The Effect of Tytanit on Fibre Fraction Content in Medicago x varia T. Martyn and Trifolium pratense L. Cell Walls
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brown, P.; Saa, S. Biostimulants in agriculture. Front. Plant Sci. 2015, 6, 671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and crop response: A review. Biol. Agric. Hortic. 2015, 31, 117. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Kocira, A.; Kocira, S.; Świeca, M.; Złotek, U.; Jakubczyk, A.; Kapela, K. Effect of foliar application of a nitrophenolate–based biostimulant on the yield and quality of two bean cultivars. Sci. Hortic. 2017, 214, 76–82. [Google Scholar] [CrossRef]
- Clément, L.; Hurel, C.; Marmier, N. Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants—Effects of size and crystalline structure. Chemosphere 2013, 90, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Radkowski, A.; Radkowska, I. Effect of foliar application of growth biostimulant on quality and nutritive value of meadow sward. Ecol. Chem. Eng. A 2013, 20, 1205–1211. [Google Scholar] [CrossRef]
- Radkowski, A.; Radkowska, I.; Lemek, T. Effects of foliar application of titanium on seed yield in timothy (Phleum pratense L.). Ecol. Chem. Eng. S 2015, 22, 691–701. [Google Scholar] [CrossRef] [Green Version]
- Wadas, W.; Kalinowski, K. Effect of titanium on growth of very early maturing potato cultivars. Acta Sci. Pol. Hortorum Cultus 2017, 16, 125–138. [Google Scholar] [CrossRef]
- Wadas, W.; Kalinowski, K. Effect of titanium on assimilation leaf area and chlorophyll content of very early maturing potato cultivars. Acta Sci. Pol. Agric. 2017, 16, 87–98. [Google Scholar] [CrossRef]
- Cieśliński, G.; INTERMAG. TYTANIT—Yield-Forming Stimulator of Vegetable Growth and Yielding. Available online: https://intermag.pl/public/file/elfinder/artykuly/tytanit_warzywa%282%29.pdf (accessed on 4 May 2020). (In Polish).
- Wadas, W.; Kalinowski, K. Effect of Tytanit® on the dry matter and macroelement contents in potato tuber. J. Cent. Eur. Agr. 2018, 19, 557–570. [Google Scholar] [CrossRef] [Green Version]
- Cigler, P.; Olejnickova, J.; Hruby, M.; Csefalvay, L.; Peterkae, J.; Kuzel, S. Interactions between iron and titanium metabolism in spinach: A chlorophyll fluorescence study in hydropony. J. Plant Physiol. 2010, 167, 1592–1597. [Google Scholar] [CrossRef] [PubMed]
- Radkowski, A. Leaf greenness (SPAD) index in timothy-grass seed plantation at different doses of titanium foliar fertilization. Ecol. Chem. Eng. A 2013, 20, 167–174. [Google Scholar] [CrossRef]
- Hrubý, M.; Cígler, P.; Kužel, S. Contribution to understanding the mechanism of titanium action in plant. J. Plant Nutr. 2002, 25, 577–598. [Google Scholar] [CrossRef]
