Quantitative and Qualitative Assessment of European Catfish (Silurus glanis) Flesh
Abstract
:1. Introduction
- -
- Obtain quantitative data by gravimetry and morphometry run for certain anatomical parts of European catfish originating from aquaculture and a natural environment;
- -
- Calculate biometric indices to assess fish productive potential, maintenance state, and adaptability to provided environment conditions;
- -
- Track the dynamics of flesh chemical composition, fatty acids profile, and sanogenic indices under the influence of the lastingness of refrigeration period (up to 15 days).
2. Materials and Methods
2.1. Biological Studied Material
- ➢
- AG—aquaculture group, individuals/samples from farmed fish;
- ➢
- RG—river group, individuals/samples from Prut River (capture).
2.2. Physical–Chemical Parameters of Water
2.3. Catfish Feeding
2.4. Morphometric and Gravimetric Assessments
2.5. Body Indices and Coefficients
2.6. Sampling
2.7. Assessment of Flesh Chemical Composition
2.8. Analysis of Fatty Acids Profile and Nutritional Quality of Lipids
2.9. Data Analysis
3. Results
3.1. Morphometry and Body Indices
3.2. Quantitative Flesh Production
3.3. Qualitative Flesh Production
3.4. Fatty Acids Profile and Sanogenic Indices
4. Discussions
4.1. Morphometry and Body Indices
4.2. Quantitative Flesh Production
4.3. Qualitative Flesh Production
4.4. Fatty Acids Profile and Sanogenic Indices
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Antognazza, C.M.; Costantini, T.; Campagnolo, M.; Zaccara, S. One Year Monitoring of Ecological Interaction of Silurus glanis in a Novel Invaded Oligotrophic Deep Lake (Lake Maggiore). Water 2022, 14, 105. [Google Scholar] [CrossRef]
- Saez-Gomez, P.; Prenda, J. Freshwater Fish Biodiversity in a Large Mediterranean Basin (Guadalquivir River, S Spain): Patterns, Threats, Status and Conservation. Diversity 2022, 14, 831. [Google Scholar] [CrossRef]
- Bergström, K.; Nordahl, O.; Söderling, P.; Koch-Schmidt, P.; Borger, T.; Tibblin, P.; Larsson, P. Exceptional longevity in northern peripheral populations of Wels catfish (Silurus glanis). Sci. Rep. 2022, 12, 8070. [Google Scholar] [CrossRef]
- Severov, Y.A. Size–Age Structure, Growth Rate, and Fishery of European Catfish Silurus glanis in the Lower Kama Reservoir. J. Ichthyol. 2020, 60, 118–121. [Google Scholar] [CrossRef]
- Kuzishchin, K.V.; Gruzdeva, M.A.; Pavlov, D.S. Traits of Biology of European Wels Catfish Silurus glanis from the Volga–Ahtuba Water System, the Lower Volga. J. Ichthyol. 2018, 58, 833–844. [Google Scholar] [CrossRef]
- Tarkan, A.S.; Vilizzi, L.; Top, N.; Ekmekci, F.G.; Stebbing, P.D.; Copp, G.H. Identification of potentially invasive freshwater fishes, including translocated species, in Turkey using the Aquatic Species Invasiveness Screening Kit (AS-ISK). Int. Rev. Hydrobiol. 2017, 102, 47–56. [Google Scholar] [CrossRef]
- Panicz, R.; Drozd, R.; Drozd, A.; Nędzarek, A. Species and sex-specific variation in the antioxidant status of tench, Tinca tinca; wels catfish, Silurus glanis; and sterlet, Acipenser ruthenus (Actinopterygii) reared in cage culture. Acta Ichthyol. Et Piscat. 2017, 47, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Lyach, R. Harvest Rates of Rheophilic Fish Vimba vimba, Chondrostoma nasus, and Barbus barbus Have a Strong Relationship with Restocking Rates and Harvest Rates of Their Predator Silurus glanis in Lowland Mesotrophic Rivers in Central Europe. Sustainability 2021, 13, 11379. [Google Scholar] [CrossRef]
- Vejrik, L.; Vejrikovaa, I.; Kocvara, L.; Blabolil, P.; Peterka, J.; Sajdlova, Z.; Juza, T.; Smejkal, M.; Kolarik, T.; Barton, D.; et al. The pros and cons of the invasive freshwater apex predator, European catfish Silurus glanis, and powerful angling technique for its population control. J. Environ. Manag. 2019, 241, 374–382. [Google Scholar] [CrossRef]
