Pot and Ridge Production of Three Highbush Blueberry (Vaccinium corymbosum L.) Cultivars under High Tunnels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Plant Material
2.2. Monitoring of Substrate Properties
2.3. Plant Growth and Berry Harvest
2.4. Fruit Color and Firmness Measurements
2.5. Primary Metabolite Extraction and Identification
2.6. Individual Phenolics Extraction and Identification
2.7. Statistics
3. Results
3.1. Substrate Properties
3.2. Plant Growth and Yield
3.3. Blueberry Skin Color and Fruit Firmness
3.4. Total and Individual Sugar Contents
3.5. Total and Individual Organic Acid Contents
3.6. Sugar/Organic Acid Ratios
3.7. Phenolic Contents
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Retamales, J.B.; Hancock, J.F. Blueberries, 2nd ed.; Cabi: Boston, MA, USA, 2018. [Google Scholar]
- Retamal-Salgado, J.; Bastías, R.M.; Wilckens, R.; Paulino, L. Influence of microclimatic conditions under high tunnels on the physiological and productive responses in blueberry ‘O’Neal’. Chil. J. Agric. Res. 2015, 75, 291–297. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Bi, G. Container production of southern highbush blueberries using high tunnels. HortScience 2019, 54, 267–274. [Google Scholar] [CrossRef]
- Hao, L.; Guo, L.; Li, R.; Cheng, Y.; Huang, L.; Zhou, H.; Xu, M.; Li, F.; Zhang, X.; Zheng, Y. Responses of photosynthesis to high temperature stress associated with changes in leaf structure and biochemistry of blueberry (Vaccinium corymbosum L.). Sci. Hortic. 2019, 246, 251–264. [Google Scholar] [CrossRef]
- Chen, W.; Cen, W.; Chen, L.; Di, L.; Li, Y.; Guo, W. Differential sensitivity of four highbush blueberry (Vaccinium corymbosum L.) cultivars to heat stress. Pak. J. Bot. 2012, 44, 853–860. [Google Scholar]
- Jiang, Y.; Zeng, Q.; Wei, J.; Jiang, J.; Li, Y.; Chen, J.; Yu, H. Growth, fruit yield, photosynthetic characteristics, and leaf microelement concentration of two blueberry cultivars under different long-term soil pH treatments. Agronomy 2019, 9, 357. [Google Scholar] [CrossRef] [Green Version]
- Whidden, A. Commercial blueberry production methods in Hillsborough County. Proc. Fla. State Hort. Soc. 2008, 121, 36–37. [Google Scholar]
- Kingston, P.H.; Scagel, C.F.; Bryla, D.R. Suitability of sphagnum moss, coir, and Douglas fir bark as soilless substrates for container production of highbush blueberry. HortScience 2017, 52, 1692–1699. [Google Scholar] [CrossRef]
- Olympios, C.M. Overview of soilless culture: Advantages, constraints, and perspectives. Prot. Cultiv. Mediterr. Reg. 1999, 31, 307–324. [Google Scholar]
