Farming Practices and Disease Prevalence among Urban Lowland Farmers in Cameroon, Central Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Analysis
3. Results and Discussion
3.1. Demographic Characteristics of Farmers
3.2. Irrigation Water
3.3. Fertilizers
3.3.1. Organic Fertilizer Use per Square Meter
3.3.2. Mineral Fertilizer Use per Square Meter
3.4. Pesticides
3.5. Farming Practices and Explanatory Variables
3.6. Farming Practices and Disease Prevalence
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Demographics Information | Area/Crops | Agricultural Inputs | Water, Sanitation, and Hygiene | Health |
---|---|---|---|---|
Gender | Farm size | Seeds | Origin of irrigation water | Main diseases |
Marital status | Ownership | Amendment | Other use of watering water | Symptoms |
Education level | Operating years | Fertilizers | Drinking water source | Long term/chronic disease |
Region | Types of crops | Pesticides | Toilet facility | Type of medication |
Main occupation | Irrigation | OHS | ||
Motivation | Machinery | Contact water/ soil | Farming constraints | |
Weight | Purpose of the growing | Post-work behaviors Disease occurrence |
Variable | Description | Hypothesis |
---|---|---|
Gender of the farmers | Female farmers are more likely to adopt organic fertilizers because they can use kitchen residues and home livestock waste | |
The age of the farmers in years | Younger farmers may be more inclined towards experimenting or trying out the use of old and new agricultural inputs | |
The education level of the farmers | More educated farmers are more likely to comprehend better the agronomic and environmental advantages related to the use of organic fertilizer; educated farmers are therefore more likely to adopt organic fertilizers | |
The land ownership | - | |
The membership of the farmer to an association | - | |
The farm’s area | The area of the farm is likely to affect negatively the use of mineral farm inputs because they are costly | |
The number of family households involved in farming activities | Large number of people are a source of labor and will act positively with the use of any agricultural inputs to increase the farm productivity | |
Whether the farm is permanently or temporarily flooded | The rationale is that farmers whose farms are frequently flooded possibly refrain from using farm inputs, such as fertilizers, as the flood water will transport nutrients from nearby waste depots to their plots | |
The distance between the house of the farmer and his land use for cultivation | Cultivated land far away from the household may be given less application of agriculture inputs [31] | |
The error term that explains other unobserved confounding factors |
Variables | Descriptions |
---|---|
Relates to the use of occupational health and safety practices, including boots, gloves, glasses, cleaning of hands, fertilizers, and pesticides | |
Are confounding variables including age, gender of the farmer, education level, use of personal protective equipment (PPE), hand cleaning after the application of pesticides and fertilizers, type of irrigation water used, being wet when conducting farming activities, area location and feeling inconvenient when using the irrigation | |
Is the error term that explains other unobserved confounding factors |
References
- INS. Annuaire Statistique De La Région Du Centre; INS: Yaoundé, Cameroon, 2017; Available online: www.statistics-cameroon.org (accessed on 20 February 2021).
- BUCREP. Troisieme Recencement Générale de la Population et de l´Habitat; BUCREP: Yaoundé, Cameroon, 2010; Volume II. [Google Scholar]
- World Bank. Cameroon Inclusive and Resilient Cities Development Project; World Bank: Washington, DC, USA, 2017; Volume 102. [Google Scholar]
- Wang, Y.S. The challenges and strategies of food security under rapid urbanization in China. Sustainability 2019, 11, 542. [Google Scholar] [CrossRef] [Green Version]
- Orsini, F.; Kahane, R.; Nono-Womdim, R.; Gianquinto, G. Urban agriculture in the developing world: A review. Agron. Sustain. Dev. 2013, 33, 695–720. [Google Scholar] [CrossRef] [Green Version]
- FAO. Food Security and Nutrition in the World the State of Transforming Food Systems for Affordable Healthy Diets. The State of the World. 2020, p. 320. Available online: https://doi.org/10.4060/ca9692en (accessed on 15 November 2021).