- Linhart, O.; Cheng, Y.; Rodina, M.; Gela, D.; Tučková, V.; Shelton, W.L.; Tinkir, M.; Memiş, D.; Xin, M.M. AQUA_2020_1080: Sperm management of European catfish (Silurus glanis L.) for effective reproduction and genetic conservation. Aquaculture 2020, 529, 735620. [Google Scholar] [CrossRef]
- Lyach, R.; Remr, J. Changes in recreational catfish Silurus glanis harvest rates between years 1986-2017 in Central Europe. J. Appl. Ichthyol. 2019, 35, 1094–1104. [Google Scholar] [CrossRef]
- Rees, E.A.; Edmonds-Brown, V.R.; Alam, M.F.; Wright, R.M.; Britton, J.R.; Davies, G.D.; Cowx, I.G. Socio-economic drivers of specialist anglers targeting the non-native European catfish (Silurus glanis) in the UK. PLoS ONE 2017, 12, e0178805. [Google Scholar] [CrossRef] [Green Version]
- Riha, M.; Rabaneda-Bueno, R.; Jari, I.; Souza, A.T.; Vejrik, L.; Drastik, V.; Blabolil, P.; Holubova, M.; Juza, T.; Gjelland, K.O.; et al. Seasonal habitat use of three predatory fishes in a freshwater ecosystem. Hydrobiologia 2022, 849, 3351–3371. [Google Scholar] [CrossRef]
- FAO. FAO Yearbook. Fishery and Aquaculture Statistics 2019/FAO Annuaire. Statistiques des Pêches et de L’aquaculture 2019/FAO Anuario. Estadísticas de Pesca y Acuicultura 2019. Rome/Roma. 2021. Available online: https://www.fao.org/fishery/static/Yearbook/YB2019_USBcard/navigation/index_intro_e.htm (accessed on 1 September 2022).
- Hamzacebi, S.; Serezli, R. Comparison of growth performance of European catfish (Silurus glanis L.) rearing in freshwater and 5 parts per thousand salinity in recirculating system. Su Urunleri Derg. 2019, 36, 373–378. [Google Scholar] [CrossRef] [Green Version]
- Honzlova, A.; Curdova, H.; Schebestova, L.; Stara, A.; Priborsky, J.; Koubova, A.; Svobodova, Z.; Velisek, J. A nitrogen factor for European pike-perch (Sander lucioperca), northern pike (Esox lucius), and sheatfish (Silurus glanis) fillets. Acta Ichthyol. Et Piscat. 2021, 51, 119–129. [Google Scholar] [CrossRef]
- Zielasko, M.; Greiling, A.M.; Lubke, K.; Otto-Luebker, H.; Patzkewitsch, D.; Erhard, M.; Wedekind, H. Field study on reducing stress of catfish in a recirculation aquaculture system: An innovative tank design for autonomous movement from holding unit to stunning unit. Bull. Eur. Assoc. Fish Pathol. 2019, 33, 14–23. [Google Scholar]
- Jankowska, B.; Zakes, Z.; Zmijewski, T.; Ulikowski, D.; Kowalska, A. Slaughter value and flesh characteristics of European catfish (Silurus glanis) fed natural and formulated feed under different rearing conditions. Eur. Food Res. Technol. 2006, 224, 453–459. [Google Scholar] [CrossRef]
- Adamek, Z.; Grecu, I.; Metaxa, I.; Sabarich, L.; Blancheton, J.P. Processing traits of European catfish (Silurus glanis Linnaeus, 1758) from outdoor flow-through and indoor recycling aquaculture units. J. Appl. Ichthyol. 2015, 31, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Măgdici, E.; Nistor, C.E.; Pagu, I.B.; Hoha, G.V.; Avarvarei, B.V.; Păsărin, B. Research regarding the influence of slaughtering age on quantitative meat production at European catfish (Silurus glanis). J. Biotehnol. 2014, 185, S76. [Google Scholar] [CrossRef]
- Bektas, Y.; Aksu, I.; Kalayci, G.; Turan, D. Low Genetic Diversity in Turkish Populations of Wels Catfish Silurus glanis L., 1758 (Siluridae, Pisces) Revealed by Mitochondrial Control Region Sequences. Turk. J. Fish. Aquat. Sci. 2020, 20, 767–776. [Google Scholar] [CrossRef]
- Krasteva, V. Influence of initial stocking density on growth performance and survival of European catfish (Silurus glanis L.) larvae under controlled conditions. Bulg. J. Agric. Sci. 2020, 26, 248–253. [Google Scholar]
- ORDER, no. 1146 from 10th of December 2002 Regarding Water Quality, Issued by Romanian Ministry of Water and Environment Protection, Published in Official Gazzette no. 197 from 27th of March 2003. Available online: https://legislatie.just.ro/Public/DetaliiDocumentAfis/42642 (accessed on 21 October 2022).
