Assessing the Efficiency of Remote Sensing and Machine Learning Algorithms to Quantify Wheat Characteristics in the Nile Delta Region of Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. In Situ Spectroradiometry Measurements
2.3. Remote Sensing Imagery Acquisition, Processing and Analysis
2.4. Sampling Strategy of Wheat Crop
2.5. Calculating Vegetation Spectral Indices
2.6. Back-Propagation Neural Network (BPNN)
2.7. Random Forest Regression (RF)
2.8. Model Evaluation
2.9. Statistical Analysis
3. Results and Discussion
3.1. Effect of Well Irrigated and Varying Stress Conditions on the LAI, Plant Hight, Biomass and SPAD Value of Wheat
3.2. Satellite-Based NDVI for Well-Irrigated and Stressed Wheat Fields
3.3. Classifying Wheat and Other Crops across the Study Area
3.4. Assessment of Various Vegetation-SRIs Derived from Both In Situ Spectroradiometry and Satellite Based Remote Sensing Data under Non-Stress and Stress Conditions
3.5. Performance Evaluation of Various Models to Detect the Measured Wheat Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.; Zhang, X.; Shao, L.; Sun, H.; Liu, X. Effect of deficit irrigation with brackish water on growth and yield of winter wheat and summer maize. Chin. J. Eco-Agric. 2011, 19, 579–585. [Google Scholar] [CrossRef]
- Darko, E.; Janda, T.; Majláth, I.; Szopkó, D.; Dulai, S.; Molnár, I.; Türkösi, E.; Molnár-Láng, M. Salt stress response of wheat–barley addition lines carrying chromosomes from the winter barley “Manas”. Euphytica 2014, 203, 491–504. [Google Scholar] [CrossRef] [Green Version]
- El-Hendawy, S.; Elsayed, S.; Al-Suhaibani, N.; Alotaibi, M.; Tahir, M.U.; Mubushar, M.; Attia, A.; Hassan, W.M. Use of hyperspectral reflectance sensing for assessing growth and chlorophyll content of spring wheat grown under simulated saline field conditions. Plants 2021, 10, 101. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, S.; Rischbeck, P.; Schmidhalter, U. Comparing the performance of active and passive reflectance sensors to assess the normalized relative canopy temperature and grain yield of drought stressed barley cultivars. Field Crops Res. 2015, 177, 148–160. [Google Scholar] [CrossRef]
- Jones, H.G. Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agric. For. Meteorol. 1999, 95, 139–149. [Google Scholar] [CrossRef]
- Elmetwalli, A.H.; Tyler, A.N.; Moghanm, F.S.; Alamri, S.A.M.; Eid, E.M.; Elsayed, S. Integration of radiometric ground-based data and high-resolution QuickBird imagery with multivariate modeling to estimate maize traits in the Nile Delta of Egypt. Sensors 2021, 21, 3915. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, G. Estimation of vegetation water content using hyperspectral vegetation indices: A comparison of crop water indicators in response to water stress treatments for summer maize. BMC Ecol. 2015, 19, 18. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; Atefi, A.; Zhang, H.; Miao, C.; Ramamurthy, R.K.; Sigmon, B.; Yang, J.; Schnable, J.C. High-throughput analysis of leaf physiological and chemical traits with VIS–NIR–SWIR spectroscopy: A case study with a maize diversity panel. Plant Methods 2019, 15, 66. [Google Scholar] [CrossRef] [Green Version]
- Elmetwalli, A.H.; El-Hendawy, S.E.; Al-Suhaibani, N.; Alotaibi, M.; Tahir, M.U.; Mubushar, M.; Hassan, W.M.; El-Sayed, S. Potential of hyperspectral and thermal proximal sensing for estimating growth performance and yield of soybean exposed to different drip irrigation regimes under arid conditions. Sensors 2020, 20, 6569. [Google Scholar] [CrossRef]
- Babar, M.A.; Reynolds, M.P.; van Ginkel, M.; Klatt, A.R.; Raun, W.R.; Stone, M.L. Spectral reflectance to estimate genetic variation for in-season biomass, leaf chlorophyll, and canopy temperature in wheat. Crop Sci. 2006, 46, 1046–1057. [Google Scholar] [CrossRef]
- Jin, X.; Yang, G.; Xu, X.; Yang, H.; Feng, H.; Li, Z.; Shen, J.; Lan, Y.; Zhao, C. Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data. Remote Sens. 2015, 7, 13251–13272. [Google Scholar] [CrossRef] [Green Version]
- Rischbeck, P.; Elsayed, S.; Mistele, B.; Barmeier, G.; Heil, K.; Schmidhalter, U. Data fusion of spectral, thermal and canopy height parameters for improved yield prediction of drought stressed spring barley. Eur. J. Agron. 2016, 78, 44–59. [Google Scholar] [CrossRef]
- Rischbeck, P.; Baresel, P.; Elsayed, S.; Mistele, B.; Schmidhalter, U. Development of a diurnal dehydration index for spring barley phenotyping. Funct. Plant Biol. 2014, 41, 12. [Google Scholar] [CrossRef]
- Poss, J.A.; Russell, W.B.; Grieve, C.M. Estimating yield of salt-and water-stressed forages with remote sensing in the visible and near infrared. J. Environ. Qual. 2006, 35, 1060–1071. [Google Scholar] [CrossRef] [Green Version]
- Hackl, H.; Mistele, B.; Hu, Y.; Schmidhalter, U. Spectral assessments of wheat plants grown in pots and containers under saline conditions. Funct. Plant Biol. 2013, 40, 409–424. [Google Scholar] [CrossRef]
