Effect of Silicon-Containing Fertilizers on the Nutritional Value of Grass–Legume Mixtures on Temporary Grasslands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
- −
- M1—Dactylis glomerata L. (cv. Berta), Festulolium braunii (Richt.) A. Camus, cv. Sulino, Trifolium pratense L., cv. Rozeta (55%, 30%, 15%, were sown at the rate of 12.0 kg/ha, 12.0 kg/ha, 3.0 kg/ha, respectively).
- −
- M2—Dactylis glomerata L., cv. Berta, Festulolium braunii (Richt.) A. Camus, cv. Sulino, Medicago x varia T. Martyn, cv. Radius (55%, 30%, 15%, were sown at the rate of 12.0 kg/ha, 12.0 kg/ha, 3.0 kg/ha, respectively).
- −
- M3—Dactylis glomerata L., cv. Berta, Festulolium braunii (Richt.) A. Camus, cv. Sulino, Lolium perenne L., cv. Gagat (45%, 30%, 25%, were sown at the rate of 9.5 kg/ha, 10.0 kg/ha, 9.3 kg/ha, respectively).
2.2. Botanical Composition and Nutritive Value Analyses
2.3. Weather Conditions
2.4. Statistical Analysis
3. Results
3.1. Botanical Composition
3.2. Nutritional Value
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mălinas, A.; Rotar, I.; Vidican, R.; Iuga, V.; Păcurar, F.; Mălinas, C.; Moldovan, C. Designing a sustainable temporary grassland system by monitoring nitrogen use efficiency. Agronomy 2020, 10, 149. [Google Scholar] [CrossRef] [Green Version]
- Dalton, S.J.; Bettany, A.J.E.; Timms, E.; Morris, P. Co-transformed, diploid Lolium perenne (perennial ryegrass), Lolium multiflorum (Italian ryegrass) and Lolium temulentum (darnel) plants produced by microprojectile bombardment. Plant Cell Rep. 1999, 18, 721–726. [Google Scholar] [CrossRef]
- Søegaard, K.; Gierus, M.; Hopkins, A.; Halling, M. Temporary grassland-challenges in the future. In Permanent and Temporary Grassland: Plant, Environment and Economy, Proceedings of the 14th Symposium of the European Grassland Federation, Ghent, Belgium, 3–5 September 2007; Belgian Society for Grassland and Forage Crops: Genth, Belgium, 2007; pp. 27–38. [Google Scholar]
- Kipling, P.; Virkajärvi, R.P.; Breitsameter, L.; Curnel, Y.; De Swaef, T.; Gustavsson, A.M.; Hennart, S.; Höglind, M.; Järvenranta, K.; Minet, J.; et al. Key challenges and priorities for modelling European grasslands under climate change. Sci. Total Environ. 2016, 566, 851–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabryszuk, M.; Barszczewski, J.; Wróbel, B. Characteristics of grasslands and their use in Poland. J. Water Land Dev. 2021, 51, 243–249. [Google Scholar] [CrossRef]
- Bélanger, G.; Castonguay, Y.; Lajeunesse, J. Benefits of mixing timothy with alfalfa for forage yield, nutritive value, and weed suppression in northern environments. Can. J. Plant Sci. 2014, 94, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Vasileva, V.; Naydenova, Y. Nutritive value of forage biomass from mixtures of alfalfa with cocksfoot and tall fescue. J. Glob. Environ. Agric. Soc. Sci. 2017, 5, 121–129. [Google Scholar]
- Gaweł, E. The role of fine-grained legume plants in a farm. Woda-Sr.-Obsz. Wiej. 2011, 11, 73–91. [Google Scholar]
- Olszewska, M.; Grzegorczyk, S.; Bałuch-Małecka, A. The effect of different proportions of Medicago media Pers. in mixtures with Festulolium braunii (K. Richt.) A. Camus on the yield and feed value of green fodder. Agric. Food Sci. 2019, 28, 18–26. [Google Scholar] [CrossRef]