- Lyach, R. Fisheries Management of the European Catfish Silurus glanis is Strongly Correlated to the Management of Non-Native Fish Species (Common Carp Cyprinus carpio, Rainbow Trout Oncorhynchus mykiss, and Grass Carp Ctenopharyngodon idella). Sustainability 2022, 14, 6001. [Google Scholar] [CrossRef]
- Yazici, R.; Yazicioglu, O. Some morphometric relationships of Wels catfish (Silurus glanis L., 1758) inhabiting Siddikli dam (Kırşehir, Turkey). J. Anatol. Environ. Anim. Sci. 2020, 5, 199–204. [Google Scholar] [CrossRef]
- Trif, N.; Bordeianu, M.; Codrea, V.A. A Maeotian (Late Miocene) freshwater fish-fauna from Romania. Palaeoworld 2022, 31, 140–152. [Google Scholar] [CrossRef]
- Haubrock, P.J.; Azzini, M.; Balzani, P.; Inghilesi, A.F.; Tricarico, E. When alien catfish meet-Resource overlap between the North American Ictalurus punctatus and immature European Silurus glanis in the Arno River (Italy). Ecol. Freshw. Fish 2020, 29, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Yazici, R.; Yilmaz, M.; Yazicioglu, O. Precision of Age Estimates Obtained from Five Calcified Structure for Wels Catfish, Silurus glanis. J. Ichthyol. 2021, 61, 452–459. [Google Scholar] [CrossRef]
- Cruz-Castan, R.; Meiners-Mandujano, C.; Curiel-Ramirez, S. Duration and intensity spawning, body size dependence: The case of little tunny Euthynnus alletteratus caught in the southwest Gulf of Mexico. Rev. Biol. Mar. Y Oceanogr. 2019, 54, 214–220. [Google Scholar] [CrossRef] [Green Version]
- Lomnicky, G.A.; Hughes, R.M.; Peck, D.V.; Ringold, P.L. Correspondence between a recreational fishery index and ecological condition for USA streams and rivers. Fish. Res. 2021, 233, 105749. [Google Scholar] [CrossRef]
- Solomon, S.O.; Okomoda, V.T.; Ogbenyikwu, A.I. Intraspecific morphological variation between cultured and wild Clarias gariepinus (Burchell) (Clariidae.; Siluriformes). Arch. Pol. Fish. 2015, 23, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Martinez, A.; Lopez, M.; Molero, H.M.; Rodriguez, J.; Gonzalez, M.; Barba, C.; Garcia, A. Morphometric and Meristic Characterization of Native Chame Fish (Dormitator latifrons) in Ecuador Using Multivariate Analysis. Animals 2020, 10, 1805. [Google Scholar] [CrossRef]
- Mocanu, E.E.; Savin, V.; Popa, M.D.; Dima, F.M. The Effect of Probiotics on Growth Performance, Haematological and Biochemical Profiles in Siberian Sturgeon (Acipenser baerii Brandt, 1869). Fishes 2022, 7, 239. [Google Scholar] [CrossRef]
- Nistor, C.E.; Pagu, I.B.; Fotea, L.; Radu, C.; Păsărin, B. Study of some morphological characteristics Onchorhynchus mykiss breed farmed in salmonid exploitations from Moldova. Lucr. Științifice-Ser. Zooteh. 2012, 57, 245–249. [Google Scholar]
- Nistor, C.E.; Pagu, I.B.; Simeanu, C.; Păsărin, B. Analysis of some morphological characteristics of Salvelinus fontinalis trout breed farmed in salmonid exploitations from Neamţ and Suceava Counties. Lucr. Ştiinţifice-Ser. Zooteh. 2012, 58, 225–229. [Google Scholar]
- Simeanu, C.; Păsărin, B.; Simeanu, D. The study of some morphological characteristics of the sturgeon species of Polyodon spathula in different development stages. Lucr. Ştiinţifice-Ser. Zooteh. 2010, 54, 244–247. [Google Scholar]
- Mocanu, E.E.; Dima, F.M.; Savin, V.; Popa, M.D. Maintenance Status, Haematological Profile, and Blood Biochemistry of Common Carp (Cyprinus Carpio) Fed on Diets with Added Grape Marc. Rev. Romana Med. Vet. 2022, 32, 63–69. [Google Scholar]
