A High Plant Density and the Split Application of Chemical Fertilizer Increased the Grain and Protein Content of Cowpea (Vigna unguiculata) in Burkina Faso, West Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. The Effect of Planting Density and Fertilization on Seed Yield and Weight per Plant
2.3. The Effect of Planting Density at Different Locations
2.4. The Effect of the Topdressing Timing and Evaluation on the Seed Nitrogen/Protein Content
3. Results
3.1. The Effects of Planting Density on Cowpea Cultivation
3.2. The Effects of the Planting Density on Cowpea Yield in Different Agro-Ecological Zones in Farmers’ Fields
3.3. The Effects of Topdressing Timing on Cowpea Protein Content and Yield
3.4. The Effects of Topdressing at the Early Flowering Period on Cowpea Protein Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Stagnari, F.; Maggio, A.; Galieni, A.; Pisante, M. Multiple benefits of legumes for agriculture sustainability: An overview. Chem. Biol. Technol. Agric. 2017, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. Available online: http://www.fao.org/faostat/en (accessed on 1 October 2019).
- Cruz, F.J.R.; de Almeida, H.J.; dos Santos, D.M.M. Growth, nutritional status and nitrogen metabolism in Vigna unguiculata (L.) Walp. is affected by aluminum. Aust. J. Crop Sci. 2014, 8, 1132–1139. [Google Scholar]
- Inaizumi, H.; Singh, B.B.; Sanginga, P.C.; Manyong, V.M.; Adesina, A.A.; Tarawali, S. Adoption and Impact of Dry-Season Dual-Purpose Cowpea in the SemiArid Zone of Nigeria; IITA: Ibadan, Nigeria, 1999; p. 14. [Google Scholar]
- Singh, B.B.; Ajeigbe, H.A.; Tarawali, S.A.; Fernandez-Rivera, S.; Abubakar, M. Improving the production and utilization of cowpea as food and fodder. Field Crops Res. 2003, 84, 169–177. [Google Scholar] [CrossRef]
- Kamara, A.Y.; Ewansiha, S.U.; Ajeigbe, H.A.; Okechukwu, R.; Tefera, H.; Boukar, O.; Omoigui, L.O. Improvements in Grain and Fodder Yield of Cowpea (Vigna unguiculata) Varieties Developed in the Sudan Savannas of Nigeria over the Past Four Decades. In Innovative Research along the Cowpea Value Chain; Boukar, O., Coulibaly, O., Fatokun, C.A., Lopez, K., Tamo, M., Eds.; International Institute of Tropical Agriculture (IITA): Ibadan, Nigeria, 2012; pp. 179–188. [Google Scholar]
- Jones, A.; Breuning-Madsen, H.; Brossard, M.; Dampha, A.; Deckers, J.; Dewitte, O.; Gallali, T.; Hallett, S.; Jones, R.; Kilasara, M. Soil Atlas of Africa; European Commission: Luxembourg, 2013. [Google Scholar]
- Ishikawa, H.; Drabo, I.; Batieno, B.J.; Muranaka, S.; Fatokun, C.; Boukar, O. Characteristics of famers’ selection criteria for cowpea (Vigna unguiculata) varieties differ between north and south regions of Burkina Faso. Exp. Agric. 2019, 56, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health (Burkina Faso); National Institute of Statistics and Demography (Burkina Faso). Burkina Faso National Nutrition Survey 2016. Available online: http://ghdx.healthdata.org/record/burkina-faso-national-nutrition-survey-2016 (accessed on 1 December 2021).
