Barriers to the Development of Agricultural Mechanization in the North and Northeast China Plains: A Farmer Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regions and Farmers
2.2. Questionnaire Design and Statistical Analysis
- Farm structure and farmer characteristics.
- Farmers’ intention to use machinery in the next 3 years.
- Farmers’ perceptions of the outcomes of using agricultural machinery, namely (i) how likely the outcome is (defined as strength of belief) and (ii) what is the extent of the negative or positive outcome to the farmer (defined as outcome evaluation).
- Farmers’ perceptions of social referents, namely (i) supporting or hindering application of the machine (defined as normative beliefs) and (ii) the extent to which farmers are willing to comply with social referents’ views (motivation to comply).
- Farmers’ perceptions of controlling factors, namely (i) the extent to which the factors hinder the use of agricultural machinery (defined as control power) and (ii) the extent to which these factors are effective for the farmer (defined as control strength).
3. Results
3.1. Farmers’ Attitudes toward Using Machinery
3.2. Influence of Reference Factors on Farmers’ Decision to Use Machinery
3.3. Barriers Affecting Farmers’ Decision to Use Machinery
3.4. Farmers’ Future Intention to Using Machinery
3.5. Correlation between Farmers’ Intention to Use Machinery and Farmers’ Characteristics
4. Discussion
4.1. Opportunities and Challenges to Using Machinery among Farmers
4.2. The Main Obstacles to Using Machinery
4.2.1. Field Size and Fragmentation
4.2.2. Mechanical Technology Training
4.2.3. Agricultural Machinery Prices and Food Prices
4.3. Approaches for Promoting the Development of Agricultural Machinery in China
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lowder, S.K.; Skoet, J.; Raney, T. The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev. 2016, 87, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Guarin, A.; Rivera, M.; Pinto, C.T.; Guiomar, N.; Sumane, S.; Moreno, O.M. A new typology of small farms in Europe. Glob. Food Secur-Agr. 2020, 26, 100389. [Google Scholar] [CrossRef]
- MARA (Ministry of Agriculture and Rural Affairs). National Data; Ministry of Agriculture and Rural Affairs: Beijing, China, 2020. (In Chinese)
- MARA (Ministry of Agriculture and Rural Affairs). Promote the Overall Development of the Action Program for the Promotion of Key Technologies in Agricultural Mechanization; Ministry of Agriculture and Rural Affairs: Beijing, China, 2018. (In Chinese)
- BEA (U.S. Bureau of Economic Analysis). BEA Statistical Databases; U.S. Bureau of Economic Analysis: Washington, DC, USA, 2020.
- NBSC (National Bureau of Statistics of China). National Data; National Bureau of Statistics of China: Beijing, China, 2020. (In Chinese)
- Zhao, C.J. State-of-the-art and recommended developmental strategic objectives of smart agriculture. Smart Agric. 2021, 1, 1–7. [Google Scholar]
- Feng, J.Y.; Lu, P.; Mu, W.S.; Zhang, X.S.; Fu, Z.T. Farmers’ brand perception toward agricultural machinery in China. Afr. J. Agr. Res. 2011, 6, 1966–1971. [Google Scholar]
- Wang, S.K.; Li, D.W.; Li, T.T.; Liu, C.Q. Land use transitions and farm performance in China: A perspective of land fragmentation. Land 2021, 10, 792. [Google Scholar] [CrossRef]
- Wang, X.B.; Yamauchi, F.; Huang, J.K.; Rozelle, S. What constrains mechanization in Chinese agriculture? Role of farm size and fragmentation. China Econ. Rev. 2020, 62, 101221. [Google Scholar] [CrossRef]
- Huang, Z.H.; Guan, L.J.; Jin, S.S. Scale farming operations in China. Int. Food Agribus. Manag. 2017, 20, 191–200. [Google Scholar] [CrossRef]
