [Google Scholar]
- Bardgett, R.D.; Mommer, L.; De Vries, F.T. Going underground: Root traits as drivers of ecosystem processes. Trends Ecol. Evol. 2014, 29, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Li, X.P.; Zhu, H.M.; Geisen, S.; Bellard, C.A.; Hu, F.; Li, H.M.; Chen, X.Y.; Liu, M.Q. Agriculture erases climate constraints on soil nematode communities across large spatial cales. Glob. Change Biol. 2019, 26, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.F. Study on Pathogen Identification, Field Occurrence Dynamic and Chemical Control of Shortbody Nematodes Disease on Dioscorea opposita Thumb. Master’s Thesis, Hebei Agricultural University, Baoding, China, 2015. [Google Scholar]
Species | Specific Primers | Fragment Length |
---|---|---|
M. incogita | 5′-GTGAGGATTCAGCTCCCCAG-3′ | 995 bp |
5′-ACGAGGAACATACTTCTCCGTCC-3′ | ||
M. javanica | 5′-ACGCTAGAATTCGACCCTGG-3′ | 517 bp |
5′-GGTACCAGAAGCAGCCATGC-3′ | ||
M. arenaria | 5′-TCGGCGATAGAGGTAAATGAC-3′ | 420 bp |
5′-TCGGCGATAGACACTACAACT-3′ | ||
M. enterolobii | 5′-AACTTTTGTGAAAGTGCCGCTG -3′ | 236 bp |
5′-TCAGTTCAGGCAGGATCAACC-3′ | ||
M. hapla | 5′-TGACGGCGGTGAGTGCGA-3′ | 610 bp |
5′-TGACGGCGGTACCTCATAG-3′ |
Treatment | Nematicide | Dosage (g.a.i./hm2) | 2019 Ruichang | 2020 Ruichang | 2020 Nanchang | 2021 Ruichang | 2021 Nanchang | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Application Date | Application Date | Application Date | Application Date | Application Date | ||||||||
1st | 2nd | 1st | 2nd | 1st | 2nd | 1st | 2nd | 1st | 2nd | |||
A | 41.7% Fluopyram suspension | 1426 | 4–26 * | 6–23 | 4–24 | 6–26 | 4–25 | 6–21 | 4–27 | 6–29 | 4–23 | 6–23 |
B | 5–22 | — | 5–24 | — | 5–22 | — | 5–28 | — | 5–25 | — | ||
C | 5–22 | 7–29 | 5–24 | 7–31 | 5–22 | 7–26 | 5–28 | 7–30 | 5–25 | 7–31 | ||
D | 6–23 | 8–30 | 6–26 | 8–29 | 6–21 | 8–27 | 6–29 | 8–31 | 6–23 | 8–30 | ||
E | 30% Fosthiazate microencapsulated suspension | 2925 | 4–26 | 6–23 | 4–24 | 6–26 | 4–25 | 6–21 | 4–27 | 6–29 | 4–23 | 6–23 |
F | 5–22 | — | 5–24 | — | 5–22 | — | 5–28 | — | 5–25 | — | ||
G | 5–22 | 7–29 | 5–24 | 7–31 | 5–22 | 7–26 | 5–28 | 7–30 | 5–25 | 7–31 | ||
H | 6–23 | 8–30 | 6–26 | 8–29 | 6–21 | 8–27 | 6–29 | 8–31 | 6–23 | 8–30 | ||
CK | — | — | — | — | — | — | — | — | — | — | — |
Treatment | 2019 Ruichang | 2020 Ruichang | 2020 Nanchang | 2021 Ruichang | 2021 Nanchang | |||||
---|---|---|---|---|---|---|---|---|---|---|
Disease Index | Control Effect (%) | Disease Index | Control Effect (%) | Disease Index | Control Effect (%) | Disease Index | Control Effect (%) | Disease Index | Control Effect (%) | |
A | 13.45 ± 0.90 | 70.56 ± 1.97 b | 16.70 ± 1.13 | 70.16 ± 2.01 b | 13.92 ± 0.79 | 71.17 ± 1.64 b | 11.44 ± 0.55 | 72.84 ± 1.31 b | 9.67 ± 0.91 | 74.42 ± 2.40 b |
B | 30.26 ± 1.20 | 33.76 ± 2.62 d | 40.53 ± 1.60 | 27.56 ± 2.86 d | 32.98 ± 1.26 | 31.68 ± 2.61 d | 27.53 ± 0.91 | 34.62 ± 2.15 d | 23.15 ± 0.92 | 38.75 ± 2.42 d |
C | 7.70 ± 0.97 | 83.15 ± 2.14 a | 10.31 ± 0.97 | 81.56 ± 1.72 a | 8.00 ± 0.27 | 83.43 ± 0.55 a | 7.35 ± 0.84 | 82.54 ± 1.98 a | 5.99 ± 0.34 | 84.15 ± 0.89 a |
D | 20.13 ± 1.09 | 55.95 ± 2.40 c | 26.33 ± 0.98 | 52.95 ± 1.75 c | 21.31 ± 0.94 | 55.85 ± 1.95 c | 18.28 ± 1.03 | 56.58 ± 2.46 c | 16.13 ± 0.70 | 57.30 ± 1.86 c |