- Tarawali, S.A.; Singh, B.B.; Peters, M.; Blade, S.F. Cowpea Haulms as Fodder. In Advances in Cowpea Research; Singh, B.B., Mohan Raj, D.R., Dashiell, K.E., Jackai, L.E.N., Eds.; International Institute of Tropical Agriculture (IIA): Ibadan, Nigeria; Japan International Research Center for Agricultural Sciences (JIRCAS): Tsukuba, Japan, 1997; pp. 313–325. [Google Scholar]
- Jayathilake, C.; Visvanathan, R.; Deen, A.; Bangamuwage, R.; Jayawardana, B.C.; Nammi, S.; Liyanage, R. Cowpea: An overview on its nutritional facts and health benefits. J. Sci. Food Agric. 2018, 98, 4793–4806. [Google Scholar] [CrossRef] [PubMed]
- International Institute of Tropical Agriculture (IITA). IITA Annual Report; IITA: Ibadan, Nigeria, 1976. [Google Scholar]
- Iseki, K.; Olaleye, O.; Ishikawa, H. Intra-plant variation in seed weight and seed protein content of cowpea. Plant Prod. Sci. 2020, 23, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.D.; Gepts, P.; Miklas, P.N.; Coyne, D.P. Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic importance in bean and cowpea. Field Crops Res. 2003, 82, 135–154. [Google Scholar] [CrossRef] [Green Version]
- Lo, S.; Muñoz-Amatriaín, M.; Boukar, O.; Herniter, I.; Cisse, N.; Guo, Y.N.; Roberts, P.A.; Xu, S.; Fatokun, C.; Close, T.J. Identification of QTL controlling domestication-related traits in cowpea (Vigna unguiculata L. Walp). Sci. Rep. 2017, 8, 6261. [Google Scholar] [CrossRef] [Green Version]
- Ehlers, J.D.; Hall, A.E. Cowpea (Vigna unguiculata L. Walp.). Field Crops Res. 1997, 53, 187–204. [Google Scholar] [CrossRef]
- Patrick, R.M.; Hoskins, F.H.; Wilson, E.; Peterson, F.J. Protein and amino acid content of rice as affected by application of nitrogen fertilizer. Cereal Chem. 1974, 51, 84–95. [Google Scholar]
- Jayapaul, P.; Ganesaraja, V. Studies on response of soybean varieties to nitrogen and phosphorus. Indan J. Agron. 1990, 35, 329–330. [Google Scholar]
- Gauer, L.E.; Grant, C.A.; Bailey, L.D.; Gehl, D.T. Effects of nitrogen fertilization on grain protein content, nitrogen uptake, and nitrogen use efficiency of six spring wheat (Triticum aestivum L.) cultivars, in relation to estimated moisture supply. Can. J. Plant Sci. 1992, 72, 235–241. [Google Scholar] [CrossRef]
- Abate, T.; Alene, A.D.; Bergvinson, D.; Shiferaw, B.; Silim, S.; Orr, A.; Asfaw, S. Cowpea. In Tropical Grain Legumes in Africa and South Asia: Knowledge and Opportunities; ICRISAT: Nairobi, Kenya, 2012; pp. 12–13. [Google Scholar]
- Kamara, A.Y.; Ewansiha, S.U.; Boahen, S.; Tofa, A.I. Agronomic response of soybean varieties to plant population in the Guinea Savannas of Nigeria. Agron. J. 2014, 106, 1051–1059. [Google Scholar] [CrossRef] [Green Version]
- Kamara, A.Y.; Tofa, A.I.; Kyei-Boahen, S.; Solomon, R.; Ajeigbe, H.A.; Kamai, N. Effects of plant density on the performance of cowpea in Nigerian savannas. Exp. Agric. 2018, 54, 120–132. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, H.; Boukar, O.; Fatokun, C.; Shono, M.; Muranaka, S. Development of calibration model to predict nitrogen content in single seeds of cowpea (Vigna unguiculata) using near infrared spectroscopy. J. Near Infrared Spectrosc. 2017, 25, 211–214. [Google Scholar] [CrossRef]