- Mansour, E.; Moustafa, E.S.A.; Desoky, E.M.; Ali, M.M.A.; Yasin, M.A.T.; Attia, A.; Alsuhaibani, N.; Tahir, M.U.; El-Hendawy, S.E. Multidimensional evaluation for detecting salt tolerance of bread wheat genotypes under actual saline field growing conditions. Plants 2020, 9, 1324. [Google Scholar] [CrossRef]
- Hirich, A.; Fatnassi, H.; Ragab, R.; Choukr-Allah, R. Prediction of climate change impact on corn grown in the south Morocco using the Saltmed Model. Irrig. Drain. 2016, 65, 9–18. [Google Scholar] [CrossRef]
- Lei, Y.; Zhang, H.; Chen, F.; Zhang, L. How rural land use management facilitates drought risk adaptation in a changing climate—A case study in arid northern China. Sci. Total Environ. 2016, 550, 192–199. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Al-Suhaibani, N.; Elsayed, S.; Hassan, W.M.; Dewir, Y.H.; Refay, Y.; Abdella, K.A. Potential of the existing and novel spectral reflectance indices for estimating the leaf water status and grain yield of spring wheat exposed to different irrigation rates. Agric. Water Manag. 2019, 217, 356–373. [Google Scholar] [CrossRef]
- Akram, M.; Ashraf, M.Y.; Ahmad, R.; Rafiq, M.; Ahmad, I.; Iqbal, J. Allometry and yield components of maize (Zea mays L.) hybrids to various potassium levels under saline conditions. Arch. Biol. Sci. 2010, 62, 1053–1061. [Google Scholar] [CrossRef]
- Qu, C.; Liu, C.; Gong, X.; Li, C.; Hong, M.; Wang, L.; Hong, F. Impairment of maize seedling photosynthesis caused by a combination of potassium deficiency and salt stress. Environ. Exp. Bot. 2012, 75, 134–141. [Google Scholar] [CrossRef]
- Romero, A.P.; Alarcón, A.; Valbuena, R.I.; Galeano, C.H. Physiological assessment of water stress in potato using spectral information. Front. Plant Sci. 2017, 8, 1608. [Google Scholar] [CrossRef] [PubMed]
- El-Hendawy, S.E.; Al-Suhaibani, N.; Hassan, W.; Dewir, Y.H.; El-Sayed, S.; Al-Ashkar, I.; Abdella, K.A.; Schmidhalter, U. Evaluation of wavelengths and spectral reflectance indices for high throughput assessment of growth, water relations and ion contents of wheat irrigated with saline water. Agric. Water Manag. 2019, 212, 358–377. [Google Scholar] [CrossRef]
- Schlemmer, M.R.; Francis, D.D.; Shanahan, J.F.; Schepers, J.S. Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and relative water content. Agron. J. 2005, 97, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Clay, D.E.; Kim, K.; Chang, J.; Clay, S.; Dalsted, K. Characterising water and nitrogen stress in corn using remote sensing. Agron. J. 2006, 98, 579–587. [Google Scholar] [CrossRef]
- Bannari, A.; Khurshid, K.S.; Staenz, K.; Schwarz, J. Potential of Hyperion EO-1 hyperspectral data for wheat crop chlorophyll content estimation. Can. J. Remote Sens. 2008, 34, 139–157. [Google Scholar] [CrossRef]
- Elmetwalli, A.H. Estimation of chlorophyll in irrigated wheat by aster high resolution satellite imagery. Int. Agric. Eng. J. 2013, 22, 55–61. [Google Scholar]
- Zhang, S.; Zhao, G.; Lang, K.; Su, B.; Chen, X.; Xi, X.; Zhang, H. Integrated satellite, unmanned aerial vehicle (UAV) and ground inversion of the SPAD of winter wheat in the reviving stage. Sensors 2019, 19, 1485. [Google Scholar] [CrossRef] [Green Version]
- Elmetwalli, A. Remote Sensing as a Precision Farming Tool in the Nile Valley, Egypt. Ph.D. Thesis, Stirling University, Striling, UK, 2008. [Google Scholar]
- Zhou, X.; Zheng, H.B.; Xu, X.Q.; He, J.Y.; Ge, X.K.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Khanal, S.; Fulton, J.; Klopfenstein, A.; Douridas, N.; Shearer, S. Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield. Comput. Electron. Agric. 2018, 153, 213–225. [Google Scholar] [CrossRef]
- Peralta, N.R.; Assefa, Y.; Du, J.; Barden, C.J.; Ciampitti, I.A. Mid-season high resolution satellite imagery for forecasting site-specific corn yield. Remote Sens. 2020, 8, 848. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Chen, Z.X.; Jiang, Z.W.; Wu, W.B.; Ren, J.Q.; Liu, B.; Tuya, H. Comparative analysis of GF-1, HJ-1, and Landsat-8 data for estimating the leaf area index of winter wheat. J. Integr. Agric. 2017, 16, 266–285. [Google Scholar] [CrossRef]
- Tian, J.; Wang, L.; Li, X.; Gong, H.; Shi, C.; Zhong, R.; Liu, X. Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest. Int. J. Appl. Earth Obs. Geoinf. 2017, 61, 22–31. [Google Scholar] [CrossRef]
- Hasan, U.; Sawut, M.; Chen, S. Estimating the leaf area index of winter wheat based on unmanned aerial vehicle RGB-image parameters. Sustainability 2019, 11, 6829. [Google Scholar] [CrossRef] [Green Version]
- Caturegli, L.; Casucci, M.; Lulli, F.; Grossi, N.; Gaetani, M.; Magni, S.; Bonari, E.; Volterrani, M. GeoEye-1 satellite versus ground-based multispectral data for estimating nitrogen status of turfgrasses. Int. J. Remote Sens. 2015, 36, 2238–2251. [Google Scholar] [CrossRef]
- Campos, I.; Gonzalez-Gomez, L.; Villodre, J.; Calera, M.; Campoy, J.; Jimenez, N.; Plaza, C.; Sanchez-Prieto, S.; Calera, A. Mapping within-field variability in wheat yield and biomass using remote sensing vegetation indices. Precis. Agric. 2019, 20, 214–236. [Google Scholar] [CrossRef]
