Stabilization of Lead-Contaminated Mine Soil Using Natural Waste Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Contaminated Mine Soil Collection
2.2. Stabilizing Agents
2.3. Stabilizing Experiments
2.4. Analyses of Chemical Fractions
2.5. X-ray Powder Diffraction (XRPD) Analysis
2.6. SEM-EDX Analyses
2.7. Physicochemical Analyses
3. Results and Discussion
3.1. Effectiveness of the Stabilization Treatment
3.2. Sequential Extraction Results
3.3. XRPD Analyses
3.4. SEM-EDX Analysess
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, S.L.; Cross, W.H.; Chian, E.S.K.; Lai, J.S.; Giabbai, M.; Hung, C.H. Stabilization and solidification of lead in contaminated soils. J. Hazard. Mater. 1996, 48, 95–110. [Google Scholar] [CrossRef]
- Long, R.; Zhang, X. Treating lead-contaminated soil by stabilization and solidification. Transp. Res. Record. J. Transp. Res. Board 1998, 1615, 72–78. [Google Scholar] [CrossRef]
- Mine Reclamation Corp. 2013 Yearbook of MIRECO Statistics; MIRECO: Seoul, Korea, 2014; p. 242. (In Korean) [Google Scholar]
- Wang, S.Y.; Vipulanandan, C. Leachability of lead from solidified cement-fly ash binders. Cement Concrete Res. 1996, 26, 895–905. [Google Scholar] [CrossRef]
- Li, X.D.; Poon, C.S.; Sun, H.; Lo, I.M.C.; Kirk, D.W. Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste materials. J. Hazard. Mater. 2001, 82, 215–230. [Google Scholar] [CrossRef]
- Moon, D.H.; Dermatas, D.; Menounou, N. Arsenic immobilization by calcium-arsenic precipitates in lime treated soils. Sci. Total Environ. 2004, 330, 171–185. [Google Scholar] [CrossRef]
- Moon, D.H.; Dermatas, D. An evaluation of lead leachability from stabilized/solidified soils under modified semi-dynamic leaching conditions. Eng. Geol. 2006, 85, 67–74. [Google Scholar] [CrossRef]
- Moon, D.H.; Dermatas, D.; Grubb, D.G. The Effectiveness of Quicklime-Based Stabilization/Solidification on Lead (Pb) Containated Soils. In Environmental Geotechnics (5th ICEG); Thomas, H.R., Ed.; Thomas Telford Publishing: London, UK, 2006; Volume 1, pp. 221–228. [Google Scholar]
- Moon, D.H.; Dermatas, D. Arsenic and lead release from fly ash stabilized/solidified soils under modified semi-dynamic leaching conditions. J. Hazard. Mater. 2007, 141, 388–394. [Google Scholar] [CrossRef]
- Qiao, X.C.; Poon, C.S.; Cheeseman, C.R. Investigation into the stabilization/solidification performance of Portland cement through cement clinker phases. J. Hazard. Mater. 2007, 139, 238–243. [Google Scholar] [CrossRef]
- Moon, D.H.; Wazne, M.; Yoon, I.H.; Grubb, D.G. Assessment of cement kiln dust (CKD) for stabilization/solidification (S/S) of arsenic contaminated soils. J. Hazard. Mater. 2008, 159, 512–518. [Google Scholar] [CrossRef]
- Moon, D.H.; Grubb, D.G.; Reilly, T.L. Stabilization/solidification of selenium-impacted soils using Portland cement and cement kiln dust. J. Hazard. Mater. 2009, 168, 944–951. [Google Scholar] [CrossRef]
- Moon, D.H.; Lee, J.R.; Grubb, D.G.; Park, J.-H. An assessment of Portland cement, cement kiln dust and class C fly ash for the immobilization of Zn in contaminated soils. Environ. Earth Sci. 2010, 61, 1745–1750. [Google Scholar] [CrossRef]
- Moon, D.H.; Cheong, K.H.; Khim, J.; Grubb, D.G.; Ko, I. Stabilization of Cu-contaminated army firing range soils using waste oyster shells. Environ. Geochem. Health 2011, 33, 159–166. [Google Scholar] [CrossRef]