- Voogt, W.; Van Dijk, P.; Douven, F.; Van Der Maas, R. Development of a soilless growing system for blueberries (Vaccinium corymbosum): Nutrient demand and nutrient solution. Acta Hortic. 2014, 1017, 215–221. [Google Scholar] [CrossRef]
- Fang, Y.; Nunez, G.H.; da Silva, M.N.; Phillips, D.A.; Munoz, P.R. A review for southern highbush blueberry alternative production systems. Agronomy 2020, 10, 1531. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R. Parameters of inner quality of the apple scab resistant and susceptible apple cultivars (Malus domestica Borkh.). Sci. Hortic. 2007, 114, 37–44. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Schmitzer, V.; Slatnar, A.; Stampar, F.; Veberic, R. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. J. Food Sci. 2012, 77, C1064–C1070. [Google Scholar] [CrossRef] [PubMed]
- Mikulic-Petkovsek, M.; Slatnar, A.; Stampar, F.; Veberic, R. The influence of organic/integrated production on the content of phenolic compounds in apple leaves and fruits in four different varieties over a 2-year period. J. Sci. Food Agric. 2010, 90, 2366–2378. [Google Scholar] [CrossRef] [PubMed]
- Kingston, P.H.; Scagel, C.F.; Bryla, D.R.; Strik, B.C. Influence of perlite in peat- And coirbased media on vegetative growth and mineral nutrition of highbush blueberry. HortScience 2020, 55, 658–663. [Google Scholar] [CrossRef]
- Poorter, H.; Bühler, J.; Van Dusschoten, D.; Climent, J.; Postma, J.A. Pot size matters: A meta-analysis of the effects of rooting volume on plant growth. Funct. Plant Biol. 2012, 39, 839–850. [Google Scholar] [CrossRef] [Green Version]
- Markham, J.W.; Bremer, D.J.; Boyer, C.R.; Schroeder, K.R. Effect of container color on substrate temperatures and growth of red maple and redbud. HortScience 2011, 46, 721–726. [Google Scholar] [CrossRef]
- Cantliffe, D.J. Pre- and postharvest practices for improved vegetable transplant quality. Horttechnology 2018, 3, 415–418. [Google Scholar] [CrossRef] [Green Version]
- Smrke, T.; Veberic, R.; Hudina, M.; Stamic, D.; Jakopic, J. Comparison of highbush blueberry (Vaccinium corymbosum L.) under ridge and pot production. Agriculture 2021, 11, 929. [Google Scholar] [CrossRef]
- Spiers, J.M. Substrate temperatures influence root and shoot growth of southern highbush and rabbiteye blueberries. HortScience 1995, 30, 1029–1030. [Google Scholar] [CrossRef] [Green Version]
- Keever, G.J.; Cobb, G.S.; McDaniel, R. Effects of container size, root pruning, and fertilization on growth of seedling pecans. J. Environ. Hortic. 1986, 4, 11–13. [Google Scholar] [CrossRef]