- FAO. Fruit and Vegetables—Your Dietary Essentials; The International Year of Fruits and Vegetables, 2021, Background Paper, 2020th edition; FAO, Ed.; FAO: Rome, Italy, 2020. [Google Scholar]
- FAO. Public Food Procurement for Sustainable Food Systems and Healthy Diets; FAO, Swensson, A.L.F., Hunter, D., Schneider, S., Tartanac, F., Eds.; FAO: Rome, Italy, 2021; Volume 1, Alliance of Bioversity International and CIAT and Editora da UFRGS; Available online: https://doi.org/10.4060/cb7960en (accessed on 15 November 2021).
- CHP. Non-Communicable Diseases Watch Eat More Fruit and Vegetables Eat More Fruit and Vegetables. Wan Chai. 2021. Available online: http://www.chp.gov.hk (accessed on 15 November 2021).
- WHO. Fruit and Vegetable Promotion Initiative; WHO: Geneva, Switzerland, 2003. [Google Scholar]
- UN-Habitat. Working for a Better Urban Future: Annual Progress Report 2018; Mohd, M., Ed.; UN-Habitat: Nairobi, Kenya, 2018; Available online: www.unhabitat.org (accessed on 15 November 2021).
- FAO. Growing Greener Cities in Latin America and the Caribbean; FAO, Ed.; FAO: Rome, Italy, 2014; Available online: www.fao.org (accessed on 15 November 2021).
- Hinson, A.V.; Mbaduet, Y.; Djouaka, R.; Zeukeng, F.; Gounongbe, F.; Adjobime, M.; Fayomi, B. Health hazards linked to the quality of the irrigation water and to the consumption of the vegetables grown in the market gardening site of Nkolondom, (Yaounde-Cameroon). IJRDO-J. Agric. Res. 2018, 4, 35–52. [Google Scholar]
- Sotamenou, J.; Parrot, L. Sustainability Sustainable urban agriculture and the adoption of composts in Cameroon. Int. J. Agric. Sustain. 2013, 11, 37–41. [Google Scholar] [CrossRef]
- Nkwemoh, C.A.; Tchindjang, M. Urban sprawl and agriculture: A case study of the Yaounde metropolis (Cameroon). Rev. Sci Tech. Forêt Environ. Bassin Congo 2018, 10, 45–58. [Google Scholar]
- Schreinemachers, P.; Simmons, E.B.; Wopereis, M.C.S. Tapping the economic and nutritional power of vegetables. Glob. Food Sec. 2018, 16, 36–45. [Google Scholar] [CrossRef]
- Richter, C.H.; Custer, B.; Steele, J.A.; Wilcox, B.A.; Xu, J. Intensified food production and correlated risks to human health in the Greater Mekong Subregion: A systematic review. Environ. Health A Glob. Access Sci. Source 2015, 14, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Abossolo, S.A.; Amougou, J.A.; Tchindjang, M.; Silvère, M.; Armand, R.; Batha, S. Analyse des précipitations annuelles à la station de Yaoundé de 1895 à 2006. Afrique Sci. Rev. Int. Sci. Technol. 2015, 11, 183–194. [Google Scholar]
- Mfopou, Y.C.M.; Traore, M.; Kenmogne, P.P.N.; Aboubakar, A.; Manguele, G.S.F.; Maboune, S.A.T.; Ndam, J.R.N.; Gnankambary, Z.; Nacro, H.B. Structure of Vegetables Farming and Farmer’s Perception of Soil and Water Degradation in Two Periurban Areas in Yaounde Cameroon. Open J. Soil Sci. 2017, 7, 333–346. [Google Scholar] [CrossRef] [Green Version]
- BUCREP. Caractéristiques des Ménages et Des Enquêtés; BUCREP: Yaoundé, Cameroon, 2015. [Google Scholar]
- INS. Second Survey on Employment and the Informal Sector (EESI 2) Phase 1: Survey on Employment Main Report; INS: Yaoundé, Cameroon, 2011. [Google Scholar]
- Roubaud, F.; Torelli, C. Employment, Unemployment, and Working Conditions in the Urban Labor Markets of Sub-Saharan Africa: Main Stylized Facts. In Urban Labor Markets in Sub-Saharan Africa; Africa Development Forum Series; De Vreyer, P., Roubaud, F., Eds.; World Bank: Washington, DC, USA, 2013; pp. 37–79. [Google Scholar]
- Bopda, A.P.; Brummett, R.; Dury, S.; Elong, P.; Foto, S. Urban Farming Systems in Yaoundé—Building a Mosaic. In African Urban Harvest Agriculture in the Cities of Cameroon, Kenya and Uganda; Prain, G., Karanja, N., Lee-Smith, D., Eds.; Urban Harvest CIP: Lima, Peru, 2011; pp. 39–61. [Google Scholar]
- Falkenberg, T. Wastewater-Irrigated Urban Agriculture in the Context of WASH in Ahmedabad, India. ULB Libr. 2016. Available online: http://hss.ulb.uni-bonn.de/2017/4656/4656.htm (accessed on 21 December 2021).