- Moon, D.H.; Cheong, K.H.; Koutsospyros, A.; Chang, Y.-Y.; Hyun, S.; Ok, Y.S.; Park, J.-H. Assessment of waste oyster shells and coal mine drainage sludge for the stabilization of As-, Pb-, and Cu-contaminated soil. Environ. Sci. Pollut. Res. 2016, 23, 2362–2370. [Google Scholar] [CrossRef]
- Moon, D.H.; Hwang, I.; Koutsospyros, A.; Cheong, K.H.; Ok, Y.S.; Ji, W.H.; Park, J.-H. Stabilization of lead (Pb) and zinc (Zn) in contaminated rice paddy soil using starfish: A preliminary study. Chemosphere 2018, 190, 459–467. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Hong, C.O.; Lee, C.H.; Lee, D.K.; Kim, P.J. Dynamics of heavy metals in soil amended with oyster shell meal. Korean J. Environ. Agric. 2005, 24, 358–363. [Google Scholar] [CrossRef] [Green Version]
- Moon, D.H.; Park, J.-W.; Chang, Y.-Y.; Ok, Y.S.; Lee, S.S.; Ahmad, M.; Koutsopyros, A.; Park, J.-H.; Baek, K. Immobilization of lead in contaminated firing range soil using biochar. Environ. Sci. Pollut. Res. 2013, 20, 8464–8471. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.E.; Sung, J.K.; Sarkar, B.; Wang, H.; Hashimoto, Y.; Tsang, D.C.W.; Ok, Y.S. Impact of natural and calcined starfish (Asterina pectinifera) on the stabilization of Pb, Zn and As in contaminated agricultural soil. Environ. Geochem. Health 2017, 39, 431–441. [Google Scholar] [CrossRef]
- Uchimiya, M.; Wartelle, L.H.; Lima, I.M.; Klasson, K.T. Sorption of deisopropylatrazine on broiler litter biochars. J. Agric. Food Chem. 2010, 58, 12350–12356. [Google Scholar] [CrossRef]
- Chen, B.; Chen, Z.; Lv, S. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour. Technol. 2011, 102, 716–723. [Google Scholar] [CrossRef]
- Awad, Y.M.; Blagodatskaya, E.; Ok, Y.S.; Kuzyakov, Y. Effects of polyacrylamide, biopolymer and biochar on decomposition of soil organic matter and plants residues as determined by 14C and enzyme activities. Eur. J. Soil Biol. 2012, 48, 1–10. [Google Scholar] [CrossRef]
- Ahmad, M.; Ok, Y.S.; Kim, B.-Y.; Ahn, J.-H.; Lee, Y.H.; Zhang, M.; Moon, D.H.; Al-Wabel, M.I.; Lee, S.S. Impact of soybean stover- and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil. J. Environ. Manag. 2016, 166, 131–139. [Google Scholar] [CrossRef]
- Korea Ministry of Environment. Standard Methods of Soil Sampling and Analysis; Ministry of Environment: Gwacheon, Korea, 2009.
- Ball, D.F. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soil. J. Soil Sci. 1964, 15, 84–92. [Google Scholar] [CrossRef]
- FitzPatrick, E.A. Soils: Their Formation, Classification and Distribution; Longman Science & Technical: London, UK, 1983; p. 353. [Google Scholar]
- MDI. Jade Version 7.1; Material’s Data Inc.: Livermore, CA, USA, 2005. [Google Scholar]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- ICDD. Powder Diffraction file.PDF-2 Database Release; International Centre for Diffraction Data: Newtown Square, PA, USA, 2002. [Google Scholar]
- Ministry of Environment (MOE). The Korean Standard Test (KST) Methods for Soils; Korean Ministry of Environment: Gwachun, Korea, 2010; p. 225. (In Korean)
- USEPA. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd ed.; Method 1311; USEPA: Washington, DC, USA, 1992.
