Effect of the Time of Herbicide Application and the Properties of the Spray Solution on the Efficacy of Weed Control in Maize (Zea mays L.) Cultivation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, J.-K.; Moon, Y.-S. Corn Starch: Quality and Quantity Improvement for Industrial Uses. Plants 2022, 11, 92. [Google Scholar] [CrossRef]
- Tomkowiak, A.; Bocianowski, J.; Wolko, Ł.; Adamczyk, J.; Mikołajczyk, S.; Kowalczewski, P.Ł. Identification of Markers Associated with Yield Traits and Morphological Features in Maize (Zea mays L.). Plants 2019, 8, 330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piechota, T.; Zbytek, Z.; Kowalski, M. Effect of strip tillage and mechanical weeding on yield of silage maize planted after winter cover crop. J. Res. Appl. Agric. Eng. 2016, 61, 120–123. [Google Scholar]
- Szulc, P.; Waligóra, H.; Michaliski, T.; Rybus-Zając, M.; Olejarski, P. Efficiency of nitrogen fertilization based on the fertilizer application method and type of maize cultivar (Zea mays L.). Plant Soil Environ. 2016, 62, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Lagogianni, C.S.; Tsitsigiannis, D.I. Effective chemical management for prevention of aflatoxins in maize. Phytopathol. Mediterr. 2018, 57, 186–197. [Google Scholar]
- Klopfenstein, T.J.; Erickson, G.E.; Berger, L.L. Maize is a critically important source of food, feed, energy and forage in the USA. Field Crop. Res. 2013, 153, 5–11. [Google Scholar] [CrossRef]
- Chassot, A.; Stamp, P.; Richner, W. Root distribution and morphology of maize seedlings as affected by tillage and fertilizer placement. Plant Soil 2001, 231, 123–135. [Google Scholar] [CrossRef]
- Iqbal, S.; Tahir, S.; Dass, A.; Bhat, M.A.; Rashid, Z. Bio-efficacy of Pre-emergent Herbicides for Weed Control in Maize: A Review on Weed Dynamics Evaluation. J. Exp. Agric. Int. 2020, 42, 13–23. [Google Scholar] [CrossRef]
- Shrestha, J.; Timsina, K.P.; Subedi, S.; Pokhrel, D.; Chaudhary, A. Sustainable Weed Management in Maize (Zea mays L.) Production: A Review in Perspective of Southern Asia. Turk. J. Weed Sci. 2019, 22, 133–143. [Google Scholar]
- Fried, G.; Chauvel, B.; Munoz, F.; Reboud, X. Which Traits Make Weeds More Successful in Maize Crops? Insights from a Three-Decade Monitoring in France. Plants 2020, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Tityanov, M.; Tonev, T.; Rankova, Z.; Moskova, C.; Mitkov, A.; Yanev, M.; Neshev, N.; Velinova, E. Influence of the application time on the herbicides efficacy against the weeds in maize (Zea mays L.). Sci. Pap. Ser. A Agron. 2020, LXIII, 221–225. [Google Scholar]
- Abdallah, I.S.; Atia, M.A.M.; Nasrallah, A.K.; El-Beltagi, H.S.; Kabil, F.F.; El-Mogy, M.M.; Abdeldaym, E.A. Effect of New Pre-Emergence Herbicides on Quality and Yield of Potato and Its Associated Weeds. Sustainability 2021, 13, 9796. [Google Scholar] [CrossRef]
- Loux, M.M.; Doohan, D.; Dobbels, A.F.; Johnson, W.G.; Young, B.G.; Legleiter, T.R.; Hager, A. Weed Control Guide for Ohio, Indiana and Illinois; Ext. Publ. WS16. Bull. 789/IL15; Ohio State University: Columbus, OH, USA, 2016; p. 5. Available online: https://farmdoc.illinois.edu/wp-content/uploads/2014/12/2015-Weed-Control-Guide.pdf (accessed on 17 January 2022).