- Pan, D. The impact of agricultural technology training on rural residents’ income: A study based on the propensity score matching method. J. Nanjing Agri Univ. 2014, 5, 62–69. (In Chinese) [Google Scholar]
- Fan, L.X.; Niu, H.P.; Yang, X.M.; Qin, W.; Bento, P.M.; Coen, J.R.; Violette, G. Factors affecting farmers’ behaviour in pesticide use: Insights from a field study in northern China. Sci. Total Environ. 2015, 537, 360–368. [Google Scholar] [CrossRef]
- Eurostat. Small and Large Farms in the EU-Statistics from the Farm Structure Survey; Eurostat: Luxembourg, 2021. [Google Scholar]
- Fleisher, B.M.; Liu, Y.H. Economies of scale, plot size, human-capital, and productivity in Chinese agriculture. Qtrly. Rev. Econ. Financ. 1992, 32, 112–123. [Google Scholar]
- Masuda, K. Energy efficiency of intensive rice production in Japan: An application of data envelopment analysis. Sustainability 2018, 10, 120. [Google Scholar] [CrossRef] [Green Version]
- Matsukura, S.; Nanseki, T.; Fujii, Y.; Sato, M.; Chomei, Y.; Miyazumi, M. Effect of farming skill and farm size on production costs on large rice farms: A simulation analysis by FAPS-DB. Agri. Info. Res. 2015, 24, 35–45. [Google Scholar]
- Nguyen, T.H.; Thai, T.Q.; Tran, V.T.; Pham, T.P.; Doan, Q.C.; Vu, K.H.; Doan, H.G.; Bui, Q.T. Land Consolidation at the Household Level in the Red River Delta, Vietnam. Land 2020, 9, 196. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Warr, P. Land consolidation as technical change: Economic impacts in rural Vietnam. World Dev. 2020, 127, 104750. [Google Scholar] [CrossRef]
- Tamirat, T.W.; Pedersen, S.M.; Lind, K.M. Farm and operator characteristics affecting adoption of precision agriculture in Denmark and Germany. Acta Agr. Scand. B-Soil Plant Sci. 2018, 68, 349–357. [Google Scholar] [CrossRef]
- Novelli, S. Determinants of environmentally-friendly farming. Calitatea 2018, 19, 340–346. [Google Scholar]
- Durczak, K.; Ekielski, A.; Kozlowski, R.; Zelazinski, T.; Pilarski, K. A computer system supporting agricultural machinery and farm tractor purchase decisions. Heliyon 2020, 6, 10. [Google Scholar] [CrossRef]
- Daum, T.; Huffman, W.E.; Birner, R. How to create conducive institutions to enable agricultural mechanization: A comparative historical study from the United States and Germany. Work. Pap.-Dep. Econ. Iowa State Univ. 2018, 18009, 45. [Google Scholar]
- Zhang, E.P.; Zhao, X.; Wei, Y.H.; Chen, F.; Zhang, H.L. Farmers’ perception and problems of conservation tillage extension. Agric. Sci. Technol. 2014, 16, 166–173. [Google Scholar]
- Hijbeek, R.; Pronk, A.A.; van Ittersum, M.K.; Verhagen, A.; Ruysschaert, G.; Bijttebier, J.; Zavattaro, L.; Bechini, L.; Schlatter, N.; Ten Berge, H.F.M. Use of organic inputs by arable farmers in six agro-ecological zones across Europe: Drivers and barriers. Agric. Ecosyst. Environ. 2019, 275, 42–53. [Google Scholar] [CrossRef]
- Zhang, T.; Hou, Y.; Meng, T.; Ma, Y.; Tan, M.; Zhang, F.; Oenema, O. Replacing synthetic fertilizer by manure requires adjusted technology and incentives: A farm survey across China. Resour. Conserv. Recycl. 2021, 168, 105301. [Google Scholar] [CrossRef]
- Tan, M.; Hou, Y.; Zhang, L.; Shi, S.; Long, W.; Ma, Y.; Zhang, T.; Li, F.; Oenema, O. Operational costs and neglect of end-users are the main barriers to improving manure treatment in intensive livestock farms. J. Clean. Prod. 2021, 289, 125149. [Google Scholar] [CrossRef]
- Hijbeek, R.; Pronk, A.A.; van Ittersum, M.K.; ten Berge, H.F.M.; Bijttebier, J.; Verhagen, A.; Nicholson, F. What drives farmers to increase soil organic matter? Insights from the Netherlands. Soil Use Manag. 2018, 34, 85–100. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.D.; Deng, X.; Guo, S.L.; Liu, S.Q. Labor migration and farmland abandonment in rural China: Empirical results and policy implications. J. Environ. Manag. 2018, 232, 738–750. [Google Scholar] [CrossRef]
- White, B. Agriculture and the generation problem: Rural youth, employment and the future of farming. IDS Bull. Inst. Dev. Stud. 2012, 43, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Pretty, J. Agricultural sustainability: Concepts, principles and evidence. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 447–465. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.B.; Yamauchi, F.; Otsuka, K.; Huang, J.K. Wage Growth, Landholding, and Mechanization in Chinese Agriculture. World Dev. 2016, 86, 30–45. [Google Scholar] [CrossRef] [Green Version]
- Tavenner, K.; Wijk, M.; Fraval, S.; Hammond, J.; Baltenweck, I.; Teufel, N.; Kihoro, E.; Haan, N.; Etten, J.; Steinke, J.; et al. Intensifying Inequality? Gendered trends in commercializing and diversifying smallholder farming systems in East Africa. Front. Sustain. Food Syst. 2019, 3, 10. [Google Scholar] [CrossRef]
- Cai, T.; Steinfeld, C.; Chiwasa, H.; Ganunga, T. Understanding Malawian farmers’ slow adoption of composting: Stories about composting using a participatory video approach. Land Degradat. Dev. 2019, 30, 1336–1344. [Google Scholar] [CrossRef]
- Yang, J.C. Science and technology backyard improves farmers’ productivity. Sci. China Life Sci. 2016, 59, 1348–1349. [Google Scholar] [CrossRef] [Green Version]
- Wigboldus, S.; Hammond, J.; Xu, J.C.; Yi, Z.F.; He, J.; Klerkx, L.; Leeuwis, C. Scaling green rubber cultivation in Southwest China-An integrative analysis of stakeholder perspectives. Sci. Total Environ. 2017, 580, 1475–1482. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.J.; Li, G.; Yang, F.T.; Jiang, X.L.; Diallo, L.M.; Chen, X.F. Plough pan impacts maize grain yield, carbon assimilation, and nitrogen uptake in the maize belt of Northeast China. Emir. J. Food Agr. 2017, 29, 502–508. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.H.; Zang, L.Z.; Araral, E. The impacts of land fragmentation on irrigation collective action: Empirical test of the social-ecological system framework in China. J. Rural Stud. 2020, 78, 234–244. [Google Scholar] [CrossRef]
- Wang, L.; Qi, Z.R.; Pang, Q.H.; Xiang, Y.B.; Sun, Y.L. Analysis on the agricultural green production efficiency and driving factors of urban agglomerations in the middle reaches of the Yangtze River. Sustainability 2021, 13, 97. [Google Scholar] [CrossRef]
- Ju, X.T.; Gu, B.J.; Wu, Y.Y.; Galloway, J.N. Reducing China’s fertilizer use by increasing farm size. Glob. Environ. Change 2016, 41, 26–32. [Google Scholar] [CrossRef]
- Wu, P.T.; Jin, J.M.; Zhao, X.N. Impact of climate change and irrigation technology advancement on agricultural water use in China. Clim. Change 2010, 100, 797–805. [Google Scholar] [CrossRef]
- Zhu, X.F.; Li, Y.Z.; Li, M.Y.; Pan, Y.Z.; Shi, P.J. Agricultural irrigation in China. J. Soil Water Conserv. 2013, 68, 147A–154A. [Google Scholar] [CrossRef] [Green Version]
- Weber, J.G.; Key, N. Do wealth gains from land appreciation cause farmers to expand acreage or buy land? Am. J. Agr. Econ. 2014, 96, 1334–1348. [Google Scholar] [CrossRef]
- USDA-NASS. Census of Agricultural: Irrigation and Water Management Survey-Volume 3-Special Studies—Part 1; Washington, D.C. USDA, National Agricultural Statistic Service: Washington, DC, USA, 2019.