E | 19.57 ± 1.10 | 57.18 ± 2.40 b | 25.47 ± 1.43 | 54.49 ± 2.56 b | 19.72 ± 0.87 | 59.15 ± 1.81 b | 17.29 ± 0.62 | 58.94 ± 1.48 b | 14.54 ± 0.77 | 61.52 ± 2.03 b |
F | 35.01 ± 1.54 | 23.36 ± 3.25 d | 45.07 ± 1.31 | 19.44 ± 2.33 d | 37.39 ± 1.37 | 22.53 ± 2.85 d | 30.90 ± 1.03 | 26.62 ± 2.44 d | 26.61 ± 0.70 | 29.59 ± 1.84 d |
G | 10.84 ± 0.84 | 76.27 ± 1.85 a | 13.45 ± 1.08 | 75.95 ± 1.92 a | 11.03 ± 1.11 | 77.16 ± 2.31 a | 9.33 ± 0.55 | 77.85 ± 1.31 a | 8.25 ± 0.60 | 78.42 ± 1.73 a |
H | 22.76 ± 1.02 | 50.19 ± 2.23 c | 30.19 ± 1.20 | 46.03 ± 2.11 c | 23.25 ± 1.17 | 51.83 ± 2.43 c | 21.46 ± 0.96 | 49.03 ± 2.29 c | 17.77 ± 0.88 | 52.98 ± 2.31 c |
CK | 45.69 ± 1.91 | — | 55.95 ± 1.38 | — | 48.27 ± 1.55 | — | 42.11 ± 0.95 | — | 37.79 ± 1.78 | — |
Treatment | Spraying Method of Nematicide | 2020 Ruichang | 2020 Nanchang | 2021 Ruichang | 2021 Nanchang | |||||
---|---|---|---|---|---|---|---|---|---|---|
Yam Seedling Flush | about 60 Days Later | Disease Index | Control Effect (%) | Disease Index | Control Effect (%) | Disease Index | Control Effect (%) | Disease Index | Control Effect (%) | |
Ⅰ | Uniform application in the root layer | Uniform application in the root layer | 9.69 ± 0.58 | 81.47 ± 1.11 a | 7.72 ± 0.68 | 82.80 ± 1.52 a | 7.44 ± 0.36 | 82.94± 0.82 a | 6.02 ± 0.48 | 83.69 ± 1.31 a |
II | Drip irrigation | Uniform application in the root layer | 12.87 ± 0.85 | 75.39 ± 1.62 b | 10.12 ± 0.55 | 77.44 ± 1.23 b | 10.38 ± 0.74 | 76.22 ± 1.71 b | 8.70 ±0.66 | 76.42 ± 1.79 b |
III | Drip irrigation | Drip irrigation | 16.92 ± 0.73 | 67.65 ± 1.40 c | 14.01 ± 0.75 | 68.76 ± 1.68 c | 13.95 ± 0.74 | 68.01 ± 1.69 c | 11.30 ± 0.85 | 69.37 ± 2.30 c |
IV | Root irrigation | Root irrigation | 29.21 ± 1.28 | 44.16 ± 2.44 d | 23.01 ± 0.57 | 48.71 ± 1.27 d | 22.88 ± 1.05 | 47.54 ± 2.41 d | 18.67 ± 0.78 | 49.41 ± 2.12 d |
CK | — | — | 52.31 ± 0.98 | — | 44.86 ± 1.29 | — | 43.62 ± 2.03 | — | 36.90 ± 1.64 | — |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, R.; Fang, W.; Li, X.; Huang, S.; Wang, X.; Zhou, Q.; Wang, Q.; Cao, A.; Sun, Y.; Hua, J. Uniform Root Layer Application at Optimal Timing Can Effectively Improve Root-Knot Nematode Disease Control in Rui Yam. Agriculture 2022, 12, 2031. https://doi.org/10.3390/agriculture12122031
Zeng R, Fang W, Li X, Huang S, Wang X, Zhou Q, Wang Q, Cao A, Sun Y, Hua J. Uniform Root Layer Application at Optimal Timing Can Effectively Improve Root-Knot Nematode Disease Control in Rui Yam. Agriculture. 2022; 12(12):2031. https://doi.org/10.3390/agriculture12122031
Chicago/Turabian StyleZeng, Rong, Wensheng Fang, Xinshen Li, Shuijin Huang, Xi Wang, Qingyou Zhou, Qiuxia Wang, Aocheng Cao, Yang Sun, and Juling Hua. 2022. "Uniform Root Layer Application at Optimal Timing Can Effectively Improve Root-Knot Nematode Disease Control in Rui Yam" Agriculture 12, no. 12: 2031. https://doi.org/10.3390/agriculture12122031
APA StyleZeng, R., Fang, W., Li, X., Huang, S., Wang, X., Zhou, Q., Wang, Q., Cao, A., Sun, Y., & Hua, J. (2022). Uniform Root Layer Application at Optimal Timing Can Effectively Improve Root-Knot Nematode Disease Control in Rui Yam. Agriculture, 12(12), 2031. https://doi.org/10.3390/agriculture12122031