- Önsoy, B.; Serhan, A.; Filiz, H.; Bilge, G. Determination of the best length measurement of fish. North-West. J. Zool. Oradea Rom. 2011, 7, 178–180. [Google Scholar]
- Simeanu, C.; Simeanu, D.; Popa, A.; Usturoi, A.; Bodescu, D.; Doliș, M.G. Research regarding content in amino-acids and biological value of proteins from Polyodon spathula sturgeon meat. Rev. Chim. 2017, 68, 1063–1069. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; AOAC: Washington, DC, USA, 1990. [Google Scholar]
- Raţu, R.N.; Ciobanu, M.M.; Radu-Rusu, R.M.; Usturoi, M.G.; Ivancia, M.; Doliş, M.G. Study on the chemical composition and nitrogen fraction of milk from different animal species. USAMV Buchar. -Sci. Papers Ser. D Anim. Sci. 2021, 64, 374–379. [Google Scholar]
- Doliș, M.G.; Diniță, G.; Pânzaru, C. Contributions to study of mulberry leaf use by Bombyx mori larvae. Sci. Papers. Ser. D Anim. Sci. 2022, 65, 358–370. [Google Scholar]
- Bland, J.M.; Grimm, C.C.; Bechtel, P.J.; Deb, U.; Dey, M.M. Proximate Composition and Nutritional Attributes of Ready-to-Cook Catfish Products. Foods 2021, 10, 2716. [Google Scholar] [CrossRef]
- Mierliță, D.; Simeanu, D.; Pop, I.M.; Criste, F.; Pop, C.; Simeanu, C.; Lup, F. Chemical composition and nutritional evaluation of the lupine seeds (Lupinus albus L.) from low-alkaloid varieties. Rev. Chim. 2018, 69, 453–458. [Google Scholar] [CrossRef]
- Mierliță, D.; Pop, I.M.; Lup, F.; Simeanu, D.; Vicas, S.I.; Simeanu, C. The fatty acids composition and health lipid indices in the sheep raw milk under a pasture-based dairy system. Rev. Chim. 2018, 69, 160–165. [Google Scholar] [CrossRef]
- Criste, F.L.; Mierliță, D.; Simeanu, D.; Boișteanu, P.C.; Pop, I.M.; Georgescu, G.; Nacu, G. Study of fatty acids profile and oxidative stability of egg yolk from hens fed a diet containing white lupine seeds meal. Rev. Chim. 2018, 69, 2454–2460. [Google Scholar] [CrossRef]
- Ciobanu, M.M.; Boişteanu, P.C.; Simeanu, D.; Postolache, A.N.; Lazăr, R.; Vîntu, C.R. Study on the profile of fatty acids of broiler chicken raised and slaughtered in industrial system. Rev. Chim. 2019, 70, 4089–4094. [Google Scholar] [CrossRef]
- Struți, D.I.; Mierliță, D.; Simeanu, D.; Pop, I.M.; Socol, C.T.; Papuc, T.; Macri, A.M. The effect of dehulling lupine seeds (Lupinus albus L.) from low-alkaloid varieties on the chemical composition and fatty acids content. Rev. Chim. 2020, 71, 59–70. [Google Scholar] [CrossRef]
- Timmons, J.S.; Weiss, W.P.; Palmquist, D.L.; Harper, W.J. Relationships among dietary roasted soybeans, milk components, and spontaneous oxidized flavor of milk. J. Dairy Sci. 2001, 84, 2440–2449. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Fernandez, M.; Ordóñez, J.A.; Cambero, I.; Santos, C.; Pin, C.; De La Hoz, L. Fatty acid compositions of selected varieties of Spanish dry ham related to their nutritional implications. Food Chem. 2007, 9, 107–112. [Google Scholar] [CrossRef]
- Petrie, A.; Watson, P. Statistics for Veterinary and Animal Science, 3rd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2013. [Google Scholar]
- Jawad, L.; Al-Janabi, M. Morphometric characteristics of catfish Silurus triostegus (Haekel, 1843) from the Tigris and Shatt al-Arab rivers, Iraq. Croat. J. Fish. 2016, 74, 179–185. [Google Scholar] [CrossRef]