- Dewar, A.M. Weed control in glyphosate-tolerant maize in Europe. Pest Manag. Sci. 2009, 65, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
- Sarabi, V.; Ghanbari, A.; Mohassel, M.H.R.; Mahallati, M.N.; Rastgoo, M. Evaluation of dicotyledonous weeds control with some post-emergence herbicides in maize (Zea mays L.) in Iran. Int. J. Plant Prod. 2014, 8, 19–32. [Google Scholar]
- Gołębiowska, H.; Rola, H. The assessment of grain quality of maize cultivars depending on the way and term of herbicides application. Pol. J. Agron. 2010, 2, 11–17. [Google Scholar]
- Kierzek, R.; Paradowski, A.; Krzawczyk, R. Efficacy of weed control in maize (Zea mays L.) depending on the date and method of herbicide application. Acta Sci. Pol. Agric. 2011, 10, 57–73. [Google Scholar]
- Idziak, R.; Woźnica, Z. Efficiency assessment of limited doses of herbicide mixtures applied with adjuvants in maize protection. Acta Sci. Pol. Agric. 2010, 9, 17–28. [Google Scholar]
- Busi, R.; Girotto, M.; Powles, S.B. Response to low-dose herbicide selection in self-pollinated Avena fatua. Pest Manag. Sci. 2015, 72, 603–608. [Google Scholar] [CrossRef]
- Nadeem, M.A.; Tanveer, A.; Abbas, T.; Bashir, F. Possibilities of reducing herbicides doses through narrowed spacing and use of adjuvant in maize (Zea mays L.). Pak. J. Weed Sci. Res. 2016, 22, 543–554. [Google Scholar]
- Barros, J.C.; Basch, G.; Calado, J.G.; Carvalho, M. Reduced doses of herbicides to control weeds in barley crops under temperate climate conditions. Rev. Bras. Cienc. Agrárias 2011, 6, 197–202. [Google Scholar]
- Penner, D. Activator Adjuvants. Weed Technol. 2000, 14, 785–791. [Google Scholar] [CrossRef]
- Forouzesh, A.; Zand, E.; Soufizadeh, S.; Foroushani, S.S. Classification of herbicides according to chemical family for weed resistance management strategies—An update. Weed Res. 2015, 55, 334–358. [Google Scholar] [CrossRef]
- Liu, X.; Bi, B.; Xu, X.; Li, B.; Tian, S.; Wang, J.; Zhang, H.; Wang, G.; Han, Y.; McElroy, J.S. Rapid identification of a candidate nicosulfuron sensitivity gene (Nss) in maize (Zea mays L.) via combining bulked segregant analysis and RNA-seq. Theor. Appl. Genet. 2019, 132, 1351–1361. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, Z.D.; Norsworthy, J.K.; Barber, L.T.; Scott, R.C. Residual Activity of Thiencarbazone-Methyl Compared to Common Residual Herbicides in Soybean. In Arkansas Soybean Research Studies; Arkansas Agricultural Experiment Station Research Series 2016; Ross, J., Ed.; Arkansas Agricultural Experiment Station: Fayetteville, NC, USA, 2018; pp. 73–75. [Google Scholar]
- Serim, A.T.; Maden, S. Soil persistence of tritosulfuron+ dicamba in the central Anatolia region in Turkey. In International Symposium: Current Trends in Plant Protection-Proceedings; Institute for Plant Protection and Environment: Belgrade, Serbia, 2012. [Google Scholar]
- Chakraborty, M.; Das, R.; Mondal, S.K. Study of Acetolactate Synthase and its Mechanism of Inhibition by Sulfonylurea Active Ingredients: Amidosulfuron, Nicosulfuron, Cyclosulfuron–In-silico Approach. IJCAES 2010, 1, 7–46. [Google Scholar] [CrossRef]
- Brown, H.M. Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides. Pestic. Sci. 1990, 29, 263–281. [Google Scholar] [CrossRef]
- Barroso, A.L.L.; Filho, W.C.F.; Menezes, C.C.E.; Dan, H.A.; Dan, L.G.M.; Filho, L.C.M. Selectivity of nicosulfuron and atrazine on different corn hybrids. Comun. Sci. 2012, 3, 255–262. [Google Scholar]
- EURL-SRM-Analytical Observations Report. Analysis of the Tritosulfuron Metabolite AMTT by QuEChERS Method Using LC-MS/MS. Version 1 (Last Update: 30.03.2017); EU Reference Laboratory for Pesticides Requiring Single Residue Methods CVUA Stuttgart, Schaflandstr: Fellbach, Germany, 2017.