- Ciordia, M.; Díaz, M.B.; García, J.C. Blueberry culture both in pots and under Italian-type tunnels. Acta Hortic. 2002, 574, 123–127. [Google Scholar] [CrossRef]
- Smrke, T.; Veberic, R.; Hudina, M.; Zitko, V.; Ferlan, M.; Jakopic, J. Fruit quality and yield of three highbush blueberry (Vaccinium corymbosum L.) cultivars grown in two planting systems under different protected environments. Horticulturae 2021, 7, 591. [Google Scholar] [CrossRef]
- Milivojević, J.; Radivojević, D.; Nikolić, M.; Maksimović, J.D. Changes in fruit quality of highbush blueberries (Vaccinium corymbosum L.) during the ripening season. Acta Hortic. 2016, 1139, 657–664. [Google Scholar] [CrossRef]
- Ehlenfeldt, M.K.; Martin, R.B. A survey of fruit firmness in highbush blueberry and species-introgressed blueberry cultivars. HortScience 2002, 37, 386–389. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, C.; Sun, J.; Jackson, A. Dynamic changes of enzymes involved in sugar and organic acid level modification during blueberry fruit maturation. Food Chem. 2020, 309, 125617. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.Q.; Harpole, J.; Finn, C.E.; Strik, B.C. Evaluating berry firmness and total soluble solids of newly released highbush blueberry cultivars. Acta Hortic. 2009, 810, 863–868. [Google Scholar] [CrossRef] [Green Version]
Cultivar | Planting | Skin Color | Firmness | ||
---|---|---|---|---|---|
Method | L* | C* | h° | (N) | |
‘Duke’ | Pots | 31.37 ± 1.97 | 3.33 ± 0.73 | 253.00 ± 1.99 | 0.21 ± 0.05 B |
Ridge | 32.25 ± 2.49 | 3.50 ± 0.70 | 252.20 ± 1.08 B | 0.21 ± 0.03 | |
Significance | NS | NS | NS | NS | |
‘Aurora’ | Pots | 32.20 ± 2.76 | 2.76 ± 1.31 | 259.60 ± 12.02 | 0.22 ± 0.03 B |
Ridge | 30.70 ± 2.02 | 2.61 ± 1.01 | 256.60 ± 4.49 B | 0.20 ± 0.05 | |
Significance | NS | NS | NS | NS | |
‘Brigitta’ | Pots | 31.02 ± 1.97 | 3.03 ± 0.62 | 259.80 ± 6.05 | 0.16 ± 0.06 A |
Ridge | 29.95 ± 2.38 | 3.08 ± 0.97 | 265.00 ± 10.35 A | 0.20 ± 0.07 | |
Significance | NS | NS | NS | NS | |
Significance | Pots | NS | NS | NS | * |
Significance | Ridge | NS | NS | *** | NS |
Cultivar | Planting Method | Total Sugar Content (mg g−1 FW) | Total Organic Acid Content (mg g−1 FW) | Sugar/Organic Acid Ratio |
---|---|---|---|---|
‘Duke’ | Pots | 52.07 ± 2.00 C | 8.74 ± 0.91 C | 6.00 ± 0.62 A |
Ridge | 57.25 ± 1.51 C | 8.48 ± 0.54 B | 6.78 ± 0.62 B | |
Significance | ** | NS | NS | |
‘Aurora’ | Pots | 61.05 ± 1.79 B | 16.87 ± 0.57 A | 3.62 ± 0.09 B |
Ridge | 67.20 ± 1.90 A | 15.75 ± 0.79 A | 4.27 ± 0.09 C | |
Significance | *** | * | *** | |
‘Brigitta’ | Pots | 73.52 ± 1.77 A | 11.46 ± 0.53 B | 6.42 ± 0.34 A |
Ridge | 63.98 ± 1.19 B | 8.62 ± 0.53 B | 7.45 ± 0.49 A | |