- Dutta, R.; Ahmed, A.M.; Pokhrel, H.; Sarmah, R.; Nath, D.; Mudoi, L.P.; Baruah, D.; Bhagabati, S.K.; Songtheng, P. First report of an endangered silurid catfish, Pterocryptis barakensis (Siluridae) from Brahmaputra drainage, North Eastern Himalayan region of India. J. Appl. Ichthyol. 2020, 36, 528–532. [Google Scholar] [CrossRef]
- Kucukgul, A.; Yungul, M.; Kahraman, Z.; Dorucu, M. The Effect of Water Parameters and Dissolved Minerals on the Hematological Parameters of during Breeding Period Catfish (Silurus glanis). Braz. Arch. Biol. Technol. 2019, 62, e19180400. [Google Scholar] [CrossRef]
- Sandor, Z.J.; Revesz, N.; Lefler, K.K.; Colovic, R.; Banjac, V.; Kumar, S. Potential of corn distiller’s dried grains with solubles (DDGS) in the diet of European catfish (Silurus glanis). Aquac. Rep. 2021, 20, 100653. [Google Scholar] [CrossRef]
- Kumar, S.; Zs, J.S.; Nagy, Z.; Fazekas, G.; Havasi, M.; Sinha, A.K.; De Boeck, G.; Gal, D. Potential of processed animal protein versus soybean meal to replace fish meal in practical diets for European catfish (Silurus glanis): Growth response and liver gene expression. Aquac. Nutr. 2017, 23, 1179–1189. [Google Scholar] [CrossRef]
- Zibiene, G.; Zibas, A. Impact of commercial probiotics on growth parameters of European catfish (Silurus glanis) and water quality in recirculating aquaculture systems. Aquac. Int. 2019, 27, 1751–1766. [Google Scholar] [CrossRef]
- Gumus, E.; Yilayaz, A.; Kanyilmaz, M.; Gumus, B.; Balaban, M. Evaluation of body weight and color of cultured European catfish (Silurus glanis) and African catfish (Clarias gariepinus) using image analysis. Aquac. Eng. 2021, 93, 102147. [Google Scholar] [CrossRef]
- Nikolic, D.; Skoric, S.; Raskovic, B.; Lenhardt, M.; Krpo-Cetkovic, J. Impact of reservoir properties on elemental accumulation and histopathology of European perch (Perca fluviatilis). Chemosphere 2020, 244, 125503. [Google Scholar] [CrossRef]
- Balzani, P.; Kouba, A.; Tricarico, E.; Kourantidou, M.; Haubrock, P.J. Metal accumulation in relation to size and body condition in an all-alien species community. Environ. Sci. Pollut. Res. 2022, 29, 25848–25857. [Google Scholar] [CrossRef]
- Păsărin, B.; Hoha, G.; Costăchescu, E.; Avarvarei, B.V. Research regarding morphology, structure and physic-chemical features of the muscles provided from farming trout (Onchorhyncus mykiss and Salvelinus fontinalis). Curr. Opin. Biotechnol. 2011, 22, S98–S99. [Google Scholar] [CrossRef]
- Sac, G.; Gaygusuz, O.; Gaygusuz Cigdem, G.; Ozulug, M. Length-weight relationship of seven freshwater fish species from Turkish Thrace. J. Appl. Ichthyol. 2019, 35, 808–811. [Google Scholar] [CrossRef]
- Wasenitz, B.; Karl, H.; Palm, H.W. Composition and quality attributes of fillets from different catfish species on the German market. J. Food Safe. Food Qua. -Arc. Lebensm. 2018, 69, 57–65. [Google Scholar] [CrossRef]
- Hussain, S.M.; Afzal, M.; Salim, M.; Javid, A.; Khichi, T.A.A.; Hussain, M.; Raza, S. Apparent digestibility of fish meal, blood meal and meat meal for Labeo rohita fingerlings. J. Anim. Plant Sci. 2011, 21, 807–911. [Google Scholar]
- Olayemi, F.F.; Adedayo, M.R.; Bamishaiye, E.I.; Awagu, E.F. Proximate composition of catfish (Clarias gariepinus) smoked in Nigerian Stored Products Research Institute (NSPRI): Developed kiln. Int. J. Fish. Aquac. 2011, 3, 96–98. [Google Scholar]