- Leonie, W.L.; Krähmer, H.; Santel, H.-J.; Claupein, W.; Gerhards, R. Thiencarbazone-Methyl Efficacy, Absorption, Translocation, and Metabolism in Vining Weed Species. Weed Sci. 2014, 62, 512–519. [Google Scholar] [CrossRef]
- Santel, H.-J. Thiencarbazone-methyl (TCM) and Cyprosulfamide (CSA)–A new herbicide and a new safener for use in corn. Jul. -Kühn-Archiv. 2012, 2, 499–505. [Google Scholar]
- Tracchi, G.; Arcangeli, G.; Boebel, A.; Campani, E.; Cauzzi, D.; Gualco, A.; Cantoni, A. Thiencarbazone-methyl (Adengo®), nuovo erbicida di pre e post emergenza del mais. In Giornate Fitopatologiche 2010, Cervia (RA), Italia, 9–12 Marzo 2010. Atti, Volume Primo; Università di Bologna: Bologna, Italy, 2010; pp. 339–346. [Google Scholar]
- Werle, R.; Oliveira, M.C.; Jhala, A.J.; Proctor, C.A.; Rees, J.; Klein, R. Survey of Nebraska Farmers’ Adoption of Dicamba-Resistant Soybean Technology and Dicamba Off-Target Movement. Weed Technol. 2018, 32, 754–761. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Huang, Y.; Reddy, K.N.; Wang, B. Assessing crop damage fromdicamba on non-dicamba-tolerant soybean by hyperspectral imaging through machine learning. Pest Manag. Sci. 2019, 75, 3260–3272. [Google Scholar] [CrossRef]
- Pettinga, D.J.; Ou, J.; Patterson, E.L.; Jugulam, M.; Westra, P.; Gaines, T.A. Increased chalcone synthase (CHS) expression is associated with dicamba resistance in Kochia scoparia. Pest Manag. Sci. 2018, 74, 2306–2315. [Google Scholar] [CrossRef] [PubMed]
- Todd, O.E.; Figueiredo, M.R.A.; Morran, S.; Soni, N.; Preston, C.; Kubeš, M.F.; Napier, R.; Gaines, T.A. Hide details Synthetic auxin herbicides: Finding the lock and key to weed resistance. Plant Sci. 2020, 300, 110631. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, K. Auxin herbicides: Current status of mechanism and mode of action. Pest Manag. Sci. 2010, 66, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Roesler, G.D.; Jonck, L.C.G.; Silva, R.P.; Jeronimo, A.V.; Hirata, A.C.S.; Monquero, P.A. Decontamination methods of tanks to spray 2,4-D and dicamba and the effects of these herbicides on citrus and vegetable species. AJCS 2020, 14, 1302–1309. [Google Scholar]
- Zheng, B.; Yan, Y.; Fu, C.; Huang, G.; Zhao, L.; Chein, Q.; Qu, R.; Yang, G. Discovery of triketone-quinoxaline hybrids as potent HPPD inhibitors using structure-based drug design. Front. Agric. Sci. Eng. 2021, 9, 133–145. [Google Scholar] [CrossRef]
- Zhao, N.; Zuo, L.; Li, W.; Guo, W.; Liu, W.; Wang, J. Greenhouse and field evaluation of isoxaflutole for weed control in maize in China. Sci. Rep. 2017, 7, 12690. [Google Scholar] [CrossRef] [Green Version]
- Sims, G.K.; Taylor-Lovell, S.; Tarr, G.; Maskel, S. Role of sorption and degradation in the herbicidal function of isoxaflutole. Pest Manag. Sci. 2009, 65, 805–810. [Google Scholar] [CrossRef]
- O’Brien, S.R.; Davis, A.S.; Riechers, D.E. Quantifying Resistance to Isoxaflutole and Mesotrione and Investigating Their Interactions with Metribuzin POST in Waterhemp (Amaranthus tuberculatus). Weed Sci. 2018, 66, 586–594. [Google Scholar] [CrossRef]
- Duke, S.O.; Pan, Z.; Bajsa-Hirschel, J. Proving the Mode of Action of Phytotoxic Phytochemicals. Plants 2020, 9, 1756. [Google Scholar] [CrossRef]
- Mitchell, G.; Bartlett, D.W.; Fraser, T.E.; Hawkes, T.R.; Holt, D.C.; Townson, J.K.; Wichert, R.A. Mesotrione: A new selective herbicide for use in maize. Pest Manag. Sci. 2001, 57, 120–128. [Google Scholar] [CrossRef]
- Williams, M.M., II; Pataky, J.K. Factors Affecting Differential Sensitivity of Sweet Corn to HPPD-Inhibiting Herbicides. Weed Sci. 2010, 58, 289–294. [Google Scholar] [CrossRef]
- Varanasi, A.; Vara Prasad, P.V.; Jugulam, M. Impact of climate change factors on weeds and herbicide efficacy. Adv. Agron. 2016, 135, 107–146. [Google Scholar]
