Protective Effect of Date Pits on Growth Performance, Carcass Traits, Blood Indices, Intestinal Morphology, Nutrient Digestibility, and Hepatic Aflatoxin Residues of Aflatoxin B1-Exposed Broilers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Birds and Trial Design
2.2. Sampling and Measurements
2.3. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Carcass Parameters
3.3. Blood Constituents
3.4. Ileal Morphology, Nutrient Digestibility, and Hepatic AFB1 Residues
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murugesan, G.R.; Ledoux, D.R.; Naehrer, K.; Berthiller, F.; Applegate, T.J.; Grenier, B.; Phillips, T.D.; Schatzmayr, G. Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poult. Sci. 2015, 94, 1298–1315. [Google Scholar] [CrossRef] [PubMed]
- Abrar, M.; Anjum, F.M.; Butt, M.S.; Pasha, I.; Randhawa, M.A.; Saeed, F.; Waqas, K. Aflatoxins: Biosynthesis, Occurrence, Toxicity, and Remedies. Crit. Rev. Food Sci. Nutr. 2013, 53, 862–874. [Google Scholar] [CrossRef] [PubMed]
- Fountain, J.C.; Khera, P.; Yang, L.; Nayak, S.N.; Scully, B.T.; Lee, R.D.; Chen, Z.Y.; Kemerait, R.C.; Varshney, R.K.; Guo, B. Resistance to Aspergillus flavus in maize and peanut: Molecular biology, breeding, environmental stress, and future perspectives. Crop J. 2015, 3, 229–237. [Google Scholar] [CrossRef]
- Udomkun, P.; Wiredu, A.N.; Nagle, M.; Müller, J.; Vanlauwe, B.; Bandyopadhyay, R. Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application—A review. Food Control 2017, 76, 127–138. [Google Scholar] [CrossRef]
- Benkerroum, N. Aflatoxins: Producing-Molds, Structure, Health Issues and Incidence in Southeast Asian and Sub-Saharan African Countries. Int. J. Environ. Res. Public Health 2020, 17, 1215. [Google Scholar] [CrossRef] [Green Version]
- Abudabos, A.M.; Al-Atiyat, R.M.; Khan, R.U. A survey of mycotoxin contamination and chemical composition of distiller’s dried grains with solubles (DDGS) imported from the USA into Saudi Arabia. Environ. Sci. Pollut. Res. 2017, 24, 15401–15405. [Google Scholar] [CrossRef]
- Mahrose, K.M.; Michalak, I.; Farghly, M.; Elokil, A.; Zhang, R.; Ayaşan, T.; Mekawy, A.; Fazlani, S. Role of clay in detoxification of aflatoxin B1 in growing Japanese quail with reference to gender. Vet. Res. Commun. 2021, 45, 363–371. [Google Scholar] [CrossRef]
- Pappas, A.C.; Tsiplakou, E.; Tsitsigiannis, D.I.; Georgiadou, M.; Iliadi, M.K.; Sotirakoglou, K.; Zervas, G. The role of bentonite binders in single or concomitant mycotoxin contamination of chicken diets. Br. Poult. Sci. 2016, 57, 551–558. [Google Scholar] [CrossRef]
- Lauwers, M.; Croubels, S.; Letor, B.; Gougoulias, C.; Devreese, M. Biomarkers for Exposure as a Tool for Efficacy Testing of a Mycotoxin Detoxifier in Broiler Chickens and Pigs. Toxins 2019, 11, 187. [Google Scholar] [CrossRef] [Green Version]
- Dohnal, V.; Wu, Q.; Kuča, K. Metabolism of aflatoxins: Key enzymes and interindividual as well as interspecies differences. Arch. Toxicol. 2014, 88, 1635–1644. [Google Scholar] [CrossRef]
- Liu, N.; Wang, J.Q.; Jia, S.C.; Chen, Y.K.; Wang, J.P. Effect of yeast cell wall on the growth performance and gut health of broilers challenged with aflatoxin B1 and necrotic enteritis. Poult. Sci. 2018, 97, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ishfaq, M.; Wang, J. Effects of Lactobacillus salivarius supplementation on the growth performance, liver function, meat quality, immune responses and Salmonella Pullorum infection resistance of broilers challenged with Aflatoxin B1. Poult. Sci. 2022, 101, 101651. [Google Scholar] [CrossRef] [PubMed]
- Bryden, W.L. Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Anim. Feed Sci. Technol. 2012, 173, 134–158. [Google Scholar] [CrossRef]
- Li, S.; Muhammad, I.; Yu, H.; Sun, X.; Zhang, X. Detection of Aflatoxin adducts as potential markers and the role of curcumin in alleviating AFB1-induced liver damage in chickens. Ecotoxicol. Environ. Saf. 2019, 176, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, Q.-G.; Zhao, L.-H.; Wei, H.; Duan, G.-X.; Zhang, J.-Y.; Ji, C. Effects of Lipoic Acid on Immune Function, the Antioxidant Defense System, and Inflammation-Related Genes Expression of Broiler Chickens Fed Aflatoxin Contaminated Diets. Int. J. Mol. Sci. 2014, 15, 5649–5662. [Google Scholar] [CrossRef] [Green Version]
- Ellakany, H.F.; Abuakkada, S.S.; Oda, S.S.; El-Sayed, Y.S. Influence of low levels of dietary aflatoxins on Eimeria tenella infections in broilers. Trop. Anim. Health Prod. 2011, 43, 249–257. [Google Scholar] [CrossRef]
