Investigation into Experimental and DEM Simulation of Guide Blade Optimum Arrangement in Multi-Rotor Combine Harvesters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Threshed Output Distribution
2.2. Determination of Guide Blade Location on Return Plate
EDEM Simulation Parameter Settings
2.3. Verifying the EDEM Numerical Simulation Results
2.4. Field Experiment
- (1)
- Grain sieve loss ratio, Sq:
- (2)
- Grain impurity ratio, Zz:
3. Results and Discussion
3.1. Threshed Output Distribution after Leaving the Concave
3.1.1. Threshed Output Distribution under the Tangential Rotor
3.1.2. Threshed Output Distribution under the Horizontal Axis Flow Rotor I
3.1.3. Threshed Output Distribution under the Horizontal Axis Flow Rotor II
3.2. EDEM Simulation Results Analysis
3.3. Field Experiment Results
4. Conclusions
- (1)
- The optimum arrangement location of the guide blades was obtained by analyzing the simulated results under different arrangements. A height of 50 mm for the guide blade, an installation angle of 25° on the surface of the return plate, and two guide blades placed parallel to each other were found to constitute the optimum arrangement.
- (2)
- The field experiment’s results indicate that the simulated results were validated by the experimental results. The field experiment’s results indicate that the cleaning performance significantly improved with proper guide blade arrangement. The average grain impurity ratio declined significantly from 1.26 to 0.67%, and the average grain sieve loss ratio, with a decrease of 53.2%, was reduced from 1.11 to 0.52%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, Z.W.; Li, Y.M.; Xu, L.Z.; Zhao, Z. Sensor for monitoring rice grain sieve losses in combine harvesters. Biosyst. Eng. 2016, 147, 51–66. [Google Scholar] [CrossRef]
- Yuan, L.P. Progress in super-hybrid rice breeding. Crop. J. 2017, 5, 100–102. [Google Scholar] [CrossRef]
- Li, Y.M.; Xu, T.B.; Xu, L.Z.; Zhao, Z. Test-bed of threshing and separating unit with multi cylinder. Trans. CSAM 2013, 4, 95–98. [Google Scholar]
- Li, Y.M.; Zhou, W.; Xu, L.Z.; Sun, T.; Tang, Z. Parameter test and optimization of tangential-horizontal- horizontal threshing and separating device. Trans. CSAM 2015, 46, 62–67. [Google Scholar]
- Tang, Z.; Li, Y.; Zhao, Z.; Sun, T. Structural and parameter design of transverse multi-cylinders device on rice agronomic characteristics. Span. J. Agric. Res. 2015, 13, e0216. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.W.; Li, Y.M.; De Baerdemaeker, J.; Xu, L.Z.; Saeys, W. Development and testing of a multi-duct cleaning device for tangential-longitudinal flow rice combine harvesters. Biosyst. Eng. 2019, 182, 95–106. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D. A discrete numerical model for granular assemblies. Géotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Tanaka, T.; Tsuji, Y. Numerical simulation of two-dimensional fluidized beds using the discrete element method (comparison between the two- and three-dimensional models). Powder Technol. 1998, 96, 129–138. [Google Scholar] [CrossRef]
- Sakaguchi, E.; Suzuki, M.; Favier, J.; Kawakami, S. PH—Postharvest Technology: Numerical Simulation of the Shaking Separation of Paddy and Brown Rice using the Discrete Element Method. J. Agric. Eng. Res. 2001, 79, 307–315. [Google Scholar] [CrossRef]
- Tijskens, E.; Ramon, H.; Baerdemaeker, J. Discrete element modelling for process simulation in agriculture. J. Sound Vib. 2003, 266, 493–514. [Google Scholar] [CrossRef]
- Landry, H.; Laguë, C.; Roberge, M. Discrete element modeling of machine–manure interactions. Comput. Electron. Agric. 2006, 52, 90–106. [Google Scholar] [CrossRef]
- Wynn, E. Simulations of rebound of an elastic ellipsoid colliding with a plane. Powder Technol. 2009, 196, 62–73. [Google Scholar] [CrossRef]
- Wojtkowski, M.; Pecen, J.; Horabik, J.; Molenda, M. Rapeseed impact against a flat surface: Physical testing and DEM simulation with two contact models. Powder Technol. 2010, 198, 61–68. [Google Scholar] [CrossRef]
- Alian, M.; Ein-Mozaffari, F.; Upreti, S.R. Analysis of the mixing of solid particles in a plowshare mixer via discrete element method (DEM). Powder Technol. 2015, 274, 77–87. [Google Scholar] [CrossRef]
- Horabik, J.; Molenda, M. Parameters and contact models for DEM simulations of agricultural granular materials: A review. Biosyst. Eng. 2016, 147, 206–225. [Google Scholar] [CrossRef]