- Knipper, K.R.; Kustas, W.P.; Anderson, M.C.; Alfieri, J.G.; Prueger, J.H.; Hain, C.R.; Gao, F.; Yang, Y.; McKee, L.G.; Nieto, H. Evapotranspiration estimates derived using thermal-based satellite remote sensing and data fusion for irrigation management in California vineyards. Irrig. Sci. 2019, 37, 431–449. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, G.; Liu, F.; Lu, Y.; Yang, F.; Yang, F.; Yang, M.; Zhao, Y.; Li, D. Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecol. Indic. 2016, 60, 870–878. [Google Scholar] [CrossRef]
- Pourazar, H.; Samadzadegan, F.; Javan, F.D. Aerial multispectral imagery for plant disease detection; Radiometric calibration necessity assessment. Eur. J. Remote Sens. 2019, 52, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modelling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.; Gitelson, A.; Peng, Y.; Vina, A.; Arkebauer, T.; Rundquist, D. Green leaf area index estimation in maize and soybean: Combining vegetation indices to achieve maximal sensitivity. Agron. J. 2012, 104, 1336–1347. [Google Scholar] [CrossRef] [Green Version]
- Prey, L.; Schmidhalter, U. Simulation of satellite reflectance data using high-frequency ground based hyperspectral canopy measurements for in-season estimation of grain yield and grain nitrogen status in winter wheat. ISPRS J. Photogramm. Remote Sens. 2019, 149, 176–187. [Google Scholar] [CrossRef]
- Elsayed, S.; Elhoweity, M.; Ibrahim, H.H.; Dewir, Y.H.; Migdadic, H.M.; Schmidhalter, U. Thermal imaging and passive reflectance sensing to estimate the water status and grain yield of wheat under different irrigation regimes. Agric. Water Manag. 2017, 189, 98–110. [Google Scholar] [CrossRef]
- Elsayed, S.; El-Hendawy, S.; Khadr, M.; Elsherbiny, O.; Al-Suhaibani, N.; Dewir, Y.H.; Tahir, M.U.; Mubushar, M.; Darwish, W. Integration of spectral reflectance indices and adaptive neuro-fuzzy inference system for assessing the growth performance and yield of potato under different drip irrigation regimes. Chemosensors 2021, 9, 55. [Google Scholar] [CrossRef]
- Garriga, M.; Romero-Bravo, S.; Estrada, F.; Méndez-Espinoza, A.M.; González-Martínez, L.; Matus, I.A.; Castillo, D.; Lobos, G.A.; Del Pozo, A. Estimating carbon isotope discrimination and grain yield of bread wheat grown under water-limited and full irrigation conditions by hyperspectral canopy reflectance and multilinear regression analysis. Int. J. Remote Sens. 2021, 42, 2848–2871. [Google Scholar] [CrossRef]
- Sarkar, A.; Pandey, P. River water quality modelling using artificial neural network technique. Aquat. Procedia 2015, 4, 1070–1077. [Google Scholar] [CrossRef]
- Elsherbiny, O.; Fan, Y.; Zhou, L.; Qiu, Z. Fusion of Feature Selection Methods and Regression Algorithms for Predicting the Canopy Water Content of Rice Based on Hyperspectral Data. Agriculture 2021, 11, 51. [Google Scholar] [CrossRef]
- Elsayed, S.; El-Hendawy, S.; Dewir, Y.H.; Schmidhalter, U.; Ibrahim, H.H.; Ibrahim, M.M.; Elsherbiny, O.; Farouk, M. Estimating the leaf water status and grain yield of wheat under different irrigation regimes using optimized two- and three-band hyperspectral indices and multivariate regression models. Water 2021, 13, 2666. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, X.; Zhu, X.; Dong, Z.; Guo, W. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. Crop J. 2016, 4, 212–219. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Pu, R.; Zhang, J.; Wang, J.; Yang, H. Using high spatial resolution satellite imagery for mapping powdery mildew at a regional scale. Precis. Agric. 2016, 17, 332–348. [Google Scholar] [CrossRef]
- Yang, H.; Li, F.; Wang, W.; Yu, K. Estimating above-ground biomass of potato using random forest and optimized hyperspectral indices. Remote Sens. 2021, 13, 2339. [Google Scholar] [CrossRef]
- Niu, Y.X.; Zhang, L.Y.; Zhang, H.H.; Han, W.T.; Peng, X.S. Estimating above-ground biomass of maize using features derived from UAV-based RGB imagery. Remote Sens. 2019, 11, 1261. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J. Red and Photographic infrared linear combination for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Crippen, E.R. Calculating the vegetation index faster. Remote Sens. Environ. 1990, 34, 71–73. [Google Scholar] [CrossRef]
- Jiang, Y.; Carrow, R.N.; Duncan, R.R. Correlation analysis procedures for canopy spectral reflectance data of Seashore Paspalum under Traffic stress. J. Am. Soc. Hortic. Sci. 2003, 13, 187–208. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Everitt, J.H.; Bradford, J.M. Comparisons of QuickBird satellite imagery and airborne imagery for mapping grain sorghum yield patterns. Precis. Agric. 2006, 7, 33–44. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H., Jr.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retro Gradation (Green Wave Effect) of Natural Vegetation; NASA/GSFC Type III Final Report; NASA: Greenbelt, MD, USA, 1974; p. 371.