- Muranaka, S.; Shono, M.; Myoda, T.; Takeuchi, J.; Franco, J.; Nakazawa, Y.; Boukar, O.; Takagi, H. Genetic diversity of physical, nutritional and functional properties of cowpea grain and relationships among the traits. Plant Genet. Resour. 2016, 14, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Firbank, L.G.; Watkinson, A.R. On the analysis of competition within two-species mixtures of plants. J. Appl. Ecol. 1985, 22, 503–517. [Google Scholar] [CrossRef]
- Yahuza, I. Yield-density equations and their application for agronomic research: A review. Int. J. Biol. Sci. 2011, 1, 1–17. [Google Scholar]
- Holliday, R. Plant population and crop yield: Part II: Yield and plant population in British crops. Field Crop Admin. 1960, 13, 247–254. [Google Scholar]
- Willey, R.W.; Heath, S.B. The quantitative relationships between plant population and crop yield. Adv. Agron. 1969, 21, 281–321. [Google Scholar]
- Harper, J.L. Population Biology of Plants; Academic Press: London, UK, 1977. [Google Scholar]
- Bulson, H.A.J.; Snaydon, R.W.; Stopes, C.E. Effect of plant density on intercropped wheat and field beans in an organic farming system. J. Agric. Sci. 1997, 128, 59–71. [Google Scholar] [CrossRef]
- Jallow, A.T.; Fergusson, T.U. Effects of plant densities and cultivar on seed yield of cowpeas (Vigna unguiculata (L.)) in Trinidad. Trop. Agric. 1985, 62, 121–124. [Google Scholar]
- Kwapata, M.B.; Hall, A.E. Determinants of cowpea (Vigna unguiculata) seed yield at extremely high plant density. Field Crops Res. 1990, 24, 23–32. [Google Scholar] [CrossRef]
- Egli, D.B. Plant density and soybean yield. Crop Sci. 1988, 28, 977–981. [Google Scholar] [CrossRef]
- Ishikawa, H.; Drabo, I.; Batieno, B.J.; Muranaka, S.; Fatokun, C.; Boukar, O. Comparative analysis of farmers’ selection criteria for cowpea (Vigna unguiculata) varieties in Niger and Burkina Faso. Jpn. Agric. Res. Q. JARQ 2019, 53, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Islam, N.; Kamal, A.M.A.; Islam, M.R. Effect of cultivar and time of N application on grain yield and grain protein content of rice. Bangladesh Rice J. 1990, 1, 11–16. [Google Scholar]
- Souza, S.R.; Stark, E.M.L.M.; Fernandes, M.S. Effects of supplemental-nitrogen on the quality of rice proteins. J. Plant Nutr. 1993, 16, 1739–1751. [Google Scholar] [CrossRef]
- Bhangu, R.; Virk, H.K. Nitrogen management in soybean: A review. Agric. Rev. 2019, 40, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Gan, Y.; Stulen, I.; Keulen, H.; Kuiper, P.J.C. Effect of N fertilizer top-dressing at various reproductive stages on growth, N2 fixation and yield of three soybean (Glycine max (L.) Merr.) genotypes. Filed Crops Res. 2003, 80, 142–155. [Google Scholar] [CrossRef]