Significance | *** | *** | ** | |
Significance | Pots | *** | *** | *** |
Significance | Ridge | *** | *** | *** |
Phenolic Compound | ‘Duke’ | ‘Aurora’ | ‘Brigitta’ | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pots (mg [100 g]−1 FW) | Ridge (mg [100 g]−1 FW) | p-Value | Pots (mg [100 g]−1 FW) | Ridge (mg [100 g]−1 FW) | p-Value | Pots (mg [100 g]−1 FW) | Ridge (mg [100 g]−1 FW) | p-Value | Pots | Ridge | |
Ellagic acid derivative | 72.83 ± 3.47 | 78.81 ± 5.60 | NS | 50.13 ± 4.17 | 50.19 ± 2.95 | NS | 42.72 ± 2.29 | 40.71 ± 3.45 | NS | ||
Caffeic acid derivative 1 | 0.55 ± 0.04 b | 0.63 ± 0.05 a | ** | 0.52 ± 0.03 | 0.54 ± 0.04 | NS | 0.25 ± 0.02 | 0.24 ± 0.02 | NS | ||
Caffeic acid derivative 2 | 2.23 ± 0.18 b | 2.76 ± 0.30 a | ** | 8.49 ± 0.32 | 8.47 ± 0.25 | NS | 5.39 ± 0.22 b | 5.95 ± 0.22 a | *** | ||
Caffeic acid derivative 3 | 0 | 0 | 0 | 0 | 0.33 ± 0.03 b | 0.39 ± 0.02 a | *** | ||||
3-caffeoylquinic acid | 100.1 ± 0.01 | 100.1 ± 0.01 | NS | 0 | 0 | 0 | 0 | ||||
4-caffeoylquinic acid | 3.29 ± 0.36 b | 3.91 ± 0.19 a | ** | 3.84 ± 0.23 | 3.69 ± 0.35 | NS | 2.48 ± 0.21 | 2.55 ± 0.30 | NS | ||
5-caffeoylquinic acid | 52.16 ± 1.60 b | 59.95 ± 1.94 a | *** | 123.1 ± 3.39 | 118.4 ± 4.26 | NS | 80.90 ± 3.60 a | 68.89 ± 2.44 b | *** | ||
Caffeoylquinic acid dimer | 0.79 ± 0.04 b | 0.86 ± 0.03 a | * | 1.17 ± 0.07 | 1.16 ± 0.08 | NS | 1.37 ± 0.07 | 1.43 ± 0.07 | NS | ||
di-Caffeoylquinic acid | 1.01 ± 0.07 | 1.09 ± 0.05 | NS | 0 | 0 | 0 | 0 | ||||
5-feruloylquinic acid | 0.18 ± 0.04 b | 0.24 ± 0.01 a | ** | 0.46 ± 0.04 | 0.43 ± 0.03 | NS | 0.10 ± 0.02 | 0.11 ± 0.01 | NS | ||
Ferulic acid derivative | 5.93 ± 0.41 | 6.27 ± 0.32 | NS | 3.29 ± 0.42 | 3.43 ± 0.37 | NS | 2.82 ± 0.30 b | 3.21 ± 0.19 a | * | ||
Feruloyl-glucoside | 0.20 ± 0.03 | 0.17 ± 0.05 | NS | 0 | 0 | 0.11 ± 0.01 | 0.10 ± 0.01 | NS | |||
Total phenolic acids | 239.3 ± 6.25 A | 254.8 ± 8.55 A | *** | 191.0 ± 8.67 B | 186.3 ± 8.33 B | NS | 136.5 ± 6.77 C | 123.6 ± 6.73 C | ** | *** | *** |
Procyanidin B1 | 58.31 ± 7.83 | 60.86 ± 3.25 | NS | 32.75 ± 1.90 | 30.83 ± 1.79 | NS | 39.87 ± 2.08 | 38.35 ± 0.31 | NS | ||
Procyanidin B2 | 30.85 ± 2.41 a | 26.82 ± 0.78 b | ** | 15.05 ± 0.67 b | 16.78 ± 0.82 a | ** | 12.04 ± 1.87 | 13.37 ± 0.44 | NS | ||
Catechin | 42.92 ± 2.35 b | 47.67 ± 2.10 a | ** | 20.98 ± 1.42 | 22.84 ± 1.93 | NS | 20.78 ± 1.37 | 23.12 ± 1.93 | NS | ||
Epicatechin | 2.91 ± 0.36 | 2.83 ± 0.39 | NS | 2.45 ± 0.36 | 2.62 ± 0.51 | NS | 1.53 ± 0.39 | 1.76 ± 0.38 | NS | ||
Total flavan-3-ols | 135.0 ± 12.95 A | 138.2 ± 6.52 A | NS | 71.23 ± 4.35 B | 73.07 ± 5.05 B | NS | 74.22 ± 5.71 B | 76.60 ± 3.06 B | NS | *** | *** |