- UNHCR. Libya: How to use KoBo for UNHCR—Led Sectors; UNHCR: Geneva, Switzerland, 2016. [Google Scholar]
- Ruel, M.T.; Arimond, M. Spot-check observational method for assessing hygiene practices: Review of experience and implications for programmes. J. Health Popul. Nutr. 2002, 20, 65–76. [Google Scholar]
- Moore, D.S.; Notz, W.I.; Fligner, M. The Basic Practice of Statistics; Freeman, W.H. & Company: New York, NY, USA, 2018; p. 1016. [Google Scholar]
- Rothman, K. Using regression models in epidemiologic analysis. In Epidemiology—An Introduction Predictive Causal Sample Size Score; Oxford University Press: New York, NY, USA, 2012; pp. 212–254. [Google Scholar]
- Cameron, C.; Trivedi, P.K. Microeconometrics Using Stata, Revised Edition, 2010th ed.; Stata Press: College Station, TX, USA, 2010; p. 706. [Google Scholar]
- Tukey, J.W. Exploring Data Analysis; Pearson: New York, NY, USA, 1974. [Google Scholar]
- Nkamleu, G.B.; Adesina, A.A. Determinants of chemical input use in peri-urban lowland systems: Bivariate probit analysis in Cameroon. Agric. Syst. 2000, 63, 111–121. [Google Scholar] [CrossRef]
- Kenmogne, G.R.K.; Rosillon, F.; Mpakam, H.G.; Nono, A. Enjeux Sanitaires, Socio-Économiques Et Environnementaux Liées À La Réutilisation Des Eaux Usées Dans Le Maraîchage Urabia: Cas Du Bassin Versant De l’Abiergué (Yaoundé-Cameroun). VertigO–La Rev Électronique En Sci L’environnement. 2010, 14. Available online: http://www.researchgate.net/profile/Traore_Salifou/publication/264557583_Effet_du_za_amlior_sur_la_productivit_du_sorgho_en_zone_sahlienne/links/53f0721b0cf2711e0c430b0f.pdf (accessed on 21 December 2021).
- Saidou, I.; Pritchard, D. Soil Constraints to Urban Agriculture in Valley Beds of. J. Environ. Sci. Allied Res. Vol. 2019, 2, 1–8. [Google Scholar]
- Tshwene, C.; Oladele, I. Water use productivity and food security among smallholder homestead food gardening and irrigation crop farmers in North West province, South Africa. J. Agric. Environ. Int. Dev. 2016, 110, 73–86. [Google Scholar]
- Paltasingh, K.R.; Goyari, P. Impact of farmer education on farm productivity under varying technologies: Case of paddy growers in India. Agric. Food Econ. 2018, 6, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Bopda, A.P.; Brummett, R.; Dury, S.; Elong, P.; Foto-menbohan, S.; Gockowski, J.; Kana, C.; Kengue, J.; Ngonthe, R.; Nolte, C.; et al. Urban Farming Systems in Yaoundé – Building a Mosaic: African Urban Harvest; Springer: New York, NY, USA, 2010; pp. 39–59. [Google Scholar]
- Clarisse, Y.; Mewouo, M.; Vivien, O.; Rémy, J.; Ngoupayo, N.; Ekodeck, G.; Hubert, S.; Togouet, Z.; Bilong, P.; Mfopou, C. Microbiological Quality of Shallow Irrigation Water at Nkolbisson a Sub-Urban Area of Yaounde (Cameroon): Influence of Some Physicochemical Properties. Int. J. Res. 2014, 2, 8–17. [Google Scholar]
- Khan, M.M.; Akram, M.T.; Janke, R.; Qadri, R.W.K.; Al-Sadi, A.M.; Farooque, A.A. Urban horticulture for food secure cities through and beyond COVID-19. Sustainability 2020, 12, 9592. [Google Scholar] [CrossRef]