- Jaberzadeh, A.; Moaveni, P.; Tohidimoghadam, H.; Zahedi, H. Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not. Bot. Horti Agrobot. Cluj-Napoca 2013, 41, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Lyu, S.; Wei, X.; Chen, J.; Wang, C.; Wang, X.; Pan, D. Titanium as a beneficial element for crop production. Front. Plant Sci. 2017, 8, 597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalski, P. The effect of Tytanit on the yield structure and the fruit size of strawberry ‘Senga Sengana’ and ‘Elsanta’. Ann. UMCS Agric. 2008, 63, 109–118. [Google Scholar] [CrossRef]
- Kužel, S.; Hrubý, M.; Cígler, P.; Tlustoš, P.; Phu, N.V. Mechanism of physiological effects of titanium leaf sprays on plants grown on soil. Biol. Trace Elem. Res. 2003, 91, 179–190. [Google Scholar] [CrossRef]
- Godlewska, A.; Ciepiela, G.A. Assessment of the effect of various biostimulants on Medicago x varia T. Martyn yielding and content of selected organic components. Appl. Ecol. Environ. Res. 2018, 16, 5571–5581. [Google Scholar] [CrossRef]
- Sosnowski, J.; Jankowski, K.; Malinowska, E.; Truba, M. The effect of Eclonia maxima extract on Medicago x varia T. Martyn biomass. J. Soil Sci. Plant Nutr. 2017, 17, 770–780. [Google Scholar] [CrossRef] [Green Version]
- Sosnowski, J.; Król, J.; Truba, M. The effects of indole-3-butyric acid and 6-benzyloaminopuryn on Fabaceae plants morphometrics. J. Plant Interact. 2019, 14, 603–609. [Google Scholar] [CrossRef] [Green Version]
- Kallenbach, R.I.; Nelson, C.J.; Coutts, J.H. Yield, quality, and persistence of grazing- and hay-type alfalfa under three harvest frequencies. Agron. J. 2002, 94, 1094–1103. [Google Scholar] [CrossRef]
- Baeuchemin, K.A.; Farr, B.I.; Rode, L.M.; Schaalje, G.B. Optimal neutral detergent fiber concentration of barley-based diets for lactating dairy cows. J. Dairy Sci. 1994, 77, 1013–1029. [Google Scholar] [CrossRef]
- Kiraz, A.B. Determination of Relative Feed Value of some legume hays harvested at flowering stage. Asian J. Anim. Vet. Adv. 2011, 6, 525–530. [Google Scholar] [CrossRef] [Green Version]
- Pang, K.; Van Sambeek, J.W.; Navarrete-Tindall, N.E.; Lin, C.H.; Jose, S.; Garrett, H.E. Responses of legumes and grasses to non-, moderate, and dense shade in Missouri, USA. II. Forage quality and its species-level plasticity. Agrofor. Syst. 2019, 93, 25–38. [Google Scholar] [CrossRef]
- Kawas, J.R.; Jorgensen, N.A.; Danelon, J.L. Fiber requirements of dairy cows: Optimum fiber level in lucerne-based diets for high producing cows. Livest. Prod. Sci. 1991, 28, 107–119. [Google Scholar] [CrossRef]
- Moore, K.J.; Jung, H.J.G. Lignin and fiber digestion. J. Range Manag. 2001, 54, 420–430. [Google Scholar] [CrossRef]
- Vasiljevic, S.; Glamocic, D.; Jajic, I.; Cupina, B.; Katic, S.; Milic, D.; Mikic, V. Fibre fractions of red clover (Trifolium pretense L.) at different harvests over two seasons. Biodivers. Anim. Feed. 2008, 13, 513–515. [Google Scholar]
- Bach Knudsen, K.E. Carbohydrate and lignin contents of plant materials used in animal feeding. Anim. Feed Sci. Technol. 1997, 67, 319–338. [Google Scholar] [CrossRef]
- Schad, P.; van Huyssteen, C.; Micheli, E. World Reference Rase for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps: World Soil Resources Reports; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014. [Google Scholar]