- Finn, J.A.; Kirwan, L.; Connolly, J.; Sebastià, M.T.; Helgadóttir, Á.; Baadshaug, O.H.; Bélanger, G.; Black, A.; Brophy, C.; Collins, R.P.; et al. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: A 3-year continental-scale field experiment. J. Appl. Ecol. 2013, 50, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Bijelić, Z.; Tomić, Z.; Ružić-Muslić, D.; Krnjaja, V.; Mandić, V.; Vučković, S.; Nikšić, D. Forage quality and energy content of perennial legume-grass mixtures at three level of N fertilization. Biotechnol. Anim. Husb. 2014, 30, 539–547. [Google Scholar] [CrossRef]
- Bélanger, G.; Tremblay, G.F.; Papadopoulos, Y.A.; Duynisveld, J.; Lajeunesse, J.; Lafrenière, C.; Fillmore, S.A.E. Yield and nutritive value of binary legume-grass mixtures under grazing or frequent cutting. Can. J. Plant Sci. 2018, 98, 395–407. [Google Scholar] [CrossRef] [Green Version]
- Fortuna, A.; Blevins, R.L.; Frye, W.W.; Grove, J.; Cornelius, P. Sustaining soil quality with legumes in no-tillage systems. Commun. Soil Sci. Plant Anal. 2008, 39, 1680–1699. [Google Scholar] [CrossRef]
- Rutkowska, A.; Pikuła, D. Effect of crop rotation and nitrogen fertilization on the quality and quantity of soil organic matter. In Soil Processes and Current Trends in Quality Assessment; Soriano, M.C.H., Ed.; Intech Open Book: Rijeka, Croatia, 2013; pp. 249–267. [Google Scholar]
- Hajduk, E.; Właśniewski, S.; Szpunar-Krok, E. Influence of legume crops on content of organic carbon in sandy soil. Soil Sci. Ann. 2015, 66, 52–56. [Google Scholar] [CrossRef]
- Hejduk, S.; Kno, P. Effect of provenance and ploidity of red clover varieties on productivity, persistence and growth pattern in mixture with grasses. Plant Soil Environ. 2010, 56, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Vasileva, V.; Kostov, O.; Vasilev, E.; Athar, M. Effect of mineral nitrogen fertilization on growth characteristics of lucerne under induced water deficiency stress. Pak. J. Bot. 2011, 43, 2925–2928. [Google Scholar]
- Shen, Y.; Jiang, H.; Zhai, G.; Cai, Q. Effects of cutting height on shoot regrowth and forage yield of alfalfa (Medicago sativa L.) in a short-term cultivation system. Grassl. Sci. 2013, 59, 73–79. [Google Scholar] [CrossRef]
- Sheldrick, R.D. Sward establishment and renovation. In Grass Its Production and Utilisation; Hopkins, A., Ed.; Blackwell Science: Oxford, UK, 2000; pp. 13–30. [Google Scholar]
- Janicka, M.; Borawska-Jarmułowicz, B.; Mastalerczuk, G. Development and growth of grass cultivars in pure stands and in meadow mixtures. Grassl. Sci. Eur. 2012, 17, 130–132. [Google Scholar]
- Heshmati, S.; Tonn, B.; Isselstein, J. White clover population effects on the productivity and yield stability of mixtures with perennial ryegrass and chicory. Field Crops Res. 2020, 252, 107802. [Google Scholar] [CrossRef]
- Borawska-Jarmułowicz, B. The influence of 12-year utilisation on stability of species and cultivars of grasses in meadow mixtures with different earliness. Ann. UMCS Sec. E Agric. 2004, 59, 1397–1406. [Google Scholar]
- Østrem, L.; Volden, B.; Larsen, A. Morphology, dry matter yield and phenological characters at different maturity stages of Festulolium compared with other grass species. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2013, 63, 531–542. [Google Scholar]
- Borawska-Jarmułowicz, B. The response of Dactylis glomerata used in meadow mixture on the curse of weather conditions in the long term. Grassl. Sci. Pol. 2005, 8, 27–33. [Google Scholar]
- Borawska-Jarmułowicz, B.; Mastalerczuk, G.; Janicka, M. Evaluation of biological characteristics and yield of selected varieties of Dactylis glomerata, Festuca pratensis and Phleum pratense in pure stands and mixtures. Grassl. Sci. Pol. 2016, 19, 35–50. [Google Scholar]