- Soro, G.; Kone, B.; Kouakou, Y.E.; M’Bra, K.R.; Soro, P.D.; Soro, N. Utilisation de produits phytosanitaires dans le maraîchage autour du barrage d’alimentation en eau potable de la ville de Korhogo (nord de la Côte d’Ivoire): Risques pour la santé publique. Env. Risque Sante. 2018, 17, 155–163. [Google Scholar]
- Hass, A.; Gonzalez, J.M.; Lima, I.M.; Godwin, H.W.; Halvorson, J.J.; Boyer, D.G. Chicken Manure Biochar as Liming and Nutrient Source for Acid Appalachian Soil. J. Environ. Qual. 2012, 41, 1096–1106. [Google Scholar] [CrossRef]
- Yang, Z.; Han, L. Analysis and comparison of nutrient contents in different animal manures from Beijing suburbs. Agric. Sci. 2013, 4, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Hoover, N.L.; Yeow, J.; Ann, L.; Long, M.; Kanwar, R.S.; Soupir, M.L. Long-term impact of poultry manure on crop yield, soil and water quality, and crop revenue. J. Environ. Manag. 2019, 252, 109582. [Google Scholar]
- Olwande, J.; Sikei, G.; Mathenge, M. Agricultural Technology Adoption: A Panel Analysis of Smallholder Farmers’ Fertilizer use in Kenya John Olwande; University of California: Berkeley, CA, USA, 2009. [Google Scholar]
- Vanlauwe, B.; Kihara, J.; Chivenge, P.; Pypers, P.; Coe, R.; Six, J. Agronomic use efficiency of N fertilizer in maize-based systems in sub-Saharan Africa within the context of integrated soil fertility management. Plant Soil. 2011, 339, 35–50. [Google Scholar] [CrossRef]
- WHO. The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019, 2019th ed.; World Health Organization: Geneva, Switzerland, 2020; Available online: http://www.who.int/about/licensing (accessed on 12 January 2022).
- Tambe, A.B.; Mbanga, B.M.R.; Nzefa, D.L.; Nama, M.G. Pesticide usage and occupational hazards among farmers working in small-scale tomato farms in Cameroon. J. Egypt Public Health Assoc. 2019, 94, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Pouokam, G.B.; Album, W.L.; Ndikontar, A.S.; Sidatt, M.E.H. A pilot study in cameroon to understand safe uses of pesticides in agriculture, risk factors for farmers’ exposure and management of accidental cases. Toxics 2017, 5, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-nahhal, I.; El-nahhal, Y. Pesticide residues in drinking water, their potential risk to human health and removal options. J. Environ. Manag. 2021, 299, 113611. [Google Scholar] [CrossRef]
- Baltas, H.; Sirin, M.; Gökbayrak, E.; Ozcelik, A.E. A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province, Turkey. Chemosphere 2020, 241, 125015. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Kumar, V. Spatial distribution and potential ecological risk assessment of heavy metals in agricultural soils of Northeastern Iran. Geol. Ecol. Landsc. 2020, 4, 87–103. [Google Scholar] [CrossRef] [Green Version]
- Asongwe, G.A.; Yerima, B.P.K.; Tening, A.S. Vegetable production and the livelihood of farmers in Bamenda Municipality, Cameroon. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 682–700. [Google Scholar]