- Lenaerts, B.; Aertsen, T.; Tijskens, E.; De Ketelaere, B.; Ramon, H.; De Baerdemaeker, J.; Saeys, W. Simulation of grain–straw separation by Discrete Element Modeling with bendable straw particles. Comput. Electron. Agric. 2014, 101, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Hager, A.; Kloss, C.; Pirker, S.; Goniva, C. Parallel Resolved Open Source CFD-DEM: Method, Validation and Application. J. Comput. Multiph. Flows 2014, 6, 13–27. [Google Scholar] [CrossRef] [Green Version]
- Salikov, V.; Antonyuk, S.; Heinrich, S.; Sutkar, V.S.; Deen, N.G.; Kuipers, H. Characterization and CFD-DEM modelling of a prismatic spouted bed. Powder Technol. 2015, 270, 622–636. [Google Scholar] [CrossRef] [Green Version]
- Markauskas, D.; Kruggel-Emden, H.; Sivanesapillai, R.; Steeb, H. Comparative study on mesh-based and mesh-less coupled CFD-DEM methods to model particle-laden flow. Powder Technol. 2017, 305, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Volk, A.; Ghia, U.; Stoltz, C. Effect of grid type and refinement method on CFD-DEM solution trend with grid size. Powder Technol. 2017, 311, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.J.; Yang, L.; Li, Q.D. Simple measurement of restitution coefficient of granular material and its application. J. Agric. Mech. Res. 2009, 31, 25–27. [Google Scholar]
- Qiao, Z.X. Studies on characteristics of material mechanics of rice grains. Acta Agric. Univ. Jiangxiensis 1992, 14, 1–9. [Google Scholar]
- Zhang, H.X.; Li, D.Y.; Yang, X.S. Research on shear properties of brown rice grain. J. Heilongjiang August First Land Reclam. Univ. 2006, 18, 46–49. [Google Scholar]
- Li, H.C.; Li, Y.M.; Gao, F.; Zhao, Z.; Xu, L.Z. CFD-DEM simulation of material motion in air-and-screen cleaning device. Comput. Electron Agric. 2012, 88, 111–119. [Google Scholar] [CrossRef]
- DG/T 014-2009; Ministry of Agriculture of People’s Republic of China. The Outline of Agricultural Machinery Popularization and Identification: Grain Crops Harvesting Machinery. Ministry of Agriculture of People’s Republic of China: Beijing, China, 2009.
- JB/T 5117-2006; National Development and Reform Commission of China. Whole-Feed Combine Harvester Technical Requirements. National Development and Reform Commission of China: Beijing, China, 2006.
Material Properties | Short Straw | Return Plate | Rice Grain |
---|---|---|---|
Density (kg/m3) | 160 | 7850 | 1350 |
Young’s modulus (Pa) | 1.3 × 107 | 2.0 × 1011 | 5.0 × 108 |
Poisson’s ratio | 0.45 | 0.29 | 0.25 |
Collision properties | Grain–plate | Short straw–return plate | Grain–grain |
Restitution coefficient | 0.5 | 0.26 | 0.43 |
Rolling friction coefficient | 0.01 | 0.01 | 0.01 |
Static friction coefficient | 0.56 | 0.8 | 0.75 |
Test No. | Angle of the Guide Blade (°) | Height of the Guide Blade (m) | Guide Blade Number |
---|---|---|---|
1 | 25 | 30 | 1 |
2 | 25 | 40 | 2 |
3 | 25 | 50 | 3 |
4 | 30 | 30 | 2 |
5 | 30 | 40 | 3 |
6 | 30 | 50 | 1 |
7 | 35 | 30 | 3 |
8 | 35 | 40 | 1 |
9 | 35 | 50 | 2 |
Location | Grain Number | Short Straw Number |
---|---|---|
1 | 7500 | 1200 |
2 | 1900 | 350 |
3 | 1600 | 300 |
4 | 2200 | 450 |
5 | 1200 | 380 |
6 | 3000 | 400 |
7 | 1500 | 450 |
8 | 2900 | 1000 |
Test Conditions | Test No. | Grain Impurity Ratio (%) | Average Grain Impurity Ratio (%) | Grain Sieve Loss Ratio (%) | Average Grain Sieve Loss Ratio (%) |
---|---|---|---|---|---|
Without guide blade | 1 | 1.11 | 1.26 | 0.97 | 1.11 |
2 | 1.23 | 1.19 | |||
3 | 1.43 | 1.12 | |||
With guide blade | 1 | 0.70 | 0.67 | 0.52 | 0.52 |
2 | 0.68 | 0.54 | |||
3 | 0.62 | 0.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Li, J.; Liang, J.; Shao, Y.; Zhou, T.; Si, Z.; Li, Y. Investigation into Experimental and DEM Simulation of Guide Blade Optimum Arrangement in Multi-Rotor Combine Harvesters. Agriculture 2022, 12, 435. https://doi.org/10.3390/agriculture12030435
Liang Z, Li J, Liang J, Shao Y, Zhou T, Si Z, Li Y. Investigation into Experimental and DEM Simulation of Guide Blade Optimum Arrangement in Multi-Rotor Combine Harvesters. Agriculture. 2022; 12(3):435. https://doi.org/10.3390/agriculture12030435
Chicago/Turabian StyleLiang, Zhenwei, Jun Li, Jianmin Liang, Yifan Shao, Tengfei Zhou, Zengyong Si, and Yaoming Li. 2022. "Investigation into Experimental and DEM Simulation of Guide Blade Optimum Arrangement in Multi-Rotor Combine Harvesters" Agriculture 12, no. 3: 435. https://doi.org/10.3390/agriculture12030435
APA StyleLiang, Z., Li, J., Liang, J., Shao, Y., Zhou, T., Si, Z., & Li, Y. (2022). Investigation into Experimental and DEM Simulation of Guide Blade Optimum Arrangement in Multi-Rotor Combine Harvesters. Agriculture, 12(3), 435. https://doi.org/10.3390/agriculture12030435