- Przybysz, A.; Wrochna, M.; Słowiński, A.; Gawrońska, H. Stimulatory effect of Asahi SL on selected plant species. Acta Sci. Pol. Hortorum Cultus 2010, 9, 53–64. [Google Scholar]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, R.K.; Lal, M.K.; Naga, K.C.; Kumar, R.; Chourasia, K.N.; Subhash, S.; Kumar, D.; Sharma, S. Emerging roles of melatonin in mitigating abiotic and biotic stresses of horticultural crops. Sci. Hortic. 2020, 272, 109592. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Lal, M.K.; Kumar, R.; Chourasia, K.N.; Naga, K.C.; Kumar, D.; Das, S.K.; Zinta, G. Mechanistic insights on melatonin-mediated drought stress mitigation in plants. Physiol. Plant. 2021, 72, 1212–1226. [Google Scholar] [CrossRef]
- Tubana, B.S.; Babu, T.; Datnoff, L.E. A review of silicon in soils and plants and its role in US agriculture: History and future perspectives. Soil Sci. 2016, 181, 393–411. [Google Scholar] [CrossRef] [Green Version]
- Capstaff, N.M.; Miller, A.J. Improving the yield and nutritional quality of forage crops. Front. Plant Sci. 2018, 9, 535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.F. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci. Plant Nutr. 2004, 50, 11–18. [Google Scholar] [CrossRef]
- Guo, Z.G.; Liu, H.X.; Tian, F.P.; Zhang, Z.H.; Wang, S.M. Effect of silicon on the morphology of shoots and roots of alfalfa (Medicago sativa). Aust. J. Exp. Agric. 2006, 46, 1161–1166. [Google Scholar] [CrossRef]
- Yan, G.C.; Nikolic, M.; Ye, M.J.; Xiao, Z.X.; Liang, Y.C. Silicon acquisition and accumulation in plant and its significance for agriculture. J. Integr. Agric. 2018, 17, 2138–2150. [Google Scholar] [CrossRef]
- Guntzer, F.; Keller, C.; Meunier, J.-D. Benefits of plant silicon for crops: A review. Agron. Sustain. Dev. 2012, 32, 201–213. [Google Scholar] [CrossRef] [Green Version]
- Zargar, S.M.; Mahajan, R.; Bhat, J.A.; Nazir, M.; Deshmukh, R. Role of silicon in plant stress tolerance: Opportunities to achieve a sustainable cropping system. 3 Biotech 2019, 9, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.C.; Sun, W.C.; Zhu, Y.G.; Christie, P. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environ. Pollut. 2007, 147, 422–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastalerczuk, G.; Borawska-Jarmułowicz, B.; Kalaji, H.M.; Dąbrowski, P.; Paderewski, J. Gas-exchange parameters and morphological features of festulolium (Festulolium braunii K. Richert A. Camus) in response to nitrogen dosage. Photosynthetica 2017, 55, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Sacała, E. Role of silicon in plant resistance to water stress. J. Elementol. 2009, 14, 619–630. [Google Scholar] [CrossRef]
- Sakr, N. Silicon control of bacterial and viral diseases in plants. J. Plant Prot. Res. 2016, 56, 4. [Google Scholar] [CrossRef]
- Mir, S.H.; Rashid, I.; Hussain, B.; Reshi, Z.A.; Assad, R.; Sofi, I.A. Silicon supplementation of rescue grass reduces herbivory by a grasshopper. Front. Plant Sci. 2019, 10, 671. [Google Scholar] [CrossRef] [PubMed]
- Cuong, T.X.; Ullah, H.; Datta, A.; Hanh, T.C. Effects of silicon-based fertilizer on growth, yield and nutrient uptake of rice in tropical zone of Vietnam. Rice Sci. 2017, 24, 283–290. [Google Scholar] [CrossRef]
- Ur Rahman, S.; Xuebin, Q.; Zhao, Z.; Du, Z.; Imtiaz, M.; Mehmood, F.; Hongfei, L.; Hussain, B.; Ashraf, M.N. Alleviatory effects of silicon on the morphology, physiology, and antioxidative mechanisms of wheat (Triticum aestivum L.) roots under cadmium stress in acidic nutrient solutions. Sci. Rep. 2021, 11, 1958. [Google Scholar] [CrossRef]