- Branchet, P.; Cadot, E.; Fenet, H.; Sebag, D.; Ngatcha, B.N.; Borrell-Estupina, V.; Ngoupayou, J.R.N.; Kengne, I.; Braun, J.; Gonzalez, C. Polar pesticide contamination of an urban and peri-urban tropical watershed affected by agricultural activities (Yaoundé, Center Region, Cameroon). Environ. Sci. Pollut. Res. 2018, 25, 17690–17715. [Google Scholar] [CrossRef]
- Edward, M.; Nimo, W.A.; Etwire Prince, M.; Mathias, F.; Buah, S.S.J.; John, B.; Ahiabor Benjamin, D.K.; Francis, K. Fertilizer Adoption and Use Intensity Among Smallholder Farmers in Northern Ghana: A Case Study of the AGRA Soil Health Project. Sustain. Agric. Res. 2013, 3, 24. [Google Scholar]
- Nkamleu, G.B. Modeling farmers’ decisions on integrated soil nutrient management in sub-Saharan Africa: A multinomial Logit analysis in Cameroon. In Advances in Integrated Soil Fertility Management in Sub-Saharan Africa: Challenges and Opportunities; Springer: Dordrecht, The Netherlands, 2007; Volume 237, pp. 891–904. [Google Scholar]
- Spjeldnæs, A.O.; Kitua, A.Y.; Blomberg, B. Education and knowledge helps combating malaria, but not degedege: A cross-sectional study in Rufiji, Tanzania. Malar J. 2014, 13, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Ricci, F. Social implications of malaria and their relationships with poverty. Mediterr J. Hematol Infect. Dis. 2012, 4. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, S.W.; Jawara, M.; Paine, K.; Pinder, M.; Walraven, G.E.L.; Emerson, P.M. Changes in house design reduce exposure to malaria mosquitoes. Trop. Med. Int. Health 2003, 8, 512–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Division (%) | Average (%) | |||||
---|---|---|---|---|---|---|---|
Emana | Minkoameyos | Mokolo | Nkolbisson | Ekounou | Ekoumdoum | ||
Male | 82 | 25 | 35 | 34 | 70 | 36 | 45 |
Female | 18 | 75 | 65 | 66 | 30 | 64 | 55 |
Status | |||||||
Single | 36 | 19 | 40 | 33 | 15 | 42 | 36 |
Married | 46 | 56 | 35 | 58 | 62 | 43 | 46 |
Widow(er) | 18 | 25 | 25 | 9 | 23 | 15 | 18 |
Education | |||||||
None | - | 6 | - | 13 | 18 | 4 | 8 |
Primary | 64 | 50 | 15 | 33 | 30 | 58 | 39 |
Secondary | 27 | 44 | 80 | 54 | 46 | 27 | 47 |
Higher | 9 | - | 5 | - | 6 | 11 | 5 |
Motivations | |||||||
Unemployment | 54 | 25 | 10 | 25 | 65 | 33 | 35 |
Incomes | 45 | 69 | 20 | 58 | 73 | 45 | 62 |
Family habits | 27 | 25 | 12 | 25 | 31 | 33 | 27 |
Food supply | - | - | 60 | 8 | 8 | 18 | 9 |
Variables | Divisions | Average | |||||
---|---|---|---|---|---|---|---|
Emana | Minkoameyos | Mokolo | Nkolbisson | Ekounou | Ekoumdoum | ||
Age (years) | 50 ± 12 | 43 ± 11 | 42 ± 15 | 43 ± 16 | 46 ± 15 | 44 ± 16 | 44 ± 15 |
Household size (number) | 5 ± 4 | 4 ± 2 | 3 ± 2 | 3 ± 3 | 3 ± 2 | 4 ± 4 | 4 ± 3 |
Farm area (m2) | 245 ± 233 | 186 ± 155 | 86 ± 45 | 275 ± 223 | 478 ± 496 | 375 ± 381 | 298 ± 342 |
Operational years | 7 ± 6 | 6 ± 7 | 14 ± 11 | 11 ± 8 | 11 ± 6 | 11 ± 11 | 11 ± 9 |
Land Use | Areas (%) | Average (%) | |||||
---|---|---|---|---|---|---|---|