- Reujean, J.; Breon, F. Estimating PAR absorbed by vegetation from bidirectional from reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Aparicio, N.; Villegas, D.; Araus, J.L.; Casadesus, J.; Royo, C. Relationship between growth traits and spectral vegetation indices in durum wheat. Crop Sci. 2002, 42, 1547–1555. [Google Scholar] [CrossRef]
- Lymburner, L.; Beggs, P.J.; Jacobson, C.R. Estimation of canopy-average surface-specific leaf area using Landsat TM data. Photogramm. Eng. Remote Sens. 2000, 66, 183–191. [Google Scholar]
- Vina, A. Remote Detection of Biophysical Properties of Plant Canopies. 2003. Available online: http://calamps.unl.edu/snrscoq/SNRS_Colloquium_2002_Andres_Vina.ppt (accessed on 15 February 2021).
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Schalkoff, J. Artificial Neural Networks; McGraw-Hill Companies Inc.: New York, NY, USA, 1997. [Google Scholar]
- Haykin, S. Neural Networks: A Comprehensive Foundation, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Li, J.; Yoder, R.; Odhiambo, L.O.; Zhang, J. Simulation of nitrate distribution under drip irrigation using artificial neural networks. Irrig. Sci. 2004, 23, 29–37. [Google Scholar] [CrossRef]
- Byrd, R.H.; Lu, P.; Nocedal, J.; Zhu, C. A limited memory algorithm for bound constrained optimization. Siam J. Sci. Comput. 1995, 16, 1190–1208. [Google Scholar] [CrossRef]
- Glorfeld, L.W. A methodology for simplification and interpretation of backpropagation-based neural network models. Expert Syst. Appl. 1996, 10, 37–54. [Google Scholar] [CrossRef]
- Strobl, C.; Boulesteix, A.-L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional variable importance for random forests. BMC Bioinform. 2008, 9, 307. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Malone, B.P.; Styc, Q.; Minasny, B.; McBratney, A.B. Digital soil mapping of soil carbon at the farm scale: A spatial downscaling approach in consideration of measured and uncertain data. Geoderma 2017, 290, 91–99. [Google Scholar] [CrossRef]
- Saggi, M.K.; Jain, S. Reference evapotranspiration estimation and modeling of the Punjab Northern India using deep learning. Comput. Electron. Agric. 2019, 156, 387–398. [Google Scholar] [CrossRef]
- Kundu, P.; Gill, R.; Ahlawat, S.; Anjum, N.A.; Sharma, K.K.; Ansari, A.A.; Hasanuzzaman, M.; Ramakrishna, A.; Chauhan, N.; Tuteja, N.; et al. Targeting the redox regulatory mechanism for abiotic stress tolerance in crops. In Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress Tolerance in Plants; Wani, S.H., Ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2018; pp. 151–220. [Google Scholar]
- ELSabagh, A.; Hossain, A.; Barutçular, C.; Iqbal, M.A.; Islam, M.S.; Fahad, S.; Sytar, O.; Çiğ, F.; Meena, R.S.; Erman, M. Consequences of salinity stress on the quality of crops and its mitigation strategies for sustainable crop production: An outlook of arid and semi-arid regions. In Environment, Climate, Plant and Vegetation Growth; Fahad, A., Hasanuzzaman, M., Alam, M., Ullah, H., Saeed, M., Khan, I.A., Adnan, M., Eds.; Springer: Cham, Switzerland, 2020; pp. 503–533. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Ann. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasan, A.; Hafiz, H.R.; Siddiqui, N.; Khatun, M.; Islam, R.; Mamun, A.A. Evaluation of wheat genotypes for salt tolerance based on some physiological traits. J. Crop Sci. Biotechnol. 2015, 18, 333–340. [Google Scholar] [CrossRef]
- Sorour, S.G.; Aiad, M.A.; Ahmed, A.A.; Henash, M.I.; Metwaly, E.M.; Alharby, H.; Bamagoos, A.; Barutçular, C. Yield of wheat is increased through improving the chemical properties, nutrient availability and water productivity of salt affected soils in the north delta of Egypt. Appl. Ecol. Environ. Res. 2019, 17, 8291–8306. [Google Scholar] [CrossRef]