- Kudsk, P. Optimising herbicide dose: A straightforward approach to reduce the risk of side effects of herbicides. Environmentalist 2008, 28, 49–55. [Google Scholar] [CrossRef]
- Jursík, M.; Soukup, J.; Holec, J.; Andr, J.; Hamouzová, K. Efficacy and Selectivity of Pre-emergent Sunflower Herbicides under Different Soil Moisture Conditions. Plant Protect. Sci. 2015, 51, 214–222. [Google Scholar] [CrossRef] [Green Version]
- Polli, E.G.; Alves, G.S.; de Oliveira, J.V.; Kruger, G.R. Physical–Chemical Properties, Droplet Size, and Efficacy of Dicamba Plus Glyphosate Tank Mixture Influenced by Adjuvants. Agronomy 2021, 11, 1321. [Google Scholar] [CrossRef]
- Chahal, G.S.; Jordan, D.L.; Burton, J.D.; Danehower, D.; York, A.C.; Eure, P.M.; Clewis, B. Influence of water qualityand coapplied agrochemicals on efficacy of glyphosate. Weed Technol. 2010, 26, 167–176. [Google Scholar] [CrossRef]
- Kuziemska, B.; Klej, P.; Trebicka, J.; Popek, M. Prawne aspekty kontroli jakości wody (Legal aspects of water quality control). Zesz. Nauk. Uniw. Przyr. -Humanist. Siedlcach Ser. Rol. 2016, 4, 23–37. [Google Scholar]
- Fazullin, D.D.; Fazylova, R.D. Purification of water from heavy metal ions by a dynamic membrane with a surface layer of cellulose acetate. IOP Conf. Ser. Earth Environ. Sci. 2020, 421, 062032. [Google Scholar] [CrossRef]
- Radzka, E.; Koc, G.; Rak, J. Ocena jakości wody pitnej w powiecie siedleckim. Przegląd Nauk. Inżynieria Kształtowanie Sr. 2008, 3, 78–86. [Google Scholar]
- Baillo, E.H.; Kimotho, R.N.; Zhang, Z.; Xu, P. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes 2019, 10, 771. [Google Scholar] [CrossRef] [Green Version]
- Dass, A.; Shekhawat, K.; Choudhary, A.K.; Sepat, S.; Rathore, S.S.; Mahajan, G.; Chauhan, B.S. Weed management in rice using crop competition—A review. Crop Prot. 2017, 95, 45–52. [Google Scholar] [CrossRef]
- Kowalczewski, P.L.; Radzikowska, D.; Ivanišová, E.; Szwengiel, A.; Kačániová, M.; Sawinska, Z. Influence of Abiotic Stress Factors on the Antioxidant Properties and Polyphenols Profile Composition of Green Barley (Hordeum vulgare L.). Int. J. Mol. Sci. 2020, 21, 397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zai, X.M.; Zhu, S.N.; Qin, P.; Wang, X.Y.; Che, L.; Luo, F.X. Effect of Glomus mosseae on chlorophyll content, chlorophyll fluorescence parameters, and chloroplast ultrastructure of beach plum (Prunus maritima) under NaCl stress. Photosynthetica 2012, 50, 323–328. [Google Scholar] [CrossRef]
- Skowera, B.; Puła, J. Skrajne warunki pluwiotermiczne w okresie wiosennym na obszarze Polski w latach 1971–2000 (Pluviometric extreme conditions in spring season in Poland in the years 1971–2000). Acta Agrophys. 2004, 3, 171–177. [Google Scholar]
- Matuszkiewicz, W. Przewodnik do oznaczania zbiorowisk roślinnych Polski. Wydaw. Nauk. PWN 2008, 536, 540. [Google Scholar]
- Pawlonka, Z.; Rymuza, K.; Starczewski, K.; Bombik, A. Biodiversity of segetal weed communities when chlorsulfuron-based weed control is being used on continuous winter wheatJ. Plant Prot. Res. 2014, 54, 300–305. [Google Scholar] [CrossRef]
- Iglesias-Rios, R.; Mazzoni, R. Measuring diversity: Looking for processes that generate diversity. Nat. Conserv. 2014, 12, 156–161. [Google Scholar] [CrossRef] [Green Version]
- Janicka, M.; Kutkowska, A.; Paderewski, J. Diversity of Segetal Flora in Salix viminalis L. Crops Established on Former Arable and Fallow Lands in Central Poland. Agriculture 2021, 11, 25. [Google Scholar] [CrossRef]
- Kędziora, A.; Kujawa, K.; Gołdyn, H.; Karg, J.; Bernacki, Z.; Kujawa, A.; Bałazy, S.; Oleszczuk, M.; Rybacki, M.; Arczyńska-Chudy, E.; et al. Impact of Land-Use and Climate on Biodiversity in an Agricultural Landscape, Biodiversity Enrichment in a Diverse World, Gbolagade Akeem Lameed; IntechOpen: London, UK, 2012; Available online: https://www.intechopen.com/chapters/38671 (accessed on 10 January 2022).