- Horoszkiewicz-Janka, J.; Mrówczyński, M. Methods of Integrated Alfalfa Protection; Institute of Plant Protection (PIB): Poznan, Poland, 2012. [Google Scholar]
- Strażyński, P.; Mrówczyński, M. Methods of Integrated Protection of Clovers; Institute of Plant Protection (PIB): Poznan, Poland, 2015. [Google Scholar]
- Winiarska-Mieczan, A.; Sołtys, R. Evaluation of the content of crude fibre and its fraction in cereal products. Bromat. Chem. Toksykol XLII 2009, 4, 1083–1088. (In Polish) [Google Scholar]
- Sosnowski, J.; Jankowski, K.; Domański, P.; Herda, D.; Król, J.; Matsyura, A. Relative feed velue of different verieties of Dactylis glomerata and Festuca pratensis. J. Life Sci. 2015, 9, 443–448. [Google Scholar] [CrossRef] [Green Version]
- Radzka, E.; Rymuza, K. Multi-trait analysis of agroclimate variations during the growing season in east-central Poland (1971–2005). Int. Agrophys. 2015, 29, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Riviera, S.A.L.; Guerrero-Rodriguez, J.D.; Hernandez-Velez, J.O.; Ramirez-Gonzalez, J.D.M.; Garcia-Bonilla, D.V.; Alatorre-Hernandez, A. Dry matter yield and nutritional values of four herbaceous legumes in a humid tropical environment in Hueytamalco, Puebla, Mexico. Revista Mexicana Ciencias Pecuarias 2019, 10, 1042–1053. [Google Scholar] [CrossRef]
- Zhang, Y.H.; MacAdam, J.W.; Villalba, J.J.; Dai, X. In vitrodigestibility of mountain-grown irrigated perennial legume, grass and forb forages is influenced by elevated non-fibrous carbohydrates and plant secondary compounds. J. Sci. Food Agric. 2021, 101, 334–340. [Google Scholar] [CrossRef]
- Brown, A.N.; Ferreira, G.; Teets, C.L.; Thomason, W.E.; Teutsch, C.D. Nutritional composition and in vitro digestibility of grass and legume winter (cover) crops. J. Dairy Sci. 2018, 101, 2037–2047. [Google Scholar] [CrossRef] [PubMed]
- Genc-Lermi, A. Effects of mixture rations on forage yield and quality of legume triticale intercropping system without fertilizer in oceanic climate zone. Fresenius Environ. Bull. 2018, 27, 5540–5547. [Google Scholar]
- Truba, M.; Wiśniewska-Kadżajan, B.; Jankowski, K. The influence of biology preparations and mineral fertilization NPK on fiber fractions content in Dactylis glomerata and Lolium perenne. Fragm. Agron. 2017, 34, 107–116. (In Polish) [Google Scholar]
- Gaweł, E.; Żurek, J. Nutritional value of selected lucerne cultivars. IHAR 2003, 225, 167–174. (In Polish) [Google Scholar]
- Tomic, Z.; Bijelic, Z.; Zujovic, M.; Simic, A.; Kresovic, M.; Mandic, V.; Stanisic, N. The effect of nitrogen fertilization on quality and yield of grass-legume mixtures. Grassl. Sci. Eur. 2012, 17, 187–189. [Google Scholar]
- Wróbel, B.; Zielińska, K.J.; Fabiszewska, A.U. The effect of fertilization with liquid cattle manure on meadows wart quality and its usefulness to ensilage. Probl. Inż. Rol. 2013, 2, 151–164. (In Polish) [Google Scholar]