- Hansen, P.M.; Schjoerring, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 2003, 86, 542–553. [Google Scholar] [CrossRef]
- Cho, M.; Skidmore, A.; Corsi, F.; van Wieren, S.; Sobhan, I. Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 414–424. [Google Scholar] [CrossRef]
- Gao, S.; Niua, Z.; Huang, N.; Houa, X. Estimating the Leaf Area Index, height and biomass of maize using HJ-1 and RADARSAT-2. Int. J. Appl. Earth Obs. Geoinf. 2013, 24, 1–8. [Google Scholar] [CrossRef]
- Wang, C.; Feng, M.; Yang, W.; Ding, G.; Sun, H.; Liang, Z.-Y.; Xie, K.; Qiao, X. Impact of spectral saturation on leaf area index and aboveground biomass estimation of winter wheat. Spectrosc. Lett. 2016, 49, 241–248. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Alotaibi, M.; Al-Suhaibani, N.; Al-Gaadi, K.; Hassan, W.; Dewir, Y.H.; Emam, M.A.E.-G.; Elsayed, S.; Schmidhalter, U. Comparative performance of spectral reflectance indices and multivariate modeling for assessing agronomic parameters in advanced spring wheat lines under two contrasting irrigation regimes. Front. Plant Sci. 2019, 10, 1537. [Google Scholar] [CrossRef]
- Elsayed, S.; Mistele, B.; Schmidhalter, U. Can changes in leaf water potential be assessed spectrally? Funct. Plant Biol. 2011, 38, 523–533. [Google Scholar] [CrossRef]
- Elmetwalli, A.H.; Tyler, A.N. Estimation of maize properties and differentiating moisture and nitrogen deficiency stress via ground–based remotely sensed data. Agric. Water Manag. 2020, 242, 106413. [Google Scholar] [CrossRef]
- Towers, P.C.; Strever, A.; Poblete-Echeverría, C. Comparison of vegetation indices for leaf area index estimation in vertical shoot positioned vine canopies with and without Grenbiule Hail-Protection Netting. Remote Sens. 2019, 11, 1073. [Google Scholar] [CrossRef] [Green Version]
- Kizil, Ü.; Genc, L.; İnlpulat, M.; Şapolyo, D.; Mirik, M. Lettuce (Lactuca sativa L.) yield prediction under water stress using artificial neural network (ANN) model and vegetation indices. Zemdirb. Agric. 2012, 99, 409–418. [Google Scholar]
- Elsherbiny, O.; Zhou, L.; Feng, L.; Qiu, Z. Integration of Visible and Thermal Imagery with an Artificial Neural Network Approach for Robust Forecasting of Canopy Water Content in Rice. Remote Sens. 2021, 13, 1785. [Google Scholar] [CrossRef]
- Feng, M.; Guo, X.; Wang, C.; Yang, W.; Shi, C.; Ding, G.; Zhang, X.; Xiao, L.; Zhang, M.; Song, X. Monitoring and evaluation infreeze stress of winter wheat (Triticum aestivum L.) through canopy hyperspectrum reflectance and multiple statistical analysis. Ecol. Indic. 2018, 84, 290–297. [Google Scholar] [CrossRef]
- Song, X.; Duan, Z.; Jiang, X. Comparison of artificial neural networks and support vector machine classifiers for land cover classification in Northern China Using a SPOT-5 HRG Image. Int. J. Remote Sens. 2012, 33, 3301–3320. [Google Scholar] [CrossRef]
- Salas, E.A.L.; Subburayalu, S.K.; Slater, B.; Zhao, K.; Bhattacharya, B.; Tripathy, R.; Das, A.; Nigam, R.; Dave, R.; Parekh, P. Mapping crop types in fragmented arable landscapes using AVIRIS-NG imagery and limited field data. Int. J. Image Data 2019, 11, 33–56. [Google Scholar] [CrossRef]
Satellite Name | QuickBird |
---|---|
Acquisition date | 3 July 2007 |
Acquisition time | 09:06 |
Cloud cover | 33% |
Off nadir angle | 13° |
Target azimuth angle | 210° |
Spectral bands number | 4 |
Environmental quality | 99% |
Centre location | Latitude/Longtude: 30.99°/29.84° |
Vegetation-SRIs | Formulae | Reference |
---|---|---|