- Yan, X.B.; Pan, S.M.; Li, Z.H.; Dong, X.H.; Tan, B.P.; Long, S.S.; Li, T.; Suo, X.X.; Yang, Y.Z. Amelioration of Flesh Quality in Hybrid Grouper (female Epinephelus fuscoguttatus x male E. lanceolatu) Fed with Oxidized Fish Oil Diet by Supplying Lactobacillus pentosus. Front. Mar. Sci. 2022, 9, 926106. [Google Scholar] [CrossRef]
- Gandotra, R.; Sharma, S.; Koul, M.; Gupta, S. Effect of chilling and freezing on fish muscle. IOSR J. Pharm. Biol. Sci. (IOSRJPBS) 2012, 2, 5–9. [Google Scholar] [CrossRef]
- Jankowska, B.; Zakes, Z.; Zmijewski, T.; Ulikowski, D.; Kowalska, A. Fatty acids profile in dorsal and ventral sections of fillets from European catfish (Silurus glanis L.) fed various feeds. Arch. Pol. Fish. 2005, 13, 17–29. [Google Scholar]
- Zhou, P.C.; Chu, Y.M.; Lv, Y.; Xie, J. Quality of frozen mackerel during storage as processed by different freezing methods. Int. J. Food Prop. 2022, 25, 593–607. [Google Scholar] [CrossRef]
- Kok, F.; Goksoy, E.; Gonulalan, Z. The microbiological, chemical and sensory features of vacuumed-packed Wels catfish (Silurus glanis L.) pastrami stored under ambient conditions (20 °C). J. Anim. Vet. Adv. 2009, 8, 817–824. [Google Scholar]
- Benjakul, S.; Bauer, F. Biochemical and Physicochemical Changes in Catfish (Silurus glanis Linne) Muscle as Influenced by Different Freeze-thaw Cycles. Food Chem. 2001, 72, 207–217. [Google Scholar] [CrossRef]
- Linhartova, Z.; Krejsa, J.; Zajic, T.; Masilko, J.; Sampels, S.; Mraz, J. Proximate and fatty acid composition of 13 important freshwater fish species in Central Europe. Aquac. Int. 2018, 26, 695–711. [Google Scholar] [CrossRef]
- Bazarsadueva, S.; Radnaeva, L.; Shiretorova, V.; Dylenova, E. The comparison of fatty acid composition and lipid quality indices of roach, perch, and pike of lake Gusinoe (Western Transbaikalia). Int. J. Environ. Res. Public Health 2021, 18, 9032. [Google Scholar] [CrossRef]
- Saliu, F.; Leoni, B.; Della Pergola, R. Lipid classes and fatty acids composition of the roe of wild Silurus glanis from subalpine freshwater. Food Chem. 2017, 232, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Dydjow-Bendek, D.; Zagozdzon, P. Total Dietary Fats, Fatty Acids, and Omega-3/Omega-6 Ratio as Risk Factors of Breast Cancer in the Polish Population—A Case-Control Study. In Vivo 2020, 34, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Gladyshev, M.I.; Sushchik, N.N.; Glushchenko, L.A.; Zadelenov, V.A.; Rudchenko, A.E.; Dgebuadze, Y.Y. Fatty acid composition of fish species with different feeding habits from an Arctic Lake. Dokl. Biochem. Biophys. 2017, 474, 220–223. [Google Scholar] [CrossRef] [PubMed]
- Luczynska, J.; Paszczyk, B.; Nowosad, J.; Jan Luczynski, M. Mercury, Fatty Acids Content and Lipid Quality Indexes in Muscles of Freshwater and Marine Fish on the Polish Market. Risk Assessment of Fish Consumption. Int. J. Environ. Res. Public Health 2017, 14, 1120. [Google Scholar] [CrossRef]
- Ghaeni, M.; Ghahfarokhi, K.N. Fatty acids profile, atherogenic (IA) and thrombogenic (IT) health lipid indices in Leiognathusbindus and Upeneussulphureus. J. Mar. Sci. Res. Dev. 2013, 3, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Busova, M.; Kourimska, L.; Tucek, M. Fatty acids profile, atherogenic and thrombogenic indices in freshwater fish common carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss) from market chain. Cent. Eur. J. Public Health 2020, 28, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Kucukgulmez, A.; Yanar, Y.; Çelik, M.; Ersor, B. Fatty acids profile, atherogenic, thrombogenic, and polyene lipid indices in Golden grey mullet (Liza aurata) and Gold band goatfish (Upeneus moluccensis) from Mediterranean Sea. J. Aquat. Food Prod. Technol. 2018, 27, 912–918. [Google Scholar] [CrossRef]