- Tuna, A.L.; Kaya, C.; Higgs, D.; Murillo-Amador, B.; Aydemir, S.; Girgin, A.R. Silicon improves salinity tolerance in wheat plants. Environ. Exp. Bot. 2008, 62, 10–16. [Google Scholar] [CrossRef]
- Reddy, A.R.; Chiatanya, K.V.; Vivekanandan, M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 2004, 161, 1189–1202. [Google Scholar] [CrossRef] [PubMed]
- Kaya, C.; Tuna, L.; Higgs, D. Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. J. Plant Nutr. 2006, 29, 1469–1480. [Google Scholar] [CrossRef]
- Bukhari, M.A.; Ashraf, M.Y.; Ahmad, R.; Waraich, E.A.; Hameed, M. Improving drought tolerance potential in wheat (Triticum aestivum L.) through exogenous silicon supply. Pak. J. Bot. 2015, 47, 1641–1648. [Google Scholar]
- Sierra, M.J.; Schmid, T.; Guirado, M.; Escolano, O.; Millán, R. How management practices affect silicon uptake by Hordeum vulgare grown in a highly calcareous soil. Soil Use Manag. 2021, 37, 1–13. [Google Scholar] [CrossRef]
- Shridevi; Hebsur, N.S. Effect of silicon fertilization on growth and yield of soybean (Glycine max (L.) Merrill) in Vertisol. J. Farm Sci. 2019, 33, 1572–1575. [Google Scholar]
- Liang, Y.; Nikolic, M.; Belanger, R.; Gong, H.; Song, A. Silicon in Agriculture. From Theory to Practice; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; New York, NY, USA; London, UK, 2015. [Google Scholar] [CrossRef]
- Meharg, C.; Meharg, A.A. Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environ. Exp. Bot. 2015, 120, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Meena, V.D.; Dotaniya, M.L.; Coumar, V.; Rajendiran, S.; Ajay; Kundu, S.; Subba Rao, A. A Case for Silicon Fertilization to Improve Crop Yieldsin Tropical Soils. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2014, 84, 505–518. [Google Scholar] [CrossRef] [Green Version]
- Sienkiewicz-Cholewa, U.; Zajączkowska, A. The role and yield-forming effect of silicon application based on the example of global research. Prog. Plant Prot. 2020, 60, 313–319. [Google Scholar] [CrossRef]
- Artyszak, A.; Gozdowski, D.; Kucińska, K. The effect of silicon foliar fertilization in sugar beet—Beta vulgaris (L.) ssp. vulgaris conv. crassa (Alef.) prov. altissima (Döll). Turk. J. Field Crops 2015, 20, 115–119. [Google Scholar] [CrossRef]
- Artyszak, A.; Kondracka, M.; Gozdowski, D.; Siuda, A.; Litwińczuk-Bis, M. Impact of foliar application of various forms of silicon on the chemical composition of sugar beet plants. Sugar Tech. 2021, 23, 546–559. [Google Scholar] [CrossRef]
- Kowalska, J.; Tyburski, J.; Jakubowska, M.; Krzymińska, J. Effect of different forms of silicon on growth of spring wheat cultivated in organic farming system. Silicon 2021, 13, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Radkowski, A.; Sosin-Bzducha, E.; Radkowska, I. Effects of silicon foliar fertilization of meadow plants on nutritional value of silage fed to dairy cows. J. Elem. 2017, 22, 1311–1322. [Google Scholar] [CrossRef]
- Mastalerczuk, G.; Borawska-Jarmułowicz, B.; Dąbrowski, P.; Szara, E.; Perzanowska, A.; Wróbel, B. Can the application the silicon improve the productivity and nutritional value of grass–clover sward in conditions of rainfall shortage in organic management? Agronomy 2020, 10, 1007. [Google Scholar] [CrossRef]
- World Reference Base for Soil Resources (WRBSR) 2014. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Report No 106; FAO: Rome, Italy, 2015.