- Jankowska, J. Impact of methods control of common dandelion (Taraxacum officinale) on the relative nutritional quality of meadow hay. Folia Pomeranae Univ. Technol. Stetin. Agric. Aliment. Piscaria Zootech. 2013, 25, 51–58. (In Polish) [Google Scholar]
- Khudyakova, H.K.; Shitikova, A.V.; Zarenkova, N.V.; Kukharenkova, O.V.; Konsantinovich, A.V. Assessment of contents of structural carbohydrates and lignin of perennial fodder herbages depending on vegetative stage growth. Period. Tche Quim. 2020, 17, 994–1003. [Google Scholar] [CrossRef]
- Sosnowski, J.; Malinowska, E.; Jankowski, K.; Redzik, P. Morpho-chemical diversity in Festuca pratensis and Lolium perenne depending on concentrations of Eclonia maxima extract. Appl. Ecol. Environ. Res. 2016, 14, 369–379. [Google Scholar] [CrossRef]
- Sosnowski, J.; Jankowski, K.; Truba, M.; Malinowska, E. Morpho-physiological and biochemical effects of plant growth regulators on Medicago x varia T. Martyn. Appl. Ecol. Environ. Res. 2018, 16, 2403–2414. [Google Scholar] [CrossRef]
- Markovic, J.; Strbanovic, R.; Terzic, D.; Pojic, M.; Vasic, T.; Babic, S. Relative feed value of alfalfa (Medicago sativa L.) and red clover (Trifolium pratense L.) at different stage of growth. Biotechnol. Anim. Husb. 2010, 26, 469–474. [Google Scholar]
- Jeranyama, P.; Garcia, D.A. Understanding relative feed value (RFV) and relative forage quality (RFQ). Ext. Extra 2004, 352. [Google Scholar]
- Godlewska, A.; Ciepiela, G.A. Italian Ryegrass (Lolium multiflorum Lam.) fiber fraction content and dry matter digestibility following biostimulant application against the background of varied nitrogen regime. Agronomy 2021, 11, 39. [Google Scholar] [CrossRef]
Year | Month | |||||||
---|---|---|---|---|---|---|---|---|
Apr. | May | June | July | Aug. | Sept. | Oct. | Means | |
Temperature (°C) | ||||||||
2015 | 9.7 | 13.7 | 15.1 | 20.5 | 17.8 | 13.7 | 8.4 | 14.1 |
2016 | 8.2 | 12.3 | 16.5 | 18.7 | 21.0 | 14.5 | 6.5 | 14.0 |
2017 | 6.9 | 13.9 | 17.8 | 16.9 | 18.4 | 13.9 | 9.0 | 13.8 |
Means | 8.3 | 13.3 | 16.5 | 18.7 | 19.1 | 14.0 | 8.0 | 13.9 |
Multiannual means | 8.5 | 14.0 | 17.4 | 19.8 | 18.9 | 13.2 | 7.9 | 14.2 |
Precipitation (mm) | ||||||||
2015 | 39.5 | 79.5 | 74.2 | 37.5 | 105.7 | 26.3 | 3.0 | 52.2 |
2016 | 30.0 | 100.2 | 43.3 | 62.6 | 11.9 | 77.1 | 39.0 | 52.0 |
2017 | 59.6 | 49.5 | 57.9 | 23.6 | 54.7 | 80.1 | 53.0 | 54.1 |
Means | 43.0 | 76.4 | 58.5 | 41.2 | 57.4 | 61.2 | 31.7 | 52.8 |
Multiannual means | 33.0 | 52.0 | 52.0 | 65.0 | 56.0 | 48.0 | 28.0 | 47.7 |
Sielianinov’s hydrothermal coefficient (K) | ||||||||
2015 | 1.36 | 1.87 | 1.64 | 0.59 | 1.92 | 0.64 | 0.12 | - |
2016 | 1.22 | 2.63 | 0.87 | 1.0 | 0.18 | 1.46 | 1.94 | - |
2017 | 2.88 | 1.15 | 1.08 | 0.45 | 0.96 | 1.92 | 1.90 | - |
Sielianinov’s coefficient legend: | ||||||||
Extremely dry | very dry | dry | fairy dry | optimal | fairy wet | wet | very wet | extremely wet |
Year | Harvest | Means | ||||
---|---|---|---|---|---|---|
Treatment | 2016 | 2017 | 1 | 2 | 3 | |
Treatment means | ||||||