Difference vegetation index (DVI) | NIR − Red | [54] |
Infra-Red percentage vegetation index (IPVI) | NIR/(NIR + Red) | [55] |
Stress index (SI) | Red/NIR | [56] |
Green normalized difference vegetation index (GNDVIbr) | (NIR − green)/(NIR + green) | [57] |
Normalized difference vegetation index (NDVI) | (NIR − Red)/(NIR + Red) | [58] |
Renormalized difference vegetation index (RDVI) | [59] | |
Simple ratio (SR) | NIR/Red | [60] |
Specific leaf area vegetation index (SLAVI) | NIR/(Red + NIR) | [61] |
Vegetation index (VI) | NIR/(green − 1) | [62] |
Optimized soil adjusted vegetation index (OSAVI) | ((NIR − Red)/(NIR + Red + L)) × (1 + L), L = 0.16 | [63] |
Fields | Field Code | Treatment | LAI | Plant-h (m) | AGB | SPAD | LAI | Plant-h (m) | AGB | SPAD | LAI | Plant-h (m) | AGB | SPAD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(kg m−2) | (kg m−2) | (kg m−2) | ||||||||||||
First year | Second year | Third year | ||||||||||||
Field 1 | S1 | Non-stress | 3.85 ± 0.46 a | 0.70 ± 0.05 cd | 1.85 ± 0.15 b | 42.2 ± 1.0 ab | 3.34 ± 0.23 b | 0.89 ± 0.04 ab | 1.52 ± 0.02 b | 43.1 ± 2.3 ab | 4.30 ± 0.43 a | 1.01 ± 0.01 a | 2.50 ± 0.23 a | 47.0 ± 1.8 a |
Field 2 | S2 | Drought stress | 2.94 ± 0.53 b | 0.68 ± 0.04 de | 1.39 ± 0.17 c | 41.4 ± 1.7 ab | 2.46 ± 0.23 de | 0.87 ± 0.04 ab | 1.29 ± 0.03 c | 41.5 ± 1.9 b | 2.82 ± 0.24 b | 0.85 ± 0.04 c | 1.58 b ± 0.57 c | 43.5 ± 2.2 b |
Field 3 | S3 | Drought stress | 2.36 ± 0.15 b | 0.86 ± 0.03 b | 1.68 ± 0.07 b | 43.2 ± 0.4 a | 2.30 ± 0.05 ef | 0.77 ± 0.08 c–e | 1.17 ± 0.06 d | 41.1 ± 1.9 b | 2.54 ± 0.33 b | 0.84 ± 0.07 c | 1.18 ± 0.55 cd | 41.4 ± 0.6 bc |
Field 4 | S4 | Drought stress | 2.55 ± 0.56 b | 0.75 ± 0.08 c | 1.4 ± 0.16 bc | 41.6 ± 0.4 ab | 2.76 ± 0.19 cd | 0.84 ± 0.06 bc | 1.44 ± 0.04 b | 42.7 ± 0.4 b | 2.36 ± 0.24 b | 0.68 ± 0.07 d | 1.14 ± 0.54 cd | 39.7 ± 1.0 c |
Field 5 | S5 | Drought stress | 2.81 ± 0.25 b | 0.65 ± 0.04 de | 0.97 ± 0.04 d | 41.1 ± 0.2 ab | 2.81 ± 0.10 c | 0.78 ± 0.06 cd | 1.42 ± 0.03 b | 41.1 ± 0.2 b | 2.82 ± 0.24 b | 0.85 ± 0.04 c | 1.66 ± 0.46 bc | 42.8 ± 2.3 bc |
Field 6 | KO | Non-stress | 4.09 ± 0.42 a | 1.00 ± 0.03 a | 2.2 ± 0.24 a | 44.9 ± 1.0 a | 3.85 ± 0.47 a | 0.95 ± 0.04 a | 1.69 ± 0.09 a | 45.5 ± 0.5 a | 4.00 ± 0.42 a | 1.03 ± 0.02 a | 2.34 ± 0.09 ab | 43.6 ± 0.6 b |
Field 7 | RA | Non-stress | 4.03 ± 0.43 a | 1.013 ± 0.01 a | 1.98 ± 0.07 a | 44.6 ± 2.9 a | 3.09 ± 0.16 bc | 0.89 ± 0.06 ab | 1.50 ± 0.01 b | 43.3 ± 0.9 ab | 2.85 ± 0.23 b | 0.69 ± 0.18 d | 1.60 ± 0.63 bc | 41.2 ± 2.2 bc |
Field 8 | ME | Non-stress | 4.0 ± 0.42 a | 1.03 ± 0.02 a | 2.03 ± 0.10 a | 42.6 ± 1.6 a | 2.94 ± 0.19 c | 0.90 ± 0.05 ab | 1.44 ± 0.05 b | 43.2 ± 1.4 ab | 2.85 ± 0.28 b | 0.97 ± 0.02 ab | 1.66 ± 0.63 bc | 42.1 ± 1.6 bc |
Field 9 | TA | Salinity stress | 1.98 ± 0.61 c | 0.89 ± 0.04 b | 0.94 ± 0.21 e | 36.0 ± 3.3 bc | 2.12 ± 0.10 e–g | 0.78 ± 0.02 cd | 1.03 ± 0.03 e | 38.5 ± 0.5 c | 0.76 ± 0.05 d | 0.62 ± 0.01 de | 0.32 ± 0.03 e | 29.2 ± 2.0 f |
Field 10 | SH | Salinity stress | 2.85 ± 0.05 cd | 0.67 ± 0.02 de | 1.10 ± 0.03 f | 32.7 ± 1.9 c | 2.00 ± 0.18 fg | 0.73 ± 0.04 de | 0.97 ± 0.09 e | 36.5 ± 1.3 c | 1.42 ± 0.60 c | 0.89 ± 0.04 bc | 0.61 ± 0.22 de | 36.0 ± 3.3 d |
Field 11 | OMA | Salinity stress | 2.15 ± 0.11 d | 0.53 ± 0.06 f | 1.32 ± 0.01 f | 23.7 ± 2.0 d | 1.57 ± 0.11 h | 0.73 ± 0.06 de | 0.72 ± 0.11 f | 31.8 ± 1.5 d | 1.06 ± 0.05 cd | 0.67 ± 0.02 d | 0.49 ± 0.13 de | 32.7 ± 1.9 e |
Class | Ground Truth (%) | User’s Accuracy | ||||
---|---|---|---|---|---|---|
Wheat | Water | Soil | Clover | Total | ||
Wheat | 90.4 | 0.00 | 2.0 | 1.3 | 22.8 | 96.3 |
Water | 4.3 | 97.8 | 1.5 | 1.7 | 25.7 | 96.9 |
Soil | 5.3 | 2.1 | 92.5 | 11.1 | 28.9 | 84.5 |