- Rawluk, C.D.L.; Racz, G.J.; Grant, C.A. Uptake of foliar or soil application of 15N-labelled urea solution at anthesis and its affect on wheat grain yield and protein. Can. J. Plant Sci. 2000, 80, 331–334. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.; Westcott, M.; Christensen, N.; Pan, B.; Stark, J. Nitrogen Management for Hard Wheat Protein Enhancement; PNW578; Oregon State University: Corvallis, OR, USA, 2005. [Google Scholar]
- Ishikawa, H.; Ikazaki, K.; Iseki, K. Visual observation of cowpea pod elongation to predict nitrogen accumulation in immature seeds. Plant Prod. Sci. 2021, 24, 224–229. [Google Scholar] [CrossRef]
- Iseki, K.; Ikazaki, K.; Batieno, J.B. Cowpea yield variation in three dominant soil types in the Sudan Savanna of West Africa. Filed Crops Res. 2021, 261, 108012. [Google Scholar] [CrossRef]
- Saio, K.; Nikkuni, I.; Ando, Y.; Otsuru, M.; Terauchi, Y.; Kito, M. Soybean quality changes during model storage studies. Cereal Chem. 1980, 57, 77. [Google Scholar]
Variety/Planting Density | Total Seed WT (g/plant) | No. of Plants per Plot (3.2 × 3.2 m) | Estimated Seed WT (kg/ha) |
---|---|---|---|
IT99K-573-2-1 normal density | 11.23 | 70 | 786.0 |
High density | 8.38 | 144 | 1206.5 * |
Super high density | 4.44 | 266 | 1180.2 * |
KVx442-3-25 normal density | 11.24 | 70 | 786.9 |
High density | 7.77 | 144 | 1118.9 * |
Super high density | 4.17 | 266 | 1108.6 * |
IT98K-205-8 normal density | 8.07 | 70 | 564.9 |
High density | 5.21 | 144 | 750.5 * |
Super high density | 2.78 | 266 | 738.8 * |
Name of Village | North Latitude | West Longitude | Annual Rainfall (mm) | Estimated Yield (kg/ha) | Planting Density (cm) |
---|---|---|---|---|---|
Tougouri (north) | 13°31′ | 0°52′ | 520 | 594.7 | 75.7 × 62.0 |
Pouni (central) | 11°95′ | −2°54′ | 780 | 402.7 | 64.6 × 52.9 |
Tiefora (south) | 10°63′ | −4°55′ | 1175 | 415.2 | 68.9 × 49.1 |
Saria station (INERA, BF) | 12°28′ | −2°15′ | 790 | - | 60.0 × 40.0 |
Name of Village | Variety and Planting Density | Yield (kg/ha) | Standard Error | Rate of Yield Increase (%) |
---|---|---|---|---|
Tougouri (north) | IT99K573-2-1 ND | 460.4 | 47.5 | - |
IT99K573-2-1 HD | 876.3 * | 63.9 | 90.3 | |
IT99K573-2-1 SHD | 1167.6 * | 83.6 | 153.6 | |
KVx442-3-25 ND | 724.2 | 60.8 | - | |
KVx442-3-25 HD | 1097.1 * | 126.7 | 51.5 | |
KVx442-3-25 SHD | 1295.9 * | 179.2 | 78.9 | |
IT98K-205-8 ND | 355.5 | 39.3 | - | |
IT98K-205-8 HD | 794.2 * | 63.9 | 123.3 | |
IT98K-205-8 SHD | 1118.2 * | 95.9 | 214.5 | |
Pouni (central) | IT99K573-2-1 ND | 1031.6 | 143.1 | - |
IT99K573-2-1 HD | 1916.4 * | 176.6 | 85.8 | |
IT99K573-2-1 SHD | 1889.3 * | 204.6 | 83.1 | |
KVx442-3-25 ND | 656.5 | 197.3 | - | |
KVx442-3-25 HD | 1279.0 * | 144.3 | 94.8 | |
KVx442-3-25 SHD | 1154.1 * | 153.0 | 75.8 | |
IT98K-205-8 ND | 611.9 | 39.5 | - | |
IT98K-205-8 HD | 1308.2 * | 116.3 | 113.8 | |
IT98K-205-8 SHD | 1347.6 * | 114.9 | 120.2 | |
Tiefora (south) | IT99K573-2-1 ND | 774.6 | 127.9 | - |
IT99K573-2-1 HD | 1159.0 * | 89.6 | 49.6 | |