- Pasha, T.N.; Farooq, M.U.; Khattak, F.M.; Jabbar, M.A.; Khan, A.D. Effectiveness of sodium bentonite and two commercial products as aflatoxin absorbents in diets for broiler chickens. Anim. Feed Sci. Technol. 2007, 132, 103–110. [Google Scholar] [CrossRef]
- Monson, M.S.; Coulombe, R.A.; Reed, K.M. Aflatoxicosis: Lessons from Toxicity and Responses to Aflatoxin B1 in Poultry. Agriculture 2015, 5, 742–777. [Google Scholar] [CrossRef] [Green Version]
- Adegbeye, M.J.; Reddy, P.R.K.; Chilaka, C.A.; Balogun, O.B.; Elghandour, M.M.M.Y.; Rivas-Caceres, R.R.; Salem, A.Z.M. Mycotoxin toxicity and residue in animal products: Prevalence, consumer exposure and reduction strategies—A review. Toxicon 2020, 177, 96–108. [Google Scholar] [CrossRef]
- Fouad, A.M.; Ruan, D.; El Senousey, H.A.K.; Chen, W.; Jiang, S.; Zheng, C. Harmful Effects and Control Strategies of Aflatoxin B1 Produced by Aspergillus flavus and Aspergillus parasiticus Strains on Poultry: Review. Toxins 2019, 11, 176. [Google Scholar] [CrossRef] [Green Version]
- Umaya, S.R.; Vijayalakshmi, Y.C.; Sejian, V. Exploration of plant products and phytochemicals against aflatoxin toxicity in broiler chicken production: Present status. Toxicon 2021, 200, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Liu, F.; Zhu, Q.; Zhang, M.; Li, T.; Chen, J.; Huang, Y.; Wang, X.; Sheng, J. Aflatoxin B1 can be complexed with oxidised tea polyphenols and the absorption of the complexed aflatoxin B1 is inhibited in rats. J. Sci. Food Agric. 2017, 97, 1910–1915. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.; Xie, Y.; Ma, W. Research progress on the protection and detoxification of phytochemicals against aflatoxin B1-Induced liver toxicity. Toxicon 2021, 195, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Dhahri, H.; Guesmi, A.; Ben Hamadi, N. Application of phenolic compounds as natural dye extracted from date-pits: Dyeing studies of modified acrylic fibres. Nat. Prod. Res. 2019, 33, 1329–1333. [Google Scholar] [CrossRef]
- Salajegheh, M.H.; Elahi, M.Y.; Salarmoini, M. Evaluating the nutritional value of date pits and demonstrating their application in laying hen diets. J. Anim. Physiol. Anim. Nutr. 2018, 102, e777–e786. [Google Scholar] [CrossRef]
- Alyileili, S.R.; Belal, I.E.H.; Hussein, A.S.; El-Tarabily, K.A. Effect of Inclusion of Degraded and Non-Degraded Date Pits in Broilers’ Diet on their Intestinal Microbiota and Growth Performance. Animals 2020, 10, 2041. [Google Scholar] [CrossRef]
- Attia, A.I.; Reda, F.M.; Patra, A.K.; Elnesr, S.S.; Attia, Y.A.; Alagawany, M. Date (Phoenix dactylifera L.) by-Products: Chemical Composition, Nutritive Value and Applications in Poultry Nutrition, an Updating Review. Animals 2021, 11, 1133. [Google Scholar] [CrossRef]
- Abdelnaby, A.; Abdelaleem, N.M.; Elshewy, E.; Mansour, A.H.; Ibrahim, S. The efficacy of clay bentonite, date pit, and chitosan nanoparticles in the detoxification of aflatoxin M1 and ochratoxin A from milk. Environ. Sci. Pollut. Res. 2021, 29, 20305–20317. [Google Scholar] [CrossRef]
- Abdel-Sattar, W.M.; Sadek, K.M.; Elbestawy, A.R.; Mourad, D.M. The Protective Role of Date Palm (Phoenix Dactylifera Seeds) against Aflatoxicosis in Broiler Chickens Regarding Carcass Characterstics, Hepatic and Renal Biochemical Function Tests and Histopathology. World’s Vet. J. 2019, 9, 59–69. [Google Scholar] [CrossRef]
- Yang, J.; Bai, F.; Zhang, K.; Bai, S.; Peng, X.; Ding, X.; Li, Y.; Zhang, J.; Zhao, L. Effects of feeding corn naturally contaminated with aflatoxin B1 and B2 on hepatic functions of broilers. Poult. Sci. 2012, 91, 2792–2801. [Google Scholar] [CrossRef]
- Peng, H.; Chang, Y.; Baker, R.C.; Zhang, G. Interference of mycotoxin binders with ELISA, HPLC and LC-MS/MS analysis of aflatoxins in maize and maize gluten. Food Addit. Contam. Part A 2019, 37, 496–506. [Google Scholar] [CrossRef] [PubMed]
- Aviagen Group. Ross Broiler Nutrition Specifications. 2019. Available online: http://www.aviagen.com (accessed on 25 August 2020).
- Aviagen Group. Ross Broiler Management Handbook. 2018. Available online: http://www.aviagen.com (accessed on 20 August 2020).
- Ravindran, V.; Abdollahi, M.; Bootwalla, S. Nutrient analysis, apparent metabolisable energy and ileal amino acid digestibility of full fat soybean for broilers. Anim. Feed Sci. Technol. 2014, 197, 233–240. [Google Scholar] [CrossRef]
- AOAC International (Association of Official Analytