Climate Resilience and Environmental Sustainability: How to Integrate Dynamic Dimensions of Water Security Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Availability
- R—resources (GDP, population density);
- En—energy consumption and emissions (oil intensity, CO2 per capita/per USD $GDP, SO2 per capita/per USD $GDP);
- S—soil type and vegetation (agriculture subsidies, use of pesticides);
- If—infrastructure;
- L—livelihood and land-use pattern (indoor air pollution, child mortality, forest loss);
- In—integration (political risk, among local to national planning and implementing body);
- Ec—ecosystem vitality (biodiversity and habitat, water resources, forest, fisheries);
- N—neighborhood network (governance, regional partnership, quality of local supplies);
- C—coordination (control of corruption, centralization, and decentralization);
- Et—entropy (measure of disorder or randomness of the system).
- Exposure to natural hazards;
- Quality of natural hazard risk management;
- Quality of fire risk management.
2.2. Conceptual Hydrological Model and Quantifying Input Uncertainty
3. Results and Analysis
4. Discussion—Scenarios of Model Development
4.1. Water Security, Water Cycle Modifications, and Climate Resilience
4.2. Climate–Water Quality Relationships in Changing Streamflow
4.3. Drought Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Zhang, M.; Li, Y.; Xia, J.; Ma, R. Wearable multi-sensor enabled decision support system for environmental comfort evaluation of mutton sheep farming. Comput. Electron. Agric. 2021, 187, 106302. [Google Scholar] [CrossRef]
- Jin, G.; Chen, K.; Wang, P.; Guo, B.; Dong, Y.; Yang, J. Trade-offs in land-use competition and sustainable land development in the North China Plain. Technol. Forecast. Soc. Chang. 2019, 141, 36–46. [Google Scholar] [CrossRef]
- Srinivasan, V.; Konar, M.; Sivapalan, M. A dynamic framework for water security. Water Secur. 2017, 1, 12–20. [Google Scholar] [CrossRef]
- Zhou, L.; Tokos, H.; Krajnc, D.; Yang, Y. Sustainability Performance Evaluation in Industry by Composite Sustainability Index. Clean Technol. Environ. Pol. 2012, 14, 789–803. [Google Scholar] [CrossRef]
- Resilience for Sustainability. Nat. Plants 2021, 7, 101. [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Global Warming of 1.5 °C; Masson-Delmotte, V., Ed.; World Meteorological Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Chaudhary, A.; Gustafson, D.; Mathys, A. Multi-indicator sustainability assessment of global food systems. Nat. Commun. 2018, 9, 848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gleeson, T.; Wang-Erlandsson, L.; Porkka, M.; Zipper, S.C.; Jaramillo, F.; Gerten, D. Illuminating water cycle modifications and Earth system resilience in the Anthropocene. Water Resour. Res. 2020, 56, e2019WR024957. [Google Scholar] [CrossRef] [Green Version]
- Dabson, B.; Heflin, M.C.; Miller, K.K. Regional Resilience: Research and Policy Brief. 2012. Available online: http://nado.org/wp-content/uploads/2012/04/RUPRI-Regional-Resilience-Research-Policy-Brief.pdf (accessed on 15 February 2022).
- Church, J.A. Sea Level Change. In Climate Change 2013: The Physical Science Basis; Stocker, T.F., Ed.; Cambridge University Press: Cambridge, UK, 2013; p. 1535. Available online: http://www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf (accessed on 15 February 2022).
- Finka, M.; Tóth, A. Regional Resiliences Improvement by Innovative Approaches in Management of External Shocks. 2014. Available online: http://www.spa-ce.net/pdf/2014/Conference_%202014/Toth_Spa-ce.net-2014.pdf (accessed on 15 February 2022).
- Martin, R. Regional economic resilience, hysteresis and recessionary shocks. J. Econ. Geogr. 2012, 12, 1–32. [Google Scholar] [CrossRef]
- Patterson, J.L.; Kelleher, P.A. Deeper Meaning of Resilience. In Resilient School Leaders: Strategies for Turning Adversity into Achievement; E-Book; Association for Supervision and Curriculum Development: Alexandria, VA, USA, 2005; Available online: http://www.ascd.org/publications/books/104003/chapters/A-Deeper-Meaning-of-Resilience.aspx (accessed on 15 February 2022).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Cambridge University Press: Cambridge, UK, 2012; p. 582. [Google Scholar]
- Wong, P.P.; Losada, I.J.; Gattuso, J.-P.; Hinkel, J.; Khattabi, A.; McInnes, K.L.; Saito, Y.; Sallenger, A. Coastal Systems and Low-Lying Areas. In Climate Change 2014: Impacts, Adaptation, and Vulnerability; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 361–409. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-Chap5_FINAL.pdf (accessed on 15 February 2022).
- Kundzewicz, Z.W.; Mata, L.J.; Arnell, N.W.; DÖLl, P.; Jimenez, B.; Miller, K.; Oki, T.; ŞEn, Z.; Shiklomanov, I. The implications of projected climate change for freshwater resources and their management. Hydrol. Sci. J. 2008, 53, 3–10. [Google Scholar] [CrossRef]
- Shoaib, S.A.; Marshall, L.; Sharma, A. A metric for attributing variability in modelled streamflows. J. Hydrol. 2016, 541, 1475–1487. [Google Scholar] [CrossRef]
- Clark, M.P.; Slater, A.G.; Rupp, D.E.; Woods, R.A.; Vrugt, J.A.; Gupta, H.V.; Wagener, T.; Hay, L.E. Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models. Water Resour. Res. 2008, 44, W00B02. [Google Scholar] [CrossRef]
- Sivakumar, B. Global climate change and its impacts on water resources planning and management: Assessment and challenges. Stoch Env. Res. Risk Assess. 2011, 25, 583–600. [Google Scholar] [CrossRef]
- Clark, M.P.; McMillan, H.K.; Collins, D.B.G.; Kavetski, D.; Woods, R.A. Hydrological field data from a modeller’s perspective: Part 2: Process-based evaluation of model hypotheses. Hydrol. Processes 2011, 25, 523–543. [Google Scholar] [CrossRef]
- Woldemeskel, F.M.; Sharma, A.; Sivakumar, B.; Mehrotra, R. An error estimation method for precipitation and temperature projections for future climates. J. Geophys. Res. Atmos. 2012, 117, D22104. [Google Scholar] [CrossRef]
- The 2015 FM Resilience Index. Annual Report, Oxford Metrica. 2015. Available online: https://www.fmglobal.com/assets/pdf/Resilience_Methodology.pdf (accessed on 15 February 2022).
- Shoaib, S.A.; Marshall, L.; Sharma, A. Attributing input uncertainty in streamflow simulations via the Quantile Flow Deviation metric. Adv. Water Res. 2018, 116, 40–55. [Google Scholar]
- Clark, M.P.; Kavetski, D.; Fenicia, F. Pursuing the method of multiple working hypotheses for hydrological modeling. Water Resour. Res. 2011, 47, W09301. [Google Scholar] [CrossRef] [Green Version]
- Shoaib, S.A.; Khan, M.Z.K.; Sultana, N.; Mahmood, T.H. Quantifying Uncertainty in Food Security Modeling. Agriculture 2021, 11, 33. [Google Scholar] [CrossRef]
- Andréassian, V.; Perrin, C.; Oudin, L. From catchment similarity to hydrological similarity: A review of the difficulties hindering the regionalization of hydrological models. Geophys. Res. Abstr. 2003, 13. Available online: https://meetingorganizer.copernicus.org/EGU2011/EGU2011-13991.pdf (accessed on 15 February 2022).
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Xiaoyu, G. When to Use What: Methods for Weighting and Aggregating Sustainability Indicators. Ecol. Indic. 2017, 81, 491–502. [Google Scholar]
- Sirone, S.; Seppala, J.; Leskinen, P. Towards More Non-Compensatory Sustainable Society Index. Environ. Dev. Sustain. 2015, 17, 587–621. [Google Scholar] [CrossRef]
- Wagener, T.; Sivapalan, M.; Troch, P.A.; McGlynn, B.L.; Harman, C.J.; Gupta, H.V.; Kumar, P.; Rao, P.S.C.; Basu, N.B.; Wilson, J.S. The future of hydrology: An evolving science for a changing world. Water Resour. Res. 2010, 46, W05301. [Google Scholar] [CrossRef]
- Morrison, R.R.; Stone, M.C. Spatially implemented Bayesian network model to assess environmental impacts of water management. Water Resour. Res. 2014, 50, 8107–8124. [Google Scholar] [CrossRef]
- Savenije, H.H.; Hoekstra, A.Y.; van der Zaag, P. Evolving water science in the Anthropocene. Hydrol. Earth Syst. Sci. 2014, 18, 319–332. [Google Scholar] [CrossRef] [Green Version]
- Sivapalan, M.; Savenije, H.H.; Blöschl, G. Socio-hydrology: A new science of people and water. Hydrol. Processes 2012, 26, 1270–1276. [Google Scholar] [CrossRef]
- Falkenmark, M.; Lundqvist, J.; Widstrand, C. Macro-scale water scarcity requires micro-scale approaches: Aspects of vulnerability in semi-arid development. Nat. Resour. Forum 1989, 13, 258–267. [Google Scholar] [CrossRef]
- Sivapalan, M.; Konar, M.; Srinivasan, V.; Chhatre, A.; Wutich, A.; Scott, C.A.; Wescoat, J.L.; Rodríguez-Iturbe, I. Socio-hydrology: Use-inspired water sustainability science for the Anthropocene. Earths Future 2014, 2, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Falkenmark, M.; Rockström, J. The new blue and green water paradigm: Breaking new ground for water resources planning and management. J. Water Resour. Plan. Manag. 2006, 132, 129–132. [Google Scholar] [CrossRef]
- Manzoni, S.; Katul, G.; Porporato, A. A dynamical system perspective on plant hydraulic failure. Water Resour. Res. 2014, 50, 5170–5183. [Google Scholar] [CrossRef]
- Michel-Kerjan, E. How resilient is your country? Nature 2012, 491, 497. Available online: http://www.nature.com/news/how-resilient-is-your-country-1.11861 (accessed on 15 February 2022). [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu Shoaib, S.; Rahman, M.M.; Shalabi, F.I.; Alshayeb, A.F.; Shatnawi, Z.N. Climate Resilience and Environmental Sustainability: How to Integrate Dynamic Dimensions of Water Security Modeling. Agriculture 2022, 12, 303. https://doi.org/10.3390/agriculture12020303
Abu Shoaib S, Rahman MM, Shalabi FI, Alshayeb AF, Shatnawi ZN. Climate Resilience and Environmental Sustainability: How to Integrate Dynamic Dimensions of Water Security Modeling. Agriculture. 2022; 12(2):303. https://doi.org/10.3390/agriculture12020303
Chicago/Turabian StyleAbu Shoaib, Syed, Muhammad Muhitur Rahman, Faisal I. Shalabi, Ammar Fayez Alshayeb, and Ziad Nayef Shatnawi. 2022. "Climate Resilience and Environmental Sustainability: How to Integrate Dynamic Dimensions of Water Security Modeling" Agriculture 12, no. 2: 303. https://doi.org/10.3390/agriculture12020303
APA StyleAbu Shoaib, S., Rahman, M. M., Shalabi, F. I., Alshayeb, A. F., & Shatnawi, Z. N. (2022). Climate Resilience and Environmental Sustainability: How to Integrate Dynamic Dimensions of Water Security Modeling. Agriculture, 12(2), 303. https://doi.org/10.3390/agriculture12020303