- Gawęda, D.; Cierpiała, R.; Harasim, E.; Haliniarz, M. Effect of tillage systems on yield, weed infestation and seed quality elements of soybean. Acta Agrophys. 2016, 23, 175–187. [Google Scholar]
- Płaza, A.; Ceglarek, F.; Królikowska, A.; Próchnicka, M. The follow-up action of undersown crops and spring barley straw on yielding and structure elements of yield of winter triticale. Folia Pomer. Univ. Technol. Stetin. 2010, 276, 31–38. [Google Scholar]
- Matuszkiewicz, W. Przewodnik do Oznaczania Zbiorowisk Roślinnych Polski. Vademecum Geobotanicum; PWN: Warszaw, Poland, 2001; pp. 158–187. [Google Scholar]
- Nedeljković, D.; Knežević, S.; Božić, D.; Vrbničanin, S. Critical Time for Weed Removal in Corn as Influenced by Planting Pattern and PRE Herbicides. Agriculture 2021, 11, 587. [Google Scholar] [CrossRef]
- Amosun, J.O.; Aluko, O.A.; Ilem, D.O. Comparative effect of weed control methods on Mexican sunflower (Tithonia diversifolia) in maize. Afr. J. Plant Sci. 2021, 15, 115–122. [Google Scholar]
- Landau, C.A.; Hager, A.G.; Tranel, P.J.; Davis, A.S.; Martin, N.F.; Williams, M.M., II. Future efficacy of pre-emergence herbicides in corn (Zea mays) is threatened by more variable weather. Pest Manag. Sci. 2021, 77, 2683–2689. [Google Scholar] [CrossRef] [PubMed]
- Ivaschenko, O.; Ivaschenko, O. Physiological role of epicuticular waxes for plants and their practical significance. Visnyk Agrar. Nauk. 2019, 97, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Hatterman-Valenti, H.; Pitty, A.; Owen, M. Environmental effects on velvetleaf (Abutilon theophrasti) epicuticular wax deposition and herbicide absorption. Weed Sci. 2011, 59, 14–21. [Google Scholar] [CrossRef]
- Kaya, R. Possibilities of reducing herbicide use in weed control in sugar beet production. Anadolu J. Agr. Sci. 2012, 27, 133–139. [Google Scholar] [CrossRef]
- Wendt, M.J.; Wegener, M.; Ladewig, E.; Märländer, B. Efficacy of foramsulfuron + thiencarbazone-methyl towards different development stages of weed species in sugar beet cultivation. Sugar Ind. 2016, 141, 436–445. [Google Scholar] [CrossRef]
- Prandecki, K.; Wrzaszcz, W.; Zieliński, M. Environmental and Climate Challenges to Agriculture in Poland in the Context of Objectives Adopted in the European Green Deal Strategy. Sustainability 2021, 13, 10318. [Google Scholar] [CrossRef]
- Rybacki, P.; Przygodziński, P.; Osuch, A.; Blecharczyk, A.; Walkowiak, R.; Osuch, E.; Kowalik, I. The Technology of Precise Application of Herbicides in Onion Field Cultivation. Agriculture 2021, 11, 577. [Google Scholar] [CrossRef]
- Cioni, F.; Maines, G. Weed control in sugarbeet. Sugar Tech 2010, 12, 243–255. [Google Scholar] [CrossRef]
- Devkota, P.; Johnson, W.G. Glufosinate efficacy as influenced by carrier water pH, hardness, foliar fertilizer, and ammonium sulfate. Weed Technol. 2016, 30, 848–859. [Google Scholar] [CrossRef]
- Roskamp, J.M.; Turco, R.F.; Bischoff, M.; Johnson, W.G. The Influence of Carrier Water pH and Hardness. Weed Technol. 2013, 27, 527–533. [Google Scholar] [CrossRef] [Green Version]
- De Ruiter, H.; Downer, R.A.; Uffing, A.J.M.; Ebert, T.A.; Hall, F.R. The influence of inorganic cations on glyphosate activity-Review and Perspectives. In Pesticide Formulations and Application Systems: A New Century for Agricultural Formulations; Mueninghoff, J.C., Viets, A.K., Downer, R.A., Eds.; American Society for Testing and Materials: West Conshohocken, PA, USA, 2002; Volume 21, pp. 23–36. [Google Scholar]