Myricetin-3-O-pentoside | 0.22 ± 0.02 b | 0.29 ± 0.02 a | *** | 0.54 ± 0.02 | 0.53 ± 0.03 | NS | 0.49 ± 0.01 a | 0.38 ± 0.02 b | *** | ||
Myricetin-3-O-hexoside | 1.88 ± 0.13 b | 2.54 ± 0.31 a | *** | 0.98 ± 0.08 | 1.05 ± 0.09 | NS | 1.14 ± 0.08 | 1.20 ± 0.11 | NS | ||
Myricetin-rhamno-hexoside | 0 | 0 | 3.10 ± 0.25 | 2.97 ± 0.67 | NS | 0.21 ± 0.01 | 0.23 ± 0.03 | NS | |||
Laricitrin-3-O-glucoside | 2.40 ± 0.25 b | 3.04 ± 0.36 a | ** | 0.76 ± 0.05 | 0.78 ± 0.08 | NS | 0.37 ± 0.03 | 0.33 ± 0.04 | NS | ||
Quercetin-3-O-rutinoside | 0.08 ± 0.01 | 0.09 ± 0.01 | NS | 2.33 ± 0.14 | 2.25 ± 0.24 | NS | 1.95 ± 0.12 a | 1.66 ± 0.20 b | * | ||
Quercetin-3-O-galactoside | 2.24 ± 0.18 b | 2.85 ± 0.24 a | ** | 1.83 ± 0.18 | 1.98 ± 0.21 | NS | 2.26 ± 0.18 a | 1.77 ± 0.15 b | ** | ||
Quercetin-3-O-glucoside | 0 | 0 | 1.62 ± 0.10 | 1.63 ± 0.56 | NS | 1.18 ± 0.19 | 1.10 ± 0.14 | NS | |||
Quercetin-3-O-glucuronide | 0.07 ± 0.01 | 0.08 ± 0.01 | NS | 2.84 ± 0.17 | 2.78 ± 0.23 | NS | 0.15 ± 0.01 | 0.13 ± 0.02 | 0.0662 | ||
Quercetin-3-O-arabinopyranoside | 0.34 ± 0.04 b | 0.41 ± 0.02 a | ** | 0.50 ± 0.03 | 0.48 ± 0.03 | NS | 0.33 ± 0.02 a | 0.25 ± 0.02 b | 0.0006 | ||
Quercetin-3-O-arabinofuranoside | 0 | 0 | 0.53 ± 0.04 a | 0.46 ± 0.04 b | * | 0 | 0 | ||||
Quercetin-3-O-rhamnoside | 0.25 ± 0.01 b | 0.28 ± 0.02 a | ** | 0 | 0 | 0.76 ± 0.04 a | 0.66 ± 0.01 | 0.0005 | |||
Kaempferol-3-O-rutinoside | 0 | 0 | 0.54 ± 0.04 a | 0.43 ± 0.02 b | *** | 0.46 ± 0.02 a | 0.37 ± 0.03 b | 0.0005 | |||
Isorhamnetin-3-O-galactoside | 5.38 ± 0.41 | 6.15 ± 0.92 | NS | 1.64 ± 0.11 | 1.68 ± 0.12 | NS | 0.98 ± 0.07 | 0.95 ± 0.17 | 0.6650 | ||
Isorhamnetin-3-O-rutinoside | 0.12 ± 0.01 | 0.13 ± 0.03 | NS | 1.26 ± 0.15 a | 1.03 ± 0.08 b | * | 0.19 ± 0.02 | 0.17 ± 0.04 | 0.4440 | ||
Syringetin-3-O-glucoside | 0.61 ± 0.04 b | 0.70 ± 0.06 a | * | 0.24 ± 0.02 a | 0.21 ± 0.02 b | * | 0.63 ± 0.03 | 0.64 ± 0.04 | 0.5490 | ||
Total flavonols | 13.59 ± 1.11 B | 16.58 ± 2.00 A | *** | 18.71 ± 1.38 A | 18.27 ± 2.42 A | NS | 11.08 ± 0.83 C | 9.83 ± 1.02 B | ** | *** | *** |
Delphinidin-3-O-galactoside | 2.88 ± 0.28 b | 3.95 ± 0.26 a | *** | 1.37 ± 0.21 | 1.39 ± 0.17 | NS | 4.15 ± 0.19 a | 3.18 ± 0.35 b | 0.0006 | ||
Delphinidin-3-O-glucoside | 143.7 ± 7.62 b | 156.4 ± 7.93 a | * | 103.8 ± 7.00 | 104.0 ± 7.95 | NS | 100.9 ± 3.40 | 94.15 ± 6.78 | 0.0816 | ||
Delphinidin-3-O-arabinoside | 67.08 ± 2.43 | 70.64 ± 2.90 | NS | 31.10 ± 2.00 | 28.87 ± 2.39 | NS | 35.67 ± 2.62 | 34.45 ± 2.13 | 0.4410 | ||
Cyanidin-3-O-galactoside | 28.91 ± 1.29 | 30.45 ± 1.73 | NS | 21.22 ± 1.65 | 20.77 ± 1.74 | NS | 19.42 ± 1.43 | 18.75 ± 1.37 | 0.4720 | ||