Ti0.0 | 366 ± 4.15 Aa | 373 ± 3.99 Aa | 349 ± 6.01 Ca | 392 ± 4.68 Aa | 368 ± 4.27 Ba | 369 ± 4.95 a |
Ti1.2 | 360 ± 5.90 Aa | 358 ± 4.78 Ab | 349 ± 5.78 Ba | 374 ± 5.10 Aab | 358 ± 4.38 ABa | 360 ± 3.54 b |
Ti2.4 | 360 ± 4.11 Aab | 348 ± 7.05 Ab | 357 ± 5.20 Aa | 370 ± 4.78 Ab | 336 ± 5.17 Bb | 354 ± 8,49 c |
Ti3.6 | 354 ± 5.12 Ab | 347 ± 4.36 Ab | 329 ± 4.17 Bb | 359 ± 6.08 Ab | 364 ± 6.29 Aa | 351 ± 4.94 c |
Species means | ||||||
h. alfalfa | 378 ± 4.95 Aa | 369 ± 4.95 Ba | 357 ± 3.19 Ba | 394 ± 4.11 Aa | 369 ± 4.57 ABa | 374 ± 6.36 a |
r. clover | 344 ± 4.95 Ab | 344 ± 4.95 Ab | 334 ± 5.27 Bb | 353 ± 6.07 Ab | 344 ± 4.46 ABb | 344 ± 1.28 b |
Means | 361 ± 5.12 A | 356 ± 6.12 A | 346 ± 8.19 B | 374 ± 6.28 A | 356 ± 8.91 B |
Year | Harvest | Means | ||||
---|---|---|---|---|---|---|
Treatment | 2016 | 2017 | 1 | 2 | 3 | |
Treatment means | ||||||
Ti0.0 | 318 ± 5.78 Aa | 311 ± 4.99 Ba | 304 ± 6.04 Ba | 334 ± 6.23 Aa | 306 ± 4.75 Ba | 315 ± 4.95 a |
Ti1.2 | 316 ± 4.04 Aa | 311 ± 5.11 Ba | 307 ± 5.66 Ba | 323 ± 5.15 Aa | 311 ± 5.33 Ba | 314 ± 4.78 a |
Ti2.4 | 313 ± 3.98 Aa | 308 ± 6.01 Ba | 309 ± 5.17 ABa | 318 ± 4.95 Ab | 305 ± 4.85 Ba | 311 ± 5.08 ab |
Ti3.6 | 311 ± 6.07 Aa | 305 ± 5.28 Ba | 297 ± 4.98 Ba | 316 ± 5.21 Ab | 311 ± 5.02 ABa | 308 ± 4.25 b |
Species means | ||||||
h. alfalfa | 321 ± 3.87 Aa | 313 ± 6.04 Ba | 309 ± 4.01 Ba | 333 ± 6.12 Aa | 308 ± 5.44 Ba | 317 ± 5.65 a |
r. clover | 309 ± 5.38 Ab | 305 ± 6.44 Ab | 299 ± 6.15 Bb | 312 ± 7.00 Aa | 309 ± 5.18 Ba | 307 ± 2.83 b |
Means | 315 ± 3.10 A | 309 ± 3.87 B | 305 ± 5.25 B | 323 ± 6.06 A | 308 ± 3.20 B |
Year | Harvest | Means | ||||
---|---|---|---|---|---|---|
Treatment | 2016 | 2017 | 1 | 2 | 3 | |
Treatment means | ||||||
Ti0.0 | 57 ± 2.70 Ab | 58 ± 1.78 Aa | 57 ± 2.71 Aa | 58 ± 2.11 Aa | 57 ± 2.53 Aa | 58 ± 1.07 a |
Ti1.2 | 59 ± 2.41 Aa | 57 ± 1.01 Aa | 55 ± 1.98 Ba | 60 ± 2.12 Aa | 59 ± 3.05 Aa | 58 ± 1.40 a |
Ti2.4 | 59 ± 3.46 Aa | 56 ± 2.67 Ba | 56 ± 2.02 Ba | 60 ± 2.61 Aa | 55 ± 1.54 Ba | 57 ± 2.21 b |
Ti3.6 | 59 ± 2.99 Aa | 56 ± 3.12 Ba | 54 ± 3.03 Ba | 60 ± 2.44 Aa | 57 ± 2.08 Ba | 57 ± 2.18 b |
Species means | ||||||
h. alfalfa | 58 ± 2.65 Aa | 56 ± 1.24 Ab | 56 ± 2.22 Ba | 61 ± 2.71 Aa | 55 ± 2.81 Bb | 57 ± 2.31 b |
r. clover | 58 ± 1.79 Aa | 58 ± 1.90 Aa | 55 ± 1.27 Ba | 59 ± 2.39 Aa | 60 ± 1.61 Aa | 58 ± 0.87 a |
Means | 58 ± 0.78 A | 57 ± 1.05 A | 56 ± 1.29 B | 60 ± 0.92 A | 57 ± 1.63 B |
Year | Harvest | Means | ||||
---|---|---|---|---|---|---|
Treatment | 2016 | 2017 | 1 | 2 | 3 | |
Treatment means | ||||||
Ti0.0 | 261 ± 9.98 Aa | 253 ± 10.1 Aa | 247 ± 10.2 Ba | 276 ± 13.7 Aa | 249 ± 10.1 Ba | 257 ± 9.78 a |
Ti1.2 | 257 ± 7.90 Aa | 254 ± 7.98 Aa | 252 ± 13.0 Aa | 263 ± 12.8 Aab | 252 ± 12.0 Aa | 256 ± 13.0 a |
Ti2.4 | 254 ± 11.9 Aa | 252 ± 8.92 Aa | 253 ± 10.1 Aa | 258 ± 13.5 Aab | 250 ± 11.7 Aa | 253 ± 7.67 a |
Ti3.6 | 252 ± 9.91 Aa | 249 ± 12.3 Aa | 243 ± 9.08 Aa | 256 ± 9.21 Ab | 254 ± 12.0 Aa | 251 ± 11.2 a |
Species means | ||||||
h. alfalfa | 263 ± 8.12 Aa | 257 ± 12.3 Aa | 253 ± 11.1 Ba | 272 ± 13.9 Aa | 253 ± 10.3 Aa | 260 ± 10.8 a |