- Yenny, U.P.; Jose, C.; Eva, T.M.; Antonio, M.C. Role of transpiration reduction during center-pivot sprinkler irrigation in application efficiency. J. Irrig. Drain. Eng. 2013, 139, 221–232. [Google Scholar]
- Zhao, R.; Qiu, X.L.; Chen, S.Z. Empirical study on the effects of technology training on the forest-related income of rural poverty-stricken households-based on the psm method. Sustainability 2021, 13, 7143. [Google Scholar] [CrossRef]
- Chen, X.G.; Wen, H.J.; Zhang, W.R.; Pan, F.C.; Zhao, Y. Advences and progress of agricultural machinery and sensing technology fusion. Smart Agric. 2021, 2, 1–16. [Google Scholar]
- Huang, J.K.; Huang, Z.; Jia, X.P.; Hu, R.H.; Xiang, C. Long-term reduction of nitrogen fertilizer use through knowledge training in rice production in China. Agric. Syst. 2015, 135, 105–111. [Google Scholar] [CrossRef]
- Singh, G.; Zhao, B. Agricultural mechanization situation in Asia and the pacific region. Ama-Agr. Mech. Asia Af. 2016, 47, 15–25. [Google Scholar]
- Chen, H.B.; Lan, Y.B.; Fritz, B.K.; Hoffmann, W.C.; Liu, S.B. Review of agricultural spraying technologies for plant protection using unmanned aerial vehicle (UAV). Int. J. Agr. Biol. Eng. 2021, 14, 38–49. [Google Scholar] [CrossRef]
- NDRC (National Development and Reform Commission). National Data; National Development and Reform Commission: Beijing, China, 2020. (In Chinese)
- Kanter, D.R.; Bartolini, F.; Kugelberg, S.; Leip, A.; Oenema, O.; Uwizeye, A. Nitrogen pollution policy beyond the farm. Nat. Food 2019, 1, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.N.; Xu, Y.L.; Zhang, L.Y.; Song, S.F. Can China’s food production capability meet her peak food demand in the future? Int. Food Agribus. Man. 2020, 23, 1–17. [Google Scholar]
- Markussen, T.; Tarp, F.; Huy, D.T.; Nguyen, D.A. Inter- and intra-farm land fragmentation in Viet Nam. Wider Work. Pap. 2016, 11, 27. [Google Scholar]
- CPG (Central People’s Government of the People’s Republic of China). Opinions on Accelerating the Modernization of Agriculture and Rural Areas by Comprehensively Promoting Rural Revitalization; Central People’s Government of the People’s Republic of China: Beijing, China, 2021. (In Chinese)
- World Bank. Agricultural Knowledge and Information Systems (AKIS)—Agricultural Research, Extension and Education; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Munchhausen, S.V.; Haring, A.M. Lifelong learning for farmers: Enhancing competitiveness, knowledge transfer and innovation in the eastern German state of Brandenburg. Stud. Agric. Econ. 2012, 114, 86–92. [Google Scholar] [CrossRef]
- Alskaf, K.; Sparkes, D.L.; Mooney, S.J.; Sjogersten, S.; Wilson, P. The uptake of different tillage practices in England. Soil Use Manag. 2020, 36, 27–44. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Thomas, R. Mechanization outsourcing clusters and division of labor in Chinese agriculture. China Econ. Rev. 2017, 43, 184–195. [Google Scholar] [CrossRef]
- Bagheri, A.; Bondori, A.; Allahyari, M.S.; Damalas, C.A. Modeling farmers’ intention to use pesticides: An expanded version of the theory of planned behavior. Environ. Manag. 2019, 248, 109291. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.F.; Cao, G.X.; Li, X.L.; Zhang, H.Y.; Wang, C.; Liu, Q.Q.; Chen, X.P.; Cui, Z.L.; Shen, J.B.; Jiang, R.F.; et al. Closing yield gaps in China by empowering smallholder farmers. Nature 2016, 537, 671–674. [Google Scholar] [CrossRef] [PubMed]