- Simeanu, D.; Radu-Rusu, R.M.; Mintas, O.S.; Simeanu, C. Qualitative and Nutritional Evaluation of Paddlefish (Polyodon spathula) Meat Production. Agriculture 2022, 12, 1965. [Google Scholar] [CrossRef]
Biometric Traits | RG (n = 50) | AG (n = 50) | p-Value | ||||
---|---|---|---|---|---|---|---|
Mean ± SEM | Min. | Max. | Mean ± SEM | Min. | Max. | ||
Body mass (g) | 1784.91 ± 37.43 | 1252.6 | 2192.5 | 1840.71 ± 30.25 | 1386.0 | 2152.4 | 0.0793 |
Total length (cm) | 68.51 ± 0.61 | 58.53 | 75.12 | 63.45 ± 0.42 | 58.9 | 65.7 | 0.0041 |
Standard length (cm) | 60.04 ± 0.40 | 54.3 | 63.7 | 58.74 ± 0.46 | 51.4 | 63.6 | 0.1059 |
Head length (cm) | 12.48 ± 0.12 | 10.62 | 13.39 | 11.50 ± 0.11 | 9.6 | 12.4 | 0.0028 |
Body maximum height (cm) | 10.01 ± 0.11 | 8.4 | 11.3 | 10.80 ± 0.10 | 9.5 | 11.8 | 0.0075 |
Body maximum circumference (cm) | 32.18 ± 0.37 | 26.0 | 37.3 | 31.29 ± 0.21 | 28.6 | 32.9 | 0.0964 |
Body maximum thickness (cm) | 7.08 ± 0.09 | 5.9 | 8.0 | 6.94 ± 0.06 | 6.1 | 7.8 | 0.1868 |
Calculated Index | RG (n = 50) | AG (n = 50) | p-Value | ||||
---|---|---|---|---|---|---|---|
Mean ± SEM | Min. | Max. | Mean ± SEM | Min. | Max. | ||
Profile index | 6.00 ± 0.04 | 5.47 | 6.58 | 5.44 ± 0.03 | 5.00 | 5.91 | 0.0002 |
Fulton coefficient | 0.82 ± 0.01 | 0.74 | 1.03 | 0.91 ± 0.01 | 0.78 | 1.10 | 0.0063 |
Quality index | 1.87 ± 0.02 | 1.57 | 2.03 | 1.88 ± 0.01 | 1.77 | 2.01 | 0.0947 |
Thickness index | 70.77 ± 1.04 | 59.02 | 84.28 | 64.29 ± 0.61 | 57.65 | 70.98 | 0.0029 |
Fleshy index | 20.79 ± 0.19 | 18.18 | 23.19 | 19.58 ± 0.14 | 17.77 | 21.53 | 0.0082 |
Cut Part | RG (n = 50) | AG (n = 50) | p-Value | ||||
---|---|---|---|---|---|---|---|
Mean ± SEM | Min. | Max. | Mean ± SEM | Min. | Max. | ||
Live mass (g) | 1784.91 ± 37.43 | 1252.59 | 2192.54 | 1840.71 ± 30.25 | 1386.04 | 2152.35 | 0.0793 |
Carcass mass (g) | 1598.39 ± 21.97 | 1156.50 | 1928.69 | 1659.40 ± 27.93 | 1260.44 | 1940.07 | 0.3781 |
Carcass yield (%) | 89.55 ± 0.71 | 86.89 | 91.68 | 90.15 ± 1.13 | 86.81 | 92.89 | 0.1028 |
Torso mass (g) | 1159.48 ± 17.99 | 805.13 | 1385.39 | 1124.31 ± 25.31 | 835.72 | 1324.75 | 0.0083 |
Torso yield (%) | 64.96 ± 0.81 | 61.70 | 67.24 | 61.08 ± 0.81 | 58.79 | 63.07 | 0.3973 |
Fillet mass (g) | 825.17 ± 13.44 | 610.74 | 948.33 | 830.35 ± 14.99 | 621.89 | 960.41 | 0.1629 |
Fillet yield (%) | 46.23 ± 0.50 | 44.12 | 48.80 | 45.11 ± 0.55 | 43.10 | 47.12 | 0.0793 |
Storage Interval (Days) | n | Group | Losses (%) | Water (%) |
---|---|---|---|---|
Mean ± SEM | Mean ± SEM | |||
0 | 6 | AG | 100 ± 0.00 | 77.80 ± 1.00 |
6 | RG | 100 ± 0.00 | 78.19 ± 2.02 | |
p-value | - | 0.3039 | ||
3 | 6 | AG | 97.61 ± 0.98 | 76.60 ± 1.23 |
6 | RG | 98.12 ± 1.67 | 77.26 ± 1.40 | |
p-value | 0.1872 | 0.1762 | ||
6 | 6 | AG | 93.56 ± 2.85 | 74.26 ± 2.64 |
6 | RG | 94.58 ± 1.34 | 74.88 ± 1.12 | |
p-value | 0.3633 | 0.1906 | ||
9 | 6 | AG | 90.48 ± 2.72 | 72.74 ± 2.25 |
6 | RG | 89.87 ± 3.25 | 72.63 ± 3.21 | |
p-value | 0.1964 | 0.3692 | ||
12 | 6 | AG | 88.79 ± 1.95 | 72.18 ± 2.07 |
6 | RG | 89.05 ± 2.72 | 72.18 ± 2.61 | |
p-value | 0.1408 | >0.9999 | ||
15 | 6 | AG | 87.12 ± 2.52 | 70.90 ± 2.17 |
6 | RG | 87.87 ± 2.03 | 71.47 ± 2.42 | |
p-value | 0.2386 | 2.2861 |