r. clover | 251 ± 6.99 Aa | 247 ± 9.65 Aa | 244 ± 10.8 Aa | 253 ± 9.98 Ab | 249 ± 9.92 Aa | 249 ± 9.91 a |
Means | 257 ± 8.28 A | 252 ± 7.97 A | 249 ± 13.08 A | 263 ± 12.10 A | 251 ± 11.0 A |
Year | Harvest | Means | ||||
---|---|---|---|---|---|---|
Treatment | 2016 | 2017 | 1 | 2 | 3 | |
Treatment means | ||||||
Ti0.0 | 48 ± 2.46 Ba | 62 ± 3.11 Aa | 45 ± 2.56 Bb | 58 ± 3.17 Aa | 62 ± 3.06 Aa | 54 ± 2.40 a |
Ti1.2 | 44 ± 3.01 Aa | 47 ± 1.96 Ab | 42 ± 2.76 Bb | 51 ± 3.16 Aab | 47 ± 2.63 ABc | 46 ± 2.12 ab |
Ti2.4 | 47 ± 1.96 Aa | 40 ± 1.66 Ab | 48 ± 3.01 ABa | 52 ± 2.97 Aab | 31 ± 1.89 Bd | 43 ± 1.96 b |
Ti3.6 | 43 ± 2.23 Aa | 42 ± 3.16 Ab | 32 ± 1.96 Cc | 43 ± 3.41 Bb | 53 ± 3.07 Ab | 43 ± 2.17 b |
Species means | ||||||
h. alfalfa | 57 ± 2.40 Aa | 56 ± 3.30 Aa | 48 ± 1.96 Ba | 61 ± 3.08 Aa | 61 ± 3.32 Aa | 57 ± 2.21 a |
r. clover | 35 ± 3.10 Ab | 39 ± 2.74 Ab | 35 ± 2.06 Bb | 41 ± 2.26 Ab | 35 ± 2.01 Bb | 37 ± 1.79 b |
Means | 46 ± 2.61 A | 47 ± 2.45 A | 41 ± 2.40 B | 51 ± 3.10 A | 48 ± 2.27 AB |
Year | Harvest | Means | ||||
---|---|---|---|---|---|---|
Treatment | 2016 | 2017 | 1 | 2 | 3 | |
Treatment means | ||||||
Ti0.0 | 163 ± 4.08 Aa | 161 ± 6.10 Aa | 174 ± 5.18 Aab | 149 ± 6.98 Cb | 164 ± 7.01 Bb | 162 ± 6.38 a |
Ti1.2 | 165 ± 6.01 Aa | 168 ± 3.78 Aa | 173 ± 6.11 Aab | 159 ± 4.45 Bab | 168 ± 4.48 Ab | 167 ± 5.55 a |
Ti2.4 | 167 ± 3.98 Aa | 174 ± 5.12 Aa | 169 ± 5.23 Bb | 161 ± 3.99 Ba | 180 ± 5.58 Aa | 170 ± 5.27 a |
Ti3.6 | 170 ± 5.12 Aa | 175 ± 5.63 Aa | 186 ± 4.88 Aa | 167 ± 6.12 Ba | 165 ± 5.01 Bb | 172 ± 5.32 a |
Species means | ||||||
h. alfalfa | 157 ± 4.01 Ab | 163 ± 6.02 Aa | 169 ± 5.20 Ab | 149 ± 5.11 Bb | 164 ± 3.98 Aa | 160 ± 4.08 b |
r. clover | 175 ± 5.38 Aa | 176 ± 5.18 Aa | 183 ± 6.74 Aa | 170 ± 7.08 Ba | 175 ± 4.18 Ba | 176 ± 4.99 a |
Means | 166 ± 6.03 A | 169 ± 5.11 A | 175 ± 5.69 A | 159 ± 4.87 B | 170 ± 6.00 AB |
Harvest | RFV | ||||
---|---|---|---|---|---|
x1 NDF Concentration | x2 ADF Concentration | x3 ADL Concentration | x4 Cellulose Concentration | x4 Hemicellulose Concentration | |
1 | −0.72820 * | −0.85701 * | −0.83922 * | −0.77532 * | −0.67665 * |
2 | −0.78175 * | −0.74931 * | −0.85481 * | −0.65948 * | −0.77324 * |
3 | −0.69755 * | −0.67394 * | −0.74360 * | −0.66374 * | −0.69344 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Truba, M.; Sosnowski, J. The Effect of Tytanit on Fibre Fraction Content in Medicago x varia T. Martyn and Trifolium pratense L. Cell Walls. Agriculture 2022, 12, 191. https://doi.org/10.3390/agriculture12020191
Truba M, Sosnowski J. The Effect of Tytanit on Fibre Fraction Content in Medicago x varia T. Martyn and Trifolium pratense L. Cell Walls. Agriculture. 2022; 12(2):191. https://doi.org/10.3390/agriculture12020191
Chicago/Turabian StyleTruba, Milena, and Jacek Sosnowski. 2022. "The Effect of Tytanit on Fibre Fraction Content in Medicago x varia T. Martyn and Trifolium pratense L. Cell Walls" Agriculture 12, no. 2: 191. https://doi.org/10.3390/agriculture12020191