Emana | Minkoameyos | Mokolo | Nkolbisson | Ekounou | Ekoumdoum | ||
A. hybridus | 91 | 85 | 94 | 92 | 88 | 88 | 89 |
S. nigrum | 91 | 69 | 70 | 71 | 77 | 85 | 77 |
C. olitorius | 64 | 25 | 60 | 38 | 57 | 56 | 66 |
L. sativa | 5 | 43 | 5 | 37 | 67 | 62 | 49 |
V. amygdalina | 36 | 37 | 90 | 37 | 23 | 24 | 39 |
A. esculentus | 55 | 31 | 80 | 25 | 15 | 24 | 34 |
A. graveolens | 55 | 44 | 0 | 42 | 27 | 30 | 31 |
S. melangera | 45 | 25 | 60 | 21 | 18 | 15 | 28 |
O. basilicum | 55 | 50 | 0 | 29 | 12 | 15 | 22 |
P. crispum | 45 | 25 | 0 | 21 | 24 | 19 | 21 |
Active Substances and Classification | Formulations | WHO Classification | Proportion (%) |
---|---|---|---|
Cypermethrin (I) | Cypercal 12 EC | II | 48 |
Cypercot 25EC | II | ||
Cyperplant 50 EC | II | ||
Cigone 12 EC | II | ||
Lambda-cyhalothrin (I) | Lamida Gold 90 EC | II | 18 |
Chlorothalonil 550 g/l +Carbendazime 100 g/l (F) | Banko Plus | III | 27 |
Maneb 80% (F) | Plantineb 80 WP | III | 4 |
Metalaxyl 80 g/kg + Mancozeb 640 g/Kg (F) | Mancoxyl plus 720 wp | III | 10 |
Mancozeb 800 g/kg (F) | Penncozeb 80 WP | III | 4 |
Metalaxyl-M 6%+ Copper Oxide 60% (F) | Rodomil gold plus 66 wp | III | 25 |
Callomil plus 66 WP | |||
Glyphosate 360 g/l (H) | Herbi-star 360 SL | III | 9 |
Roundup 360 SL a | III | ||
Chlorothalonil 720 g/l (F) | Balear 720 Sc SL | III | 6 |
- | Beauchamps b | - | 12 |
Oxamyl 50 g/kg (N) | Bastion Super | Ia | 14 |
Variables | No Fertilizers | Organic Fertilizers Only | Organic and Mineral Fertilizers | Mineral Fertilizers Only | Pesticides |
---|---|---|---|---|---|
Gender | 0.0004 | −0.0564 | 0.0363 | −0.0390 | 0.0867 |
(0.0475) | (0.0848) | (0.0916) | (0.0470) | (0.0875) | |
Education | 0.0156 | −0.2120 ** | 0.1510 | 0.1090 | −0.0216 |
(0.0507) | (0.0719) | (0.0838) | (0.0610) | (0.0823) | |
Age (years) | 0.0005 | −0.0038 | 0.0045 | −0.0018 | −0.0022 |
(0.0021) | (0.0027) | (0.0030) | (0.0021) | (0.0028) | |
Land ownership | −0.2110 ** | 0.0856 | 0.1330 | 0.0050 | −0.2910 ** |
(0.0572) | (0.0852) | (0.0920) | (0.0451) | (0.0766) | |
Years of Cultivation | 0.0026 | 0.0010 | 0.0028 | −0.0070 * | 0.0096 * |
(0.0040) | (0.0043) | (0.0049) | (0.0033) | (0.0047) | |
Farm area (m2) | −0.0018 ** | 0.0000 | 0.0004 * | 0.0000 | −0.0002 |
(0.0005) | (0.0001) | (0.0001) | (0.0000) | (0.0001) | |
CIG a membership | −0.0413 | −0.0853 | 0.0771 | −0.0201 | −0.1470 |
(0.0656) | (0.1190) | (0.1190) | (0.0563) | (0.1100) | |
Number of people | −0.0030 | −0.0122 | 0.0235 | −0.0131 | −0.0142 |
(0.0073) | (0.0135) | (0.0143) | (0.0132) | (0.0131) | |
Area type b | −0.0699 * | −0.0253 | 0.0847 | 0.0311 | −0.0923 |
(0.0300) | (0.0531) | (0.0613) | (0.0312) | (0.0598) | |
House distance (m) | −0.0001 | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
(0.0001) | (0.0001) | (0.0000) | (0.0000) | (0.0000) |
Malaria | Waterborne Diseases | Headache | Respiratory Diseases | |
---|---|---|---|---|
Education level | −0.164 * | −0.089 | 0.105 | 0.017 |
(0.079) | (0.078) | (0.068) | (0.081) | |