Storage Period (Days) | n | Group | Ash (%) | Proteins (%) | Lipids (%) |
---|---|---|---|---|---|
Mean ± SEM | Mean ± SEM | Mean ± SEM | |||
0 | 6 | AG | 1.07 ± 0.00 | 17.75 ± 1.08 | 3.38 ± 0.22 |
6 | RG | 1.11 ± 0.04 | 18.08 ± 1.27 | 2.62 ± 0.16 | |
p-value | 0.0782 | 0.7320 | 0.0373 | ||
3 | 6 | AG | 1.05 ± 0.02 | 16.65 ± 0.82 | 3.31 ± 0.18 |
6 | RG | 1.08 ± 0.04 | 17.01 ± 0.89 | 2.77 ± 0.13 | |
p-value | 0.0836 | 0.6592 | 0.0459 | ||
6 | 6 | AG | 1.05 ± 0.05 | 15.21 ± 0.75 | 3.04 ± 0.16 |
6 | RG | 1.07 ± 0.04 | 16.22 ± 0.92 | 2.42 ± 0.12 | |
p-value | 0.0919 | 0.3182 | 0.0428 | ||
9 | 6 | AG | 1.03 ± 0.08 | 13.85 ± 0.72 | 2.87 ± 0.23 |
6 | RG | 1.04 ± 0.05 | 14.05 ± 0.76 | 2.15 ± 0.14 | |
p-value | 0.1305 | 0.7855 | 0.0285 | ||
12 | 6 | AG | 1.02 ± 0.07 | 13.04 ± 0.71 | 2.56 ± 0.24 |
6 | RG | 1.03 ± 0.09 | 13.85 ± 0.92 | 1.98 ± 0.12 | |
p-value | 0.1287 | 0.4348 | 0.0319 | ||
15 | 6 | AG | 1.00 ± 0.10 | 12.84 ± 0.56 | 2.38 ± 0.13 |
6 | RG | 1.01 ± 0.07 | 13.53 ± 1.02 | 1.86 ± 0.10 | |
p-value | 0.1149 | 0.4817 | 0.0402 |
Fatty Acids | AG (n = 6) | RG (n = 6) | p-Value |
---|---|---|---|
Mean ± SEM | Mean ± SEM | ||
C 14:0 | 3.08 ± 0.078 | 1.54 ± 0.054 | 4.95 × 10−9 |
C 14:1 | ND | 0.32 ± 0.012 | - |
C 16:0 | 11.54 ± 0.113 | 15.16 ± 0.399 | 1.46 × 10−5 |
C 16:1 | 3.66 ± 0.069 | 8.39 ± 0.730 | 1.20 × 10−8 |
C 18:0 | 2.92 ± 0.080 | 3.69 ± 0.196 | 5.20 × 10−5 |
C 18:1 n−9 | 19.98 ± 0.397 | 24.83 ± 1.492 | 9.53 × 10−5 |
C 18:2 n−6 | 8.25 ± 0.202 | 4.79 ± 0.397 | 3.75 × 10−8 |
C 18:3 n−3 | 1.70 ± 0.021 | 3.83 ± 0.218 | 1.41 × 10−9 |
C 20:0 | 0.18 ± 0.005 | 0.19 ± 0.017 | 0.1478 |
C 20:1 n−9 | 5.75 ± 0.195 | 1.82 ± 0.100 | 1.23 × 10−10 |
C 20:2 n−6 | 0.44 ± 0.006 | 0.49 ± 0.010 | 0.0109 |
C 20:4 n−6 | 0.25 ± 0.008 | 2.12 ± 0.042 | 6.56 × 10−12 |
C 20:3 n−3 | 5.51 ± 0.198 | 0.27 ± 0.007 | 2.93 × 10−13 |
C 20:5 n−3 | 3.57 ± 0.083 | 3.09 ± 0.125 | 0.0001 |
C 22:0 | 0.49 ± 0.004 | 0.80 ± 0.010 | 9.14 × 10−9 |
C 22:5 n−6 | 0.17 ± 0.001 | ND | - |
C 22:5 n−3 | 2.09 ± 0.014 | 1.91 ± 0.059 | 0.0293 |
C 22:6 n−3 | 7.17 ± 0.187 | 8.61 ± 1.173 | 0.0003 |
Σ SFA | 18.21 | 21.37 | |
Σ MUFA | 29.38 | 35.36 | |
Σ PUFA | 25.58 | 25.11 | |
n−3 | 20.03 | 17.71 | |
n−6 | 9.12 | 7.39 | |
n−3/n−6 | 2.20 | 2.40 | |
n−6/n−3 | 0.46 | 0.42 | |
PUFA/SFA | 1.40 | 1.17 | |
USFA/SFA | 3.02 | 2.83 | |
PI | 11.65 | 12.45 | |
AI | 0.41 | 0.35 | |
TI | 0.22 | 0.27 | |
HFA | 14.62 | 16.70 | |
hFA | 45.56 | 49.94 | |
h/H | 3.12 | 2.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simeanu, C.; Măgdici, E.; Păsărin, B.; Avarvarei, B.-V.; Simeanu, D. Quantitative and Qualitative Assessment of European Catfish (Silurus glanis) Flesh. Agriculture 2022, 12, 2144. https://doi.org/10.3390/agriculture12122144
Simeanu C, Măgdici E, Păsărin B, Avarvarei B-V, Simeanu D. Quantitative and Qualitative Assessment of European Catfish (Silurus glanis) Flesh. Agriculture. 2022; 12(12):2144. https://doi.org/10.3390/agriculture12122144
Chicago/Turabian StyleSimeanu, Cristina, Emanuel Măgdici, Benone Păsărin, Bogdan-Vlad Avarvarei, and Daniel Simeanu. 2022. "Quantitative and Qualitative Assessment of European Catfish (Silurus glanis) Flesh" Agriculture 12, no. 12: 2144. https://doi.org/10.3390/agriculture12122144
APA StyleSimeanu, C., Măgdici, E., Păsărin, B., Avarvarei, B. -V., & Simeanu, D. (2022). Quantitative and Qualitative Assessment of European Catfish (Silurus glanis) Flesh. Agriculture, 12(12), 2144. https://doi.org/10.3390/agriculture12122144