- Mottaleb, K.A.; Krupnik, T.J.; Erenstein, O. Factors associated with small-scale agricultural machinery adoption in Bangladesh: Census findings. J. Rural Stud. 2016, 46, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Baudron, F.; Sims, B.; Justice, S.; Kahan, D.G.; Rose, R.; Mkomwa, S.; Kaumbutho, P.; Sariah, J.; Nazare, R.; Moges, G.; et al. Re-examining appropriate mechanization in Eastern and Southern Africa: Two-wheel tractors, conservation agriculture, and private sector involvement. Food Secur. 2015, 7, 889–904. [Google Scholar] [CrossRef]
- Vanzetti, D.; Quiggin, J. A comparative-analysis of agricultural tractor investment models. Aust. J. Agr. Resour. Ec. 1985, 29, 122–141. [Google Scholar] [CrossRef] [Green Version]
- Pan, B.; Tian, Z.H. A research review on agricultural machinery purchase subsidy policy. J. China Agric. Univ. 2018, 23, 161–173. (In Chinese) [Google Scholar]
- Li, W.; Wei, X.P.; Zhu, R.X.; Guo, K.Q. Study on factors affecting the agricultural mechanization level in China based on structural equation modeling. Sustainability 2019, 11, 51. [Google Scholar] [CrossRef] [Green Version]
- Yagi, H.; Hayashi, T. Machinery utilization and management organization in Japanese rice farms: Comparison of single-family, multifamily, and community farms. Agribusiness 2021, 37, 393–408. [Google Scholar] [CrossRef]
- Huang, J.K.; Yang, G.L. Understanding recent challenges and new food policy in China. Glob. Food Secur. Agr. 2017, 12, 119–126. [Google Scholar] [CrossRef]
Characteristics | Cooperative Directors | Farmers without Machines | Machine Operators | |||
---|---|---|---|---|---|---|
NCP | NEP | NCP | NEP | NCP | NEP | |
Number of farmers surveyed | 157 | 151 | 378 | 199 | 34 | 104 |
Mean managed farmland size (ha) | 6.10 | 30.11 | 0.44 | 3.39 | 1.57 | 5.04 |
Average age | 53.19 | 49.56 | 56.14 | 53.17 | 50.50 | 46.38 |
Average laborers per family | 1.78 | 1.89 | 1.88 | 1.97 | 1.82 | 2.00 |
Years of education | 9.11 | 9.20 | 8.48 | 8.67 | 8.82 | 8.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, Y.; Ye, S.; Wu, Z.; Zhang, F.; Mi, G. Barriers to the Development of Agricultural Mechanization in the North and Northeast China Plains: A Farmer Survey. Agriculture 2022, 12, 287. https://doi.org/10.3390/agriculture12020287
Huo Y, Ye S, Wu Z, Zhang F, Mi G. Barriers to the Development of Agricultural Mechanization in the North and Northeast China Plains: A Farmer Survey. Agriculture. 2022; 12(2):287. https://doi.org/10.3390/agriculture12020287
Chicago/Turabian StyleHuo, Yuewen, Songlin Ye, Zhou Wu, Fusuo Zhang, and Guohua Mi. 2022. "Barriers to the Development of Agricultural Mechanization in the North and Northeast China Plains: A Farmer Survey" Agriculture 12, no. 2: 287. https://doi.org/10.3390/agriculture12020287
APA StyleHuo, Y., Ye, S., Wu, Z., Zhang, F., & Mi, G. (2022). Barriers to the Development of Agricultural Mechanization in the North and Northeast China Plains: A Farmer Survey. Agriculture, 12(2), 287. https://doi.org/10.3390/agriculture12020287