Cyanidin-3-O-arabinoside | 3.34 ± 0.29 | 3.29 ± 0.44 | NS | 1.43 ± 0.17 | 1.35 ± 0.10 | NS | 1.47 ± 0.17 | 1.31 ± 0.16 | 0.1600 | ||
Petunidin-3-O-galactoside | 393.2 ± 14.13 | 404.6 ± 18.22 | NS | 260.1 ± 16.75 | 259.7 ± 24.64 | NS | 255.6 ± 3.57 | 243.9 ± 7.59 | 0.1840 | ||
Petunidin-3-O-arabinoside | 92.13 ± 5.64 | 96.12 ± 9.13 | NS | 40.84 ± 1.17 | 39.71 ± 2.04 | NS | 43.06 ± 1.89 b | 48.61 ± 1.45 a | 0.0008 | ||
Peonidin-3-O-galactoside | 8.69 ± 0.66 | 9.17 ± 0.54 | NS | 2.95 ± 0.17 | 2.87 ± 0.27 | NS | 3.31 ± 0.31 b | 3.72 ± 0.21 a | 0.0397 | ||
Peonidin-pentose | 9.51 ± 0.82 | 9.63 ± 0.65 | NS | 8.16 ± 0.36 | 7.97 ± 0.43 | NS | 6.41 ± 0.44 | 6.21 ± 0.21 | 0.3820 | ||
Malvidin-3-O-hexoside | 127.1 ± 3.88 | 123.3 ± 11.39 | NS | 77.55 ± 3.30 | 80.37 ± 4.86 | NS | 64.36 ± 3.55 | 69.13 ± 3.31 | 0.0589 | ||
Malvidin-3-O-arabinoside | 13.29 ± 0.87 | 13.75 ± 1.13 | NS | 6.74 ± 0.46 | 7.07 ± 0.38 | NS | 5.78 ± 0.46 | 5.95 ± 0.37 | 0.5350 | ||
Malvidin-3-O-xyloside | 50.85 ± 2.41 | 52.61 ± 2.99 | NS | 33.13 ± 2.00 | 32.51 ± 2.25 | NS | 27.11 ± 1.65 | 29.00 ± 1.19 | 0.0700 | ||
Malvidin-3-(6″-acetyl) galactoside | 3.47 ± 0.29 b | 4.68 ± 0.39 a | *** | 0 | 0 | 0 | 0 | ||||
Malvidin-3-(6″-acetyl) glucoside | 3.44 ± 0.14 b | 4.70 ± 0.55 a | ** | 0 | 0 | 0 | 0 | ||||
Total anthocyanins | 947.6 ± 40.75, A | 983.2 ± 58.25 A | NS | 588.4 ± 35.24 B | 586.6 ± 47.22 B | NS | 567.2 ± 19.68 B | 558.4 ± 25.12 B | NS | *** | *** |
Total phenolic contents | 1335 ± 61.06 A | 1393 ± 75.32 A | NS | 869.4 ± 49.64 B | 864.3 ± 63.02 B | NS | 789.0 ± 32.99 C | 768.4 ± 35.93 C | NS | *** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smrke, T.; Veberic, R.; Hudina, M.; Jakopic, J. Pot and Ridge Production of Three Highbush Blueberry (Vaccinium corymbosum L.) Cultivars under High Tunnels. Agriculture 2022, 12, 438. https://doi.org/10.3390/agriculture12040438
Smrke T, Veberic R, Hudina M, Jakopic J. Pot and Ridge Production of Three Highbush Blueberry (Vaccinium corymbosum L.) Cultivars under High Tunnels. Agriculture. 2022; 12(4):438. https://doi.org/10.3390/agriculture12040438
Chicago/Turabian StyleSmrke, Tina, Robert Veberic, Metka Hudina, and Jerneja Jakopic. 2022. "Pot and Ridge Production of Three Highbush Blueberry (Vaccinium corymbosum L.) Cultivars under High Tunnels" Agriculture 12, no. 4: 438. https://doi.org/10.3390/agriculture12040438
APA StyleSmrke, T., Veberic, R., Hudina, M., & Jakopic, J. (2022). Pot and Ridge Production of Three Highbush Blueberry (Vaccinium corymbosum L.) Cultivars under High Tunnels. Agriculture, 12(4), 438. https://doi.org/10.3390/agriculture12040438