- Staniak, M. Yielding and fodder value of mixtures of Festulolium braunii (Richt.) A. Camus with di- and tetraploid varieties of red clover. Fragm. Agron. 2009, 26, 105–115. [Google Scholar]
- Staniak, M. Yields and fodder value of Festulolium braunii variety Felopa depending on the first time harvest. I. Yields and selected yield components. Pamiet. Pulawski 2004, 137, 117–131. [Google Scholar]
- Abberton, M.T.; Marshall, A.H. Progress in breeding perennial clovers for temperate agriculture. Centenary review. J. Agric. Sci. 2005, 143, 117–135. [Google Scholar] [CrossRef]
- Staniak, M.; Bojarszczuk, J.; Księżak, J. Changes in yield and gas exchange parameters in Festulolium and alfalfa grown in pure sowing and in mixture under drought stress. Acta Agric. Scand. Sect. B. Soil Plant Sci. 2018, 68, 255–263. [Google Scholar] [CrossRef]
- Jelinowska, A.; Staniak, M. The interaction of plants in single-species and mixed sowing on the example of mixtures of alfalfa with grasses. Post. Nauk Rol. 2007, 5, 37–49. [Google Scholar]
- Sullivan, M.L.; Hatfield, R.D. Polyphenol oxidase and o-diphenols inhibit postharvest proteolysis in red clover and alfalfa. Crop Sci. 2006, 46, 662–670. [Google Scholar] [CrossRef] [Green Version]
- Serajchi, M.; Schellenberg, M.P.; Mischkolz, J.M.; Lamb, E.G. Mixtures of native perennial forage species produce higher yields than monocultures in a long-term study. Can. J. Plant Sci. 2017, 98, 633–647. [Google Scholar] [CrossRef]
- Franche, C.; Lindström, K.; Elmerich, C. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 2009, 321, 35–59. [Google Scholar] [CrossRef]
- Epstein, E. Silicon: Its manifold roles in plants. Ann. Appl. Biol. 2009, 155, 155–160. [Google Scholar] [CrossRef]
- Peoples, M.B. Legumes root nitrogen in cropping system nitrogen cycling. Graine Legume 2001, 33, 8–9. [Google Scholar]
- Buxton, D.R. Quality-related characteristics of forages as influenced by plant environment and agronomic factors. Anim. Feed Sci. Technol. 1996, 59, 37–49. [Google Scholar] [CrossRef]
- Staniak, M.; Kocoń, A. Forage grasses under drought stress in conditions of Poland. Acta Physiol. Plant 2015, 37, 116. [Google Scholar] [CrossRef] [Green Version]
- Fariaszewska, A.; Aper, J.; Van Huylenbroeck, J.; Baert, J.; De Riek, J.; Staniak, M.; Pecio, Ł. Mild drought stress-induced changes in yield, physiological processes and chemical composition in Festuca, Lolium and Festulolium. J. Agron. Crop Sci. 2017, 203, 103–116. [Google Scholar] [CrossRef]
- Kuchenmeister, K.; Kuchenmeister, F.; Kayser, M.; Wrange-Monning, N.; Isselstein, J. Influence of drought stress on nutritive value of perennial forage legumes. Int. J. Plant Prod. 2013, 7, 1735–8043. [Google Scholar]
- Black, A.D.; Laidlaw, A.S.; Moot, D.J.; Kiely, P.O. Comparative growth and management of white and red clovers. Ir. J. Agric. Food Res. 2009, 48, 149–166. [Google Scholar]
- Staniak, M.; Harasim, E. Changes in nutritive value of alfalfa (Medicago x varia T. Martyn) and Festulolium (Festulolium braunii (K. Richt) A. Camus) under drought stress. J. Agron. Crop Sci. 2018, 204, 456–466. [Google Scholar] [CrossRef]