Clover | 0.00 | 0.1 | 4.0 | 86.0 | 22.6 | 90.7 |
Total | 100 | 100 | 100 | 100 | 100.0 | |
Producer’s Accuracy (%) | 90.4 | 97.8 | 92.5 | 86.0 | ||
Kappa Coefficient | 0.90 | |||||
Overall Accuracy (%) | 91.7 |
Class | Ground Truth (%) | User’s Accuracy | ||||
---|---|---|---|---|---|---|
Wheat | Water | Soil | Clover | Total | ||
Wheat | 97.6 | 25.7 | 12.7 | 4.2 | 35.1 | 69.9 |
Water | 2.0 | 72.5 | 45.1 | 0.3 | 29.4 | 61.7 |
Soil | 0.4 | 1.3 | 42.2 | 1.9 | 10.4 | 96.1 |
Clover | 0.00 | 1.5 | 0.00 | 94.6 | 25.1 | 98.6 |
Total | 100 | 100 | 100 | 100 | 100.0 | |
Producer’s Accuracy (%) | 97.6 | 72. 5 | 42.2 | 94.6 | ||
Kappa Coefficient | 0.70 | |||||
Overall Accuracy | 77.40% |
Vegetation Index | Crop Properties | |||
---|---|---|---|---|
LAI | Height (m) | Biomass (kg·m−2) | SPAD | |
0.23 * | 0.53 *** | 0.46 ** | ||
DVI | 0.58 *** | 0.25 * | 0.58 *** | 0.61 *** |
IPVI | 0.61 *** | 0.21 | 0.61 *** | 0.52 ** |
SI | 0.65 *** | 0.23 * | 0.55 *** | 0.48 ** |
GNDVI | 0.65 *** | 0.28 * | 0.61 *** | 0.62 *** |
NDVI | 0.67 *** | 0.21 | 0.53 *** | 0.50 ** |
RDVI | 0.59 *** | 0.23 * | 0.54 *** | 0.49 ** |
SR | 0.61 *** | 0.18 | 0.48 ** | 0.53 *** |
SLAVI | 0.52 ** | 0.16 | 0.51 ** | 0.52 ** |
VI | 0.60 *** | 0.20 | 0.55 *** | 0.41 *** |
Vegetation Index | Crop Properties | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LAI | Height | AGB | SPAD | LAI | Height | AGB | SPAD | LAI | Height | AGB | SPAD | |
First year | Second year | Third year | ||||||||||
DVI | 0.74 *** | 0.40 ** | 0.77 *** | 0.58 *** | 0.64 *** | 0.57 *** | 0.73 *** | 0.46 *** | 0.74 *** | 0.32 *** | 0.68 *** | 0.65 *** |
IPVI | 0.75 *** | 0.42 ** | 0.79 *** | 0.82 *** | 0.65 *** | 0.59 *** | 0.77 *** | 0.52 *** | 0.72 *** | 0.42 *** | 0.64 *** | 0.75 *** |
SI | 0.68 *** | 0.38 ** | 0.72 *** | 0.80 *** | 0.62 *** | 0.58 *** | 0.74 *** | 0.51 *** | 0.65 *** | 0.39 *** | 0.57 *** | 0.72 *** |
GNDVI | 0.70 *** | 0.45 ** | 0.71 *** | 0.65 *** | 0.67 *** | 0.54 *** | 0.74 *** | 0.46 *** | 0.59 *** | 0.30 *** | 0.57 *** | 0.56 *** |
NDVI | 0.75 *** | 0.42 ** | 0.78 *** | 0.82 *** | 0.65 *** | 0.59 *** | 0.77 *** | 0.52 *** | 0.72 *** | 0.42 *** | 0.64 *** | 0.75 *** |
RDVI | 0.84 *** | 0.51 ** | 0.85 *** | 0.70 *** | 0.70 *** | 0.50 *** | 0.77 *** | 0.50 *** | 0.83 *** | 0.46 *** | 0.75 *** | 0.71 *** |
SR | 0.82 *** | 0.53 *** | 0.82 *** | 0.61 *** | 0.68 *** | 0.44 *** | 0.72 *** | 0.47 *** | 0.79 *** | 0.43 *** | 0.72 *** | 0.62 *** |
SLAVI | 0.75 *** | 0.42 ** | 0.79 *** | 0.82 *** | 0.65 *** | 0.59 *** | 0.77 *** | 0.52 *** | 0.72 *** | 0.42 *** | 0.64 *** | 0.75 *** |
VI | 0.62 *** | 0.26 * | 0.65 *** | 0.39 *** | 0.67 *** | 0.45 *** | 0.70 *** | 0.44 *** | 0.54 *** | 0.16 *** | 0.47 *** | 0.49 *** |
OSAVI | 0.78 *** | 0.42 ** | 0.81 *** | 0.77 *** | 0.72 *** | 0.61 *** | 0.81 *** | 0.54 *** | 0.75 *** | 0.40 *** | 0.66 *** | 0.75 *** |
Variables | Group | Parameters | Training | Validation | ||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
LAI | Group 1 | (8, 16) & relu | 0.87 *** | 0.127 | 0.84 *** | 0.135 |
Group 2 | (16, 8) & tanh | 0.97 *** | 0.108 | 0.62 *** | 0.226 | |
Total | (2, 20) & relu | 0.99 *** | 0.080 | 0.93 *** | 0.122 | |
Plant-h | Group 1 | (2, 4) & logistic | 0.66 *** | 0.084 | 0.50 *** | 0.099 |
Group 2 | (16, 6) & relu | 0.83 *** | 0.068 | 0.26 ** | 0.115 | |
Total | (6, 22) & relu | 0.81 *** | 0.071 | 0.28 ** | 0.108 | |
AGB | Group 1 | (2, 2) & tanh | 0.87 *** | 0.222 | 0.79 *** | 0.214 |
Group 2 | (10, 22) & relu | 0.84 *** | 0.271 | 0.77 *** | 0.231 | |
Total | (2, 20) & relu | 0.96 ** | 0.181 | 0.71 *** | 0.266 | |
SPAD value | Group 1 | (2, 22) & tanh | 0.89 *** | 1.251 | 0.76 *** | 2.065 |