- Patton, A.J.; Weisenberger, D.V.; Johnson, W.G. Divalent cations in spray water influence 2,4-D efficacy on dandelion (Taraxacum officinale) and dicotyledonous plantain (Plantago major). Weed Technol. 2016, 30, 431–440. [Google Scholar] [CrossRef]
- Thelen, K.D.; Jackson, E.P.; Penner, D. Utility of nuclear magnetic resonance for determining the molecular influence of citric acid and an organosilicone adjuvant on glyphosate activity. Weed Sci. 1995, 43, 566–571. [Google Scholar] [CrossRef]
- Dayan, F.E.; de Zaccaro, M.L. Chlorophyll fluorescence as a marker for herbicide mechanisms of action. Pestic. Biochem. Phys. 2012, 102, 189–197. [Google Scholar] [CrossRef]
- Sobiech, Ł.; Grzanka, M.; Kurasiak-Popowska, D.; Radzikowska, D. Phytotoxic Effect of Herbicides on Various Camelina [Camelina sativa (L.) Crantz] Genotypes and Plant Chlorophyll Fluorescence. Agriculture 2020, 10, 185. [Google Scholar] [CrossRef]
- Weber, J.F.; Kunz, C.; Peteinatos, G.G.; Santel, H.J.; Gerhards, R. Utilization of Chlorophyll Fluorescence Imaging Technology to Detect Plant Injury by Herbicides in Sugar Beet and Soybean. Weed Technol. 2017, 31, 523–535. [Google Scholar] [CrossRef]
- Robinson, M.A.; Letarte, J.; Cowbrough, M.J.; Sikkema, P.H.; Tardif, F.J. Winter wheat (Triticum aestivum L.) response to herbicides as affected by application timing and temperature. Can. J. Plant Sci. 2015, 95, 325–333. [Google Scholar] [CrossRef]
- Lindquist, J.L. Mechanisms of crop loss due to weed competition. In Biotic Stress and Yield Loss; Peterson, R.K.D., Higley, L.G., Eds.; CRC Press: Boca Raton, FL, USA, 2001; pp. 233–253. [Google Scholar]
- Ronay, I.; Ephrath, J.E.; Eizenberg, H.; Blumberg, D.G.; Maman, S. Hyperspectral Reflectance and Indices for Characterizing the Dynamics of Crop–Weed Competition for Water. Remote Sens. 2021, 13, 513. [Google Scholar] [CrossRef]
- Qasem, J.R.; Foy, C.L. Weed allelopathy, its ecological impacts and future prospects: A review. J. Crop Prod. 2001, 4, 43–92. [Google Scholar] [CrossRef]
- Efeoğlu, B.; Ekmekçi, Y.; Çiçek, N. Physiological responses of three maize cultivars to drought stress and recovery. S. Afr. J. Bot. 2009, 75, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.F.; Li, S.Q. Effects of the spatial coupling of water and fertilizer on the chlorophyll fluorescence parameters of winter wheat leaves. Agric. Sci. Chin. 2011, 10, 1923–1931. [Google Scholar] [CrossRef]
- Cerrudo, D.; Page, E.R.; Tollenaar, M.; Stewart, G.; Swanton, C.J. Mechanisms of Yield Loss in Maize Caused by Weed Competition. Weed Sci. 2012, 60, 225–232. [Google Scholar] [CrossRef]
- Gantoli, G.; Ayala, V.R.; Gerhards, R. Determination of the critical period of weed control in corn. Weed Technol. 2013, 27, 63–71. [Google Scholar] [CrossRef]
K-Index Classes | Values |
Extremely dry | k ≤ 0.4 |
Very dry | 0.4 < k ≤ 0.7 |
Dry | 0.7 < k ≤ 1.0 |
Slightly dry | 1.0 < k ≤ 1.3 |
Optimum | 1.3 < k ≤ 1.6 |
Slightly humid | 1.6 < k ≤ 2.0 |
Humid | 2.0 < k ≤ 2.5 |
Very humid | 2.5 < k ≤ 3.0 |
Extremely humid | k > 3.0 |
Time of Herbicide Application | Date | Temperature | Time to the First Rainfall AA | Rainfall | ||
---|---|---|---|---|---|---|
1 Week BA | The First Rainfall AA | 1 Week AA | ||||
[°C] | [mm] | |||||
2019 | ||||||
A | 25 April 2019 | 17.8 | 3 days | 0.1 | 4.4 | 7.1 |
B | 21 May 2019 | 20.6 | 9 h | 28.0 | 9.4 | 9.4 |
C | 30 May 2019 | 12.8 | 2 days | 17.9 | 0.1 | 0.1 |
2020 | ||||||
A | 27 April 2020 | 18.8 | 2 days | 3.4 | 1.2 | 6.3 |
B | 19 May 2020 | 14.4 | 4 days | 0.0 | 8.4 | 17.0 |
C | 1 June 2020 | 14.8 | 1 day | 10.3 | 9.0 | 11.8 |
2021 | ||||||
A | 28 April 2021 | 12.0 | 1 day | 0.0 | 0.6 | 26.9 |
B | 24 May 2021 | 18.1 | 12 h | 4.5 | 0.1 | 17.0 |
C | 2 June 2021 | 23.4 | 1 day | 22.7 | 0.1 | 0.1 |
Decade | Months | |||||
---|---|---|---|---|---|---|
IV | V | VI | VII | VIII | IX | |
2019 | ||||||
I | 0.0 | 1.4 | 0.0 | 0.3 | 0.6 | 1.7 |
II | 0.6 | 3.4 | 0.1 | 1.4 | 0.5 | 0.6 |
III | 0.5 | 1.5 | 0.3 | 1.3 | 0.2 | 0.6 |
monthly | 0.4 | 2.1 | 0.1 | 1.1 | 0.4 | 1.5 |
2020 | ||||||
I | 0.0 | 1.2 | 0.9 | 2.3 | 0.4 | 0.8 |
II | 0.2 | 1.2 | 0.3 | 0.8 | 2.8 | 0.0 |
III | 0.4 | 1.4 | 1.3 | 0.0 | 2.3 | 2.0 |
monthly | 0.2 | 1.3 | 0.8 | 1.0 | 1.8 | 0.9 |
2021 | ||||||
I | 1.7 | 4.0 | 0.5 | 1.0 | 1.0 | 0.0 |
II | 3.1 | 1.1 | 0.5 | 0.3 | 0.6 | 1.0 |
III | 0.1 | 1.4 | 0.8 | 0.0 | 3.4 | 1.2 |
monthly | 1.6 | 1.9 | 0.6 | 0.4 | 1.6 | 0.7 |
Species | 2019 | 2020 | 2021 |
---|---|---|---|
Species specific to the (ChAll.) Polygono-Chenopodion Alliance | |||
Fumaria officinalis | I79.4 | ||
Lamium purpureum | II63.3 | ||
Species specific to the (ChO.) Polygono-Chenopodietalia Order | |||
Capsella bursa-pastoris | IV85.4 | III70.1 | III207.6 |
Chenopodium album | V7491.1 | V5917.1 | V5492.0 |
Echinochloa crus-galli | V2030.7 | III184.7 | III250.8 |
Solanum nigrum | III65.7 | ||
Species specific to the (ChO.) Centauretalia cyani Order | |||
Anthemis arvensis | III52.9 | ||
Papaver rhoeas | II94.9 | ||
Species specific to the (ChCl.) Stellarietea mediae Class | |||
Anchusa arvensis | IV192.0 | II26.9 | |
Polygonum aviculare | III59.4 | IV338.5 | IV1779.9 |
Viola arvensis | II184.7 | ||
Species specific to the (ChSCl.) Galio-Urticenea Class | |||
Galium aparine | II260.0 | ||
Other species | |||
Fallopia convolvulus | IV248.6 | V2694.6 | V2026.9 |
Polygonum lapathifolium ssp. brittingeri | II84.7 |
No. | Treatment | Time of Herbicide Application | Year | ||
---|---|---|---|---|---|
2019 | 2020 | 2021 | |||
1 | Untreated check | - | 124.7 (0.0%) | 85.4 (0.0%) | 137.9 (0.0%) |
2 | N40 + T50 + D100 | C | 12.9 ab (89.7%) | 29.6 abc (65.3%) | 40.7 ab (70.5%) |
3 | N40 + T50 + D100 + iron | C | 15.4 a (87.7%) | 44.3 a (48.1%) | 47.5 a (65.5%) |
4 | N40 + T50 + D100 + iron + CA | C | 8.9 abc (92.8%) | 34.3 ab (59.8%) | 41.8 ab (69.7%) |
5 | N20 + T25 + D50 + BT | B; C | 4.3 c (96.6%) | 27.9 bc (67.3%) | 23.6 bcd (82.9%) |
6 | N20 + T25 + D50 + BT + iron | B; C | 5.4 c (95.7%) | 29.0 bc (66.1%) | 41.8 ab (69.7%) |
7 | N20 + T25 + D50 + BT + iron + CA | B; C | 9.3 abc (92.5%) | 24.3 bc (71.5%) | 31.8 abc (77.0%) |
8 | T29 + I74 | A | 2.5 c (98.0%) | 15.7 c (81.6%) | 5.0 d (96.4%) |
9 | T29 + I74 + iron | A | 2.9 c (97.7%) | 16.1 c (81.2%) | 9.6 cd (93.0%) |
10 | T29 + I74 + iron + CA | A | 2.2 c (98.3%) | 15.0 c (82.4%) | 8.6 d (93.8%) |
No. | Treatment | Time of Herbicide Application | CHEAL | ECHCG | ||||
---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2021 | 2019 | 2020 | 2021 | |||
1 | Untreated check | - | 0.0 f | 0.0 f | 0.0 f | 0.0 e | 0.0 f | 0.0 f |
2 | N40 + T50 + D100 | C | 86.3 d | 76.3 d | 83.8 d | 81.3 cd | 80.0 d | 78.8 d |
3 | N40 + T50 + D100 + iron | C | 78.8 e | 70.0 e | 77.5 e | 78.8 d | 71.3 e | 73.8 e |
4 | N40 + T50 + D100 + iron + CA | C | 90.0 cd | 82.5 c | 88.8 c | 82.5 cd | 82.5 d | 80.0 cd |
5 | N20 + T25 + D50 + BT | B; C | 98.8 a | 90.0 ab | 97.5 a | 93.8 ab | 88.8 bc | 92.5 ab |
6 | N20 + T25 + D50 + BT + iron | B; C | 86.3 d | 81.3 c | 83.8 d | 85.0 c | 81.3 d | 83.8 c |
7 | N20 + T25 + D50 + BT + iron + CA | B; C | 97.5 a | 88.8 ab | 98.8 a | 93.8 ab | 90.0 b | 92.5 ab |
8 | T29 + I74 | A | 91.3 bc | 90.0 ab | 88.8 c | 97.5 a | 91.3 ab | 95.0 a |