- INRA. Alimentation des Bovins, Ovins et Caprins: Besoins des Animaux. Valeur des Aliments; Feeding of Cattle, Sheep and Goats. Animal Needs, Feed Value; Editions Quae; Tables INRA: Paris, France, 2007. [Google Scholar]
- Bruinenberg, M.H.; Struik, P.C.; Valk, H. Digestibility and plant characteristic of forages in semi-natural grasslands. Grassl. Sci. Eur. 2001, 6, 154–157. [Google Scholar]
- Miller, L.A.; Moorby, J.M.; Davies, D.R.; Humphreys, M.O.; Scollan, N.D.; MacRae, J.C.; Theodorou, M.K. Increased concentration of water-soluble carbohydrate in perennial ryegrass (Lolium perenne L.): Milk production from late-lactation dairy cows. Grass Forage Sci. 2001, 56, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Harris, L.; Moorby, J.; Humphreys, M.; Theodorou, M.; MacRae, J.; Scollan, N. Rumen metabolism and nitrogen flow to the small intestine in steers offered Lolium perenne containing different levels of water-soluble carbohydrate. Anim. Sci. 2002, 74, 587–596. [Google Scholar] [CrossRef] [Green Version]
- Olszewska, M.; Kobyliński, A. The relative feed value of mixtures Festulolium braunii (K. Richt.) A. Camus with Medicago media Pers. depending on the varying participation on alfalfa in sowing. Acta Agrophysica 2016, 23, 481–490. [Google Scholar]
- Ciepiela, G.A. Content of structural and ninstructural carbohydrates and lignin in Dactylis glomerata L. and Festulolium braunii (K. Richt.) A. Camus supplied by bistimulator Kelpak SL and nitrogen. Nauka Przyr. Technol. 2014, 8, 2. [Google Scholar]
- Purwin, C.; Stanek, M.; Lipiński, K.; Wierzbowska, J.; Nogalska, A.; Fijałkowska, M. Effect of a harvest time and cultivar on the chemical composition and in vitro ruminal dry matter degradability of perennial ryegrass (Lolium perenne L.). J. Elem. 2016, 21, 811–822. [Google Scholar]
- Thorvaldsson, G.; Tremblay, G.F.; Kunelius, H.T. The effects of growth temperature on digestibility and fibre concentration of seven temperate grass species. Acta Agric. Scand. Sect. B. Soil Plant Sci. 2007, 57, 322–328. [Google Scholar] [CrossRef]
- Kurdali, F.; Al-Chammaa, M.; Mouasess, A. Growth and nitrogen fixation in silicon and/or potassium fed chickpeas grown under drought and well-watered conditions. J. Stress Physiol. Biochem. 2013, 9, 386–406. [Google Scholar]
Year | 2015 | 2016 | 2017 | ||||
---|---|---|---|---|---|---|---|
Month | IV | V | IV | V | IV | V | |
Decade | Temperature (°C) | Mean | |||||
1st | 4.2 | 12.7 | 9.8 | 13.2 | 10.7 | 9.5 | 10.0 |
2nd | 8.7 | 12.9 | 10.3 | 11.9 | 5.4 | 15.0 | 10.7 |
3rd | 11.7 | 13.5 | 7.2 | 19.1 | 6.1 | 17.1 | 12.5 |
Mean | 8.2 | 13.0 | 9.1 | 14.7 | 7.4 | 13.9 | 11.1 |
Decade | Precipitation (mm) | ||||||
1st | 19.2 | 18.7 | 8.9 | 18.7 | 13.2 | 53.8 | 22.1 |
2nd | 6.4 | 6.0 | 2.8 | 26.5 | 11.7 | 0.0 | 8.9 |
3rd | 22.1 | 10.9 | 7.8 | 50.1 | 35.5 | 18.9 | 24.2 |
Sum | 47.7 | 35.6 | 19.5 | 95.3 | 60.4 | 72.7 | 55.2 |
Sum IV–V | 83.3 | 114.8 | 133.1 | 110.4 |
Factor | OM | CP | CF | CA | CFa | NFE | NDF | ADF | ADL | OMD | DMD | WSC | NFC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year (A) | |||||||||||||
1st | 910.3a | 95.1a | 292.7b | 90.3ab | 24.3a | 499.5c | 540.6b | 351.9b | 43.4a | 47.5b | 47.4b | 137.4c | 250.3b |