IT99K573-2-1 SHD | 1378.1 * | 103.8 | 77.9 | |
KVx442-3-25 ND | 1079.3 | 39.0 | - | |
KVx442-3-25 HD | 1499.0 * | 86.1 | 38.9 | |
KVx442-3-25 SHD | 1375.9 * | 110.3 | 27.5 | |
IT98K-205-8 ND | 665.5 | 127.3 | - | |
IT98K-205-8 HD | 1077.7 * | 100.3 | 61.9 | |
IT98K-205-8 SHD | 1056.9 * | 130.7 | 58.8 |
Fertilizer Treatment | IT99K-573-2-1 | KVx442-3-25 | IT98K-205-8 | ||||||
---|---|---|---|---|---|---|---|---|---|
Productivity kg/ha | SE | Protein Content (%) | Productivity kg/ha | SE | Protein Content (%) | Productivity kg/ha | SE | Protein Content (%) | |
Control | 552.5 | 73.2 | 16.2 | 644.0 | 76.3 | 12.8 | 488.0 | 66.5 | 15.6 |
Fertilizer 4WAS | 1238.7 * | 125.1 | 17.0 | 1165.9 * | 80.1 | 13.1 | 835.0 * | 68.1 | 15.6 |
Fertilizer 4WAS + 50% flowering | 1109.1 * | 130.4 | 14.9 | 1116.3 * | 77.2 | 13.0 | 505.4 | 38.7 | 15.0 |
Fertilizer after first flower bloomed | 1150.5 * | 90.5 | 18.1 * | 1064.2 * | 90.6 | 15.6 * | 837.8 * | 69.5 | 17.2 * |
Fertilizer 20% flowering | 1180.9 * | 94.7 | 16.7 | 1113.4 * | 63.0 | 13.4 | 720.3 | 89.1 | 15.3 |
Fertilizer 50% flowering | 1054.2 * | 82.9 | 16.7 | 934.0 * | 61.8 | 13.5 | 826.3 * | 83.9 | 15.2 |
Fertilizer 8WAS | 935.6 | 114.0 | 15.4 | 976.5 * | 87.3 | 13.4 | 629.0 | 49.4 | 15.9 |
Variety | 2019 | 2020 | ||||
---|---|---|---|---|---|---|
Control | Topdressing after First Flowers Bloomed | Rate of Increasing Protein (%) | Control | Topdressing after First Flowers Bloomed | Rate of Increasing Protein (%) | |
IT99K573-2-1 | 16.84 | 20.11 * | 19.4 | 16.19 | 17.77 * | 10.0 |
KVx442-3-25 | 13.08 | 16.35 * | 24.4 | 12.81 | 14.99 * | 17.1 |
IT98K-205-8 | 16.81 | 19.82 * | 17.9 | 15.59 | 17.11 * | 9.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishikawa, H.; Batieno, B.J.; Fatokun, C.; Boukar, O. A High Plant Density and the Split Application of Chemical Fertilizer Increased the Grain and Protein Content of Cowpea (Vigna unguiculata) in Burkina Faso, West Africa. Agriculture 2022, 12, 199. https://doi.org/10.3390/agriculture12020199
Ishikawa H, Batieno BJ, Fatokun C, Boukar O. A High Plant Density and the Split Application of Chemical Fertilizer Increased the Grain and Protein Content of Cowpea (Vigna unguiculata) in Burkina Faso, West Africa. Agriculture. 2022; 12(2):199. https://doi.org/10.3390/agriculture12020199
Chicago/Turabian StyleIshikawa, Haruki, Benoît Joseph Batieno, Christian Fatokun, and Ousmane Boukar. 2022. "A High Plant Density and the Split Application of Chemical Fertilizer Increased the Grain and Protein Content of Cowpea (Vigna unguiculata) in Burkina Faso, West Africa" Agriculture 12, no. 2: 199. https://doi.org/10.3390/agriculture12020199
APA StyleIshikawa, H., Batieno, B. J., Fatokun, C., & Boukar, O. (2022). A High Plant Density and the Split Application of Chemical Fertilizer Increased the Grain and Protein Content of Cowpea (Vigna unguiculata) in Burkina Faso, West Africa. Agriculture, 12(2), 199. https://doi.org/10.3390/agriculture12020199