- Ok, Y.S.; Oh, S.E.; Ahmad, M.; Hyun, S.; Kim, K.R.; Moon, D.H.; Lee, S.S.; Lim, K.J.; Jeon, W.T.; Yang, J.E. Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils. Environ. Earth Sci. 2010, 61, 1301–1308. [Google Scholar] [CrossRef]
- Zhong, G.; Liu, Y.; Tang, Y. Oyster shell powder for Pb(II) immobilization in both aquatic and sediment environments. Environ. Geochem. Health 2021, 43, 1891–1902. [Google Scholar] [CrossRef]
- Dermatas, D.; Meng, X. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Eng. Geol. 2003, 70, 377–394. [Google Scholar] [CrossRef]
- Gilchrist, J.D. Extraction Metallurgy, 3rd ed.; Pergamon Press: Oxford, UK, 1989; p. 145. [Google Scholar]
- Moon, D.H.; Wazne, M.; Cheong, K.H.; Chang, Y.-Y.; Baek, K.; Ok, Y.S.; Park, J.-H. Stabilization of As-, Pb-, and Cu-contaminated soil using calcined oyster shells and steel slag. Environ. Sci. Pollut. Res. 2015, 22, 11162–11169. [Google Scholar] [CrossRef]
- Zhao, X.L.; Masaihiko, S. Amelioration of cadmium polluted paddy soils by porous hydrated calcium silicate. Water Air Soil Pollut. 2007, 183, 309–315. [Google Scholar] [CrossRef]
- Ahmad, M.; Hashimoto, Y.; Moon, D.H.; Lee, S.S.; Ok, Y.S. Immobilization of lead in a Korean military shooting range soil using eggshell waste: An integrated mechanistic approach. J. Hazard. Mater. 2012, 209–210, 392–401. [Google Scholar] [CrossRef] [PubMed]
Soil Properties | Contaminated Mine Soil | Korean Warning Standards 1 |
---|---|---|
pH (1:5) | 6.7 | |
Organic matter content (%) 2 | 5.94 | |
CEC (cmolc/kg) | 7.59 | |
EC (dS/m) | 1.86 | |
Composition (%) 3 | ||
Sand | 47.2 | |
Silt | 26.7 | |
Clay | 26.1 | |
Texture 4 | Sandy clay loam | |
Total Pb (mg/kg) | 2800 | 200 |
Major mineral compositions 5 | ||
Quartz, Muscovite | ||
Pyrite, Calcite | ||
Gypsum, Dolomite | ||
Arsenopyrite |
Major Chemical Composition (%) | Contaminated Mine Soil | WOS | COS | NSF | Major Chemical Composition (wt%) | SCGB |
---|---|---|---|---|---|---|
SiO2 | 34.8 | 3.51 | 2.59 | 0.31 | C | 46.1 |
Al2O3 | 8.62 | 1.36 | 0.96 | 0.14 | Mg | 3.83 |
Na2O | 0.03 | 0.86 | 0.73 | 1.37 | P | 3.68 |
MgO | 3.72 | 0.71 | 0.86 | 7.24 | K | 33.1 |
K2O | 1.64 | 0.27 | 0.13 | 0.17 | Ca | 11.9 |
CaO | 12.3 | 88.07 | 87.69 | 86 | Si | 0.15 |
Fe2O3 | 22.3 | 0.53 | 0.40 | 0.06 | Fe | 0.53 |
SO3 | 2.19 | 0.69 | 0.65 | 2.68 | ||
MnO | 5.76 | 0.04 | 0.04 | 0.02 | ||
pH (1:5) | 6.7 | 10.5 | 12.4 | 7.28 | 5.93 |
Sample ID | Contaminated Mine Soil (wt%) | WOS/NSF/SCGB (wt%) | COS (wt%) | L:S Ratio |
---|---|---|---|---|
Control | 100 | 0 | 0 | 20:1 |
2 wt% WOS/NSF/SCGB | 100 | 2 | 0 | 20:1 |
4 wt% WOS/NSF/SCGB | 100 | 4 | 0 | 20:1 |
6 wt% WOS/NSF/SCGB | 100 | 6 | 0 | 20:1 |
8 wt% WOS/NSF/SCGB | 100 | 8 | 0 | 20:1 |
10 wt% WOS/NSF/SCGB | 100 | 10 | 0 | 20:1 |
1 wt% COS | 100 | 0 | 1 | 20:1 |
2 wt% COS | 100 | 0 | 2 | 20:1 |
3 wt% COS | 100 | 0 | 3 | 20:1 |
4 wt% COS | 100 | 0 | 4 | 20:1 |
5 wt% COS | 100 | 0 | 5 | 20:1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, D.H.; Koutsospyros, A. Stabilization of Lead-Contaminated Mine Soil Using Natural Waste Materials. Agriculture 2022, 12, 367. https://doi.org/10.3390/agriculture12030367
Moon DH, Koutsospyros A. Stabilization of Lead-Contaminated Mine Soil Using Natural Waste Materials. Agriculture. 2022; 12(3):367. https://doi.org/10.3390/agriculture12030367
Chicago/Turabian StyleMoon, Deok Hyun, and Agamemnon Koutsospyros. 2022. "Stabilization of Lead-Contaminated Mine Soil Using Natural Waste Materials" Agriculture 12, no. 3: 367. https://doi.org/10.3390/agriculture12030367
APA StyleMoon, D. H., & Koutsospyros, A. (2022). Stabilization of Lead-Contaminated Mine Soil Using Natural Waste Materials. Agriculture, 12(3), 367. https://doi.org/10.3390/agriculture12030367