Marital status | −0.085 | −0.031 | 0.019 | −0.084 |
(0.080) | (0.073) | (0.066) | (0.074) | |
Age (years) | 0.003 | −0.008 ** | 0.0001 | −0.003 |
(0.003) | (0.003) | (0.002) | (0.003) | |
Gender | 0.147 | 0.107 | −0.001 | 0.051 |
(0.086) | (0.072) | (0.071) | (0.083) | |
Use gloves | −0.058 | −0.383 * | 0.082 | −0.024 |
(0.142) | (0.156) | (0.109) | (0.160) | |
Use raincoats | 0.133 | 0.138 | 0.150 | −0.045 |
(0.181) | (0.208) | (0.132) | (0.188) | |
Use masks | −0.113 | −0.410 * | 0.0108 | −0.086 |
(0.173) | (0.171) | (0.152) | (0.202) | |
Use boots | −0.150 | 0.274 | 0.090 | 0.148 |
(0.141) | (0.165) | (0.100) | (0.139) | |
Use glasses | 0.290 | 0.202 | − | 0.185 |
(0.357) | (0.323) | (0.339) | ||
Hand cleaning | 0.143 | 0.224 | −0.047 | −0.003 |
(0.172) | (0.187) | (0.137) | (0.180) | |
Use fertilizers | 0.071 | 0.206 * | −0.112 | −0.052 |
(0.108) | (0.085) | (0.080) | (0.104) | |
Use pesticides | 0.076 | −0.041 | 0.0345 | −0.122 |
(0.088) | (0.074) | (0.076) | (0.081) | |
Knowledge risks | −0.024 | 0.0734 | 0.079 | 0.165 |
(0.110) | (0.104) | (0.092) | (0.117) | |
Type water | −0.072 | −0.069 | 0.100 | 0.075 |
(0.087) | (0.084) | (0.072) | (0.089) | |
Inconvenience | 0.177 * | 0.143 * | −0.080 | 0.083 |
(0.081) | (0.071) | (0.068) | (0.074) | |
Getting wet | 0.170 | 0.331 * | −0.054 | 0.048 |
(0.145) | (0.157) | (0.107) | (0.163) | |
Emana | −0.621 ** | −0.099 | 0.213 | −0.143 |
(0.229) | (0.177) | (0.170) | (0.215) | |
Minkoameyos | −0.548 * | 0.124 | 0.331 * | 0.152 |
(0.222) | (0.188) | (0.162) | (0.165) | |
Nkolbisson | −0.547 ** | 0.019 | 0.191 | 0.135 |
(0.202) | (0.138) | (0.150) | (0.144) | |
Ekoumdoum | −0.633 ** | −0.083 | 0.145 | −0.064 |
(0.187) | (0.102) | (0.141) | (0.129) | |
Ekounou | −0.475 * | 0.033 | 0.202 | 0.094 |
(0.202) | (0.118) | (0.144) | (0.135) | |
Number of observations | 130 | 130 | 127 | 130 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nana, A.S.; Falkenberg, T.; Rechenburg, A.; Adong, A.; Ayo, A.; Nbendah, P.; Borgemeister, C. Farming Practices and Disease Prevalence among Urban Lowland Farmers in Cameroon, Central Africa. Agriculture 2022, 12, 230. https://doi.org/10.3390/agriculture12020230
Nana AS, Falkenberg T, Rechenburg A, Adong A, Ayo A, Nbendah P, Borgemeister C. Farming Practices and Disease Prevalence among Urban Lowland Farmers in Cameroon, Central Africa. Agriculture. 2022; 12(2):230. https://doi.org/10.3390/agriculture12020230
Chicago/Turabian StyleNana, Annie Stephanie, Timo Falkenberg, Andrea Rechenburg, Annet Adong, Anne Ayo, Pierre Nbendah, and Christian Borgemeister. 2022. "Farming Practices and Disease Prevalence among Urban Lowland Farmers in Cameroon, Central Africa" Agriculture 12, no. 2: 230. https://doi.org/10.3390/agriculture12020230
APA StyleNana, A. S., Falkenberg, T., Rechenburg, A., Adong, A., Ayo, A., Nbendah, P., & Borgemeister, C. (2022). Farming Practices and Disease Prevalence among Urban Lowland Farmers in Cameroon, Central Africa. Agriculture, 12(2), 230. https://doi.org/10.3390/agriculture12020230