9 | T29 + I74 + iron | A | 81.3 e | 87.5 b | 78.8 e | 91.3 b | 86.3 c | 88.8 b |
10 | T29 + I74 + iron + CA | A | 95.0 ab | 91.3 a | 93.8 b | 96.3 b | 93.8 a | 95.0 a |
No. | Treatment | Time of Herbicide Application | Plant Height | Grain Yield | ||||
---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2021 | 2019 | 2020 | 2021 | |||
[cm] | [t × ha−1] | |||||||
1 | Untreated check | - | 78.8 b | 107.8 d | 72.9 e | 0.7 d | 0.3 e | 0.0 c |
2 | N40 + T50 + D100 | C | 167.5 a | 177.2 c | 196.8 d | 9.6 abc | 4.1 cd | 9.3 b |
3 | N40 + T50 + D100 + iron | C | 163.8 a | 190.9 c | 198.1 cd | 9.2 bc | 4.0 d | 9.3 b |
4 | N40 + T50 + D100 + iron + CA | C | 161.1 a | 200.4 bc | 201.3 bcd | 10.0 ab | 5.2 bc | 9.5 b |
5 | N20 + T25 + D50 + BT | B; C | 161.2 a | 224.0 ab | 208.6 abc | 10.1 ab | 6.2 ab | 10.2 ab |
6 | N20 + T25 + D50 + BT + iron | B; C | 163.2 a | 227.1 a | 209.5 ab | 9.7 abc | 6.5 a | 9.9 ab |
7 | N20 + T25 + D50 + BT + iron + CA | B; C | 160.8 a | 231.9 a | 206.6 abcd | 10.5 a | 6.6 a | 9.9 ab |
8 | T29 + I74 | A | 159.8 a | 231.2 a | 210.8 ab | 9.4 bc | 6.4 a | 10.6 ab |
9 | T29 + I74 + iron | A | 160.4 a | 228.4 a | 213.7 a | 8.9 c | 6.2 ab | 10.3 ab |
10 | T29 + I74 + iron + CA | A | 159.0 a | 224.2 ab | 212.1 ab | 10.1 ab | 6.8 a | 11.3 a |
No. | Treatment | Time of Herbicide Application | Hectolitre Weight | WTG | ||||
---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2021 | 2019 | 2020 | 2021 | |||
[kg × hl−1] | [g] | |||||||
1 | Untreated check | - | 35.4 b | 34.0 d | 0.00 b | 272.4 b | 214.7 b | 0.0c |
2 | N40 + T50 + D100 | C | 71.7 a | 66.5 bc | 66.8 a | 315.1 a | 243.1 a | 321.1 ab |
3 | N40 + T50 + D100 + iron | C | 71.6 a | 65.2 c | 66.9 a | 307.9 a | 245.5 a | 319.3 b |
4 | N40 + T50 + D100 + iron + CA | C | 72.1 a | 66.2 c | 66.5 a | 309.0 a | 240.2 a | 318.6 b |
5 | N20 + T25 + D50 + BT | B; C | 70.3 a | 67.5 abc | 66.4 a | 313.0 a | 244.7 a | 324.5 ab |
6 | N20 + T25 + D50 + BT + iron | B; C | 72.0 a | 69.2 ab | 67.6 a | 311.5 a | 237.8 a | 333.6 ab |
7 | N20 + T25 + D50 + BT + iron + CA | B; C | 71.3 a | 70.1 a | 66.6 a | 314.9 a | 245.3 a | 327.3 ab |
8 | T29 + I74 | A | 72.4 a | 68.3 ab | 66.0 a | 307.0 a | 246.5 a | 337.0 a |
9 | T29 + I74 + iron | A | 71.4 a | 66.8 bc | 67.0 a | 307.6 a | 239.5 a | 329.2 ab |
10 | T29 + I74 + iron + CA | A | 70.5 a | 70.4 a | 67.3 a | 309.8 a | 241.2 a | 337.3a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzanka, M.; Sobiech, Ł.; Idziak, R.; Skrzypczak, G. Effect of the Time of Herbicide Application and the Properties of the Spray Solution on the Efficacy of Weed Control in Maize (Zea mays L.) Cultivation. Agriculture 2022, 12, 353. https://doi.org/10.3390/agriculture12030353
Grzanka M, Sobiech Ł, Idziak R, Skrzypczak G. Effect of the Time of Herbicide Application and the Properties of the Spray Solution on the Efficacy of Weed Control in Maize (Zea mays L.) Cultivation. Agriculture. 2022; 12(3):353. https://doi.org/10.3390/agriculture12030353
Chicago/Turabian StyleGrzanka, Monika, Łukasz Sobiech, Robert Idziak, and Grzegorz Skrzypczak. 2022. "Effect of the Time of Herbicide Application and the Properties of the Spray Solution on the Efficacy of Weed Control in Maize (Zea mays L.) Cultivation" Agriculture 12, no. 3: 353. https://doi.org/10.3390/agriculture12030353
APA StyleGrzanka, M., Sobiech, Ł., Idziak, R., & Skrzypczak, G. (2022). Effect of the Time of Herbicide Application and the Properties of the Spray Solution on the Efficacy of Weed Control in Maize (Zea mays L.) Cultivation. Agriculture, 12(3), 353. https://doi.org/10.3390/agriculture12030353