2nd | 907.9a | 112.3b | 278.6a | 92.4b | 30.7c | 486.2b | 516.3a | 340.2a | 43.0a | 50.8c | 51.2c | 129.0b | 247.9b |
3rd | 909.5a | 100.1a | 310.4c | 89.0a | 27.7b | 472.4a | 573.5c | 365.1c | 46.9b | 43.5a | 43.3a | 96.0a | 210.0a |
Si variant (B) | |||||||||||||
C | 909.4a | 99.1a | 297.4b | 90.7a | 27.5a | 485.5a | 549.4b | 355.7b | 44.7a | 46.6a | 46.6a | 120.1a | 233.6a |
H | 907.9a | 105.2b | 291.4a | 91.3a | 27.7a | 485.0a | 539.3a | 350.4a | 44.0a | 47.9b | 48.0b | 121.5a | 236.9a |
O | 910.4a | 103.1b | 292.9ab | 89.7a | 27.5a | 487.7a | 541.7a | 351.2ab | 44.6a | 47.3ab | 47.2ab | 120.9a | 237.8a |
Species (C) | |||||||||||||
D.g | 916.1d | 71.1a | 332.7d | 84.6a | 29.0c | 485.7b | 613.7e | 379.9d | 46.6c | 40.1a | 40.1a | 97.3b | 201.5a |
F.b | 907.2b | 80.7b | 296.4c | 91.3b | 26.4a | 503.5c | 576.2d | 357.5c | 39.9b | 47.3b | 46.8b | 145.8c | 226.1b |
L.p. | 914.3cd | 72.5a | 265.7b | 86.3a | 28.2bc | 548.7d | 540.4c | 330.7b | 34.5a | 53.6c | 53.6c | 192.1d | 274.1d |
T.p | 911.1bc | 176.2c | 230.6a | 88.7ab | 26.2ab | 478.0b | 382.9a | 304.9a | 51.6d | 56.2d | 56.5d | 104.9b | 325.2e |
Mx.v | 887.8a | 218.2d | 261.6b | 112.7c | 27.5abc | 380.3a | 398.4b | 324.0b | 54.2e | 53.4c | 54.7cd | 61.0a | 242.8c |
Mixture (D) | |||||||||||||
M1 | 907.4b | 81.1b | 310.8b | 85.1b | 26.8ab | 493.6b | 578.4b | 363.8b | 45.1b | 47.7a | 47.7b | 111.9b | 221.1b |
M2 | 899.1ab | 123.9c | 313.6b | 98.1c | 27.6b | 433.8a | 549.7a | 367.4b | 49.5c | 44.6ab | 44.8a | 78.4a | 196.6a |
M3 | 874.9a | 58.9a | 281.2a | 77.3a | 25.9a | 508.8b | 544.2a | 331.2a | 37.1a | 49.5b | 49.3c | 155.9c | 244.8c |
Interactions | |||||||||||||
AxB | * | * | * | * | * | * | * | * | * | * | * | * | * |
AxC | * | * | * | * | * | * | * | * | * | * | * | * | * |
AxD | * | * | * | * | * | * | * | * | * | * | * | * | * |
BxC | * | * | * | * | * | * | * | * | * | * | * | * | * |
BxD | * | * | * | * | * | * | * | * | * | * | * | * | * |
CxD | * | * | * | * | * | * | * | * | * | * | * | * | * |
AxBxC | * | * | * | * | * | * | * | * | * | * | * | * | * |
AxBxD | * | * | * | * | * | * | * | * | * | * | * | * | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borawska-Jarmułowicz, B.; Mastalerczuk, G.; Janicka, M.; Wróbel, B. Effect of Silicon-Containing Fertilizers on the Nutritional Value of Grass–Legume Mixtures on Temporary Grasslands. Agriculture 2022, 12, 145. https://doi.org/10.3390/agriculture12020145
Borawska-Jarmułowicz B, Mastalerczuk G, Janicka M, Wróbel B. Effect of Silicon-Containing Fertilizers on the Nutritional Value of Grass–Legume Mixtures on Temporary Grasslands. Agriculture. 2022; 12(2):145. https://doi.org/10.3390/agriculture12020145
Chicago/Turabian StyleBorawska-Jarmułowicz, Barbara, Grażyna Mastalerczuk, Maria Janicka, and Barbara Wróbel. 2022. "Effect of Silicon-Containing Fertilizers on the Nutritional Value of Grass–Legume Mixtures on Temporary Grasslands" Agriculture 12, no. 2: 145. https://doi.org/10.3390/agriculture12020145
APA StyleBorawska-Jarmułowicz, B., Mastalerczuk, G., Janicka, M., & Wróbel, B. (2022). Effect of Silicon-Containing Fertilizers on the Nutritional Value of Grass–Legume Mixtures on Temporary Grasslands. Agriculture, 12(2), 145. https://doi.org/10.3390/agriculture12020145