Group 2 | (4, 6) & logistic | 0.94 *** | 1.051 | 0.32 ** | 3.859 | |
Total | (2, 20) & relu | 0.93 *** | 1.069 | 0.71 *** | 2.169 |
Variables | Best Indices | Parameters | Training | Validation | ||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
LAI | VI1, SI2, NDVI1, SLAVI1, GNDVI br1, DVI1, RDVI2, RDVI1 | (6, 10) & relu | 0.99 *** | 0.067 | 0.97 *** | 0.109 |
Plant-h | NDVI2, GNDVI br1, VI2, RDVI1 | (22, 16) & relu | 0.94 *** | 0.023 | 0.72 *** | 0.039 |
AGB | SR1, GNDVI br1, VI1, SLAVI2, RDVI2, DVI1, GNDVI2, SI2, NDVI1, RDVI1 | (8, 2) & relu | 0.94 *** | 0.104 | 0.87 *** | 0.112 |
SPAD value | GNDVI br1, SLAVI1, NDVI1 | (4, 10) & relu | 0.90 *** | 1.336 | 0.86 *** | 1.275 |
Variables | Group | Parameters | Training | Validation | ||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
LAI | Group 1 | ntree = 3, mtry = 20 | 0.97 *** | 0.203 | 0.82 *** | 0.317 |
Group 2 | ntree = 4, mtry = 6 | 0.92 *** | 0.245 | 0.66 *** | 0.325 | |
Total | ntree = 13, mtry = 6 | 0.98 *** | 0.099 | 0.91 *** | 0.179 | |
Plant-h | Group 1 | ntree = 5, mtry = 8 | 0.82 *** | 0.060 | 0.51 *** | 0.070 |
Group 2 | ntree = 2, mtry = 7 | 0.73 *** | 0.086 | 0.26 * | 0.108 | |
Total | ntree = 7, mtry = 7 | 0.90 *** | 0.031 | 0.60 *** | 0.048 | |
AGB | Group 1 | ntree = 8, mtry = 21 | 0.96 *** | 0.108 | 0.82 *** | 0.194 |
Group 2 | ntree = 22, mtry = 8 | 0.90 *** | 0.119 | 0.51 *** | 0.313 | |
Total | ntree = 9, mtry = 8 | 0.97 *** | 0.073 | 0.80 *** | 0.137 | |
SPAD value | Group 1 | ntree = 2, mtry = 11 | 0.93 *** | 1.628 | 0.68 *** | 2.192 |
Group 2 | ntree = 25, mtry = 3 | 0.90 *** | 2.545 | 0.45 ** | 4.601 | |
Total | ntree = 2, mtry = 6 | 0.97 *** | 0.777 | 0.74 *** | 1.544 |
Variables | Best Indices | Parameters | Training | Validation | ||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
LAI | IPVI1, RDVI1, DVI1, RDVI2, SR1, OSAVI1 | ntree = 3, mtry = 4 | 0.96 *** | 0.149 | 0.93 *** | 0.161 |
Plant-h | DVI1, NDVI2, SR1 | ntree = 2, mtry = 11 | 0.91 *** | 0.029 | 0.64 *** | 0.044 |
AGB | IPVI2, RDVI2, NDVI1, RDVI1, SR1, DVI1, OSAVI1 | ntree = 4, mtry = 10 | 0.96 *** | 0.083 | 0.81 *** | 0.126 |
SPAD value | SR1, NDVI2, VI1, SLAVI1, SI2, DVI1, OSAVI1, RDVI1, SR2, RDVI2, IPVI2, SI1, IPVI1, NDVI1 | ntree = 2, mtry = 16 | 0.96 *** | 0.874 | 0.75 *** | 1.605 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elmetwalli, A.H.; Mazrou, Y.S.A.; Tyler, A.N.; Hunter, P.D.; Elsherbiny, O.; Yaseen, Z.M.; Elsayed, S. Assessing the Efficiency of Remote Sensing and Machine Learning Algorithms to Quantify Wheat Characteristics in the Nile Delta Region of Egypt. Agriculture 2022, 12, 332. https://doi.org/10.3390/agriculture12030332
Elmetwalli AH, Mazrou YSA, Tyler AN, Hunter PD, Elsherbiny O, Yaseen ZM, Elsayed S. Assessing the Efficiency of Remote Sensing and Machine Learning Algorithms to Quantify Wheat Characteristics in the Nile Delta Region of Egypt. Agriculture. 2022; 12(3):332. https://doi.org/10.3390/agriculture12030332
Chicago/Turabian StyleElmetwalli, Adel H., Yasser S. A. Mazrou, Andrew N. Tyler, Peter D. Hunter, Osama Elsherbiny, Zaher Mundher Yaseen, and Salah Elsayed. 2022. "Assessing the Efficiency of Remote Sensing and Machine Learning Algorithms to Quantify Wheat Characteristics in the Nile Delta Region of Egypt" Agriculture 12, no. 3: 332. https://doi.org/10.3390/agriculture12030332
APA StyleElmetwalli, A. H., Mazrou, Y. S. A., Tyler, A. N., Hunter, P. D., Elsherbiny, O., Yaseen, Z. M., & Elsayed, S. (2022). Assessing the Efficiency of Remote Sensing and Machine Learning Algorithms to Quantify Wheat Characteristics in the Nile Delta Region of Egypt. Agriculture, 12(3), 332. https://doi.org/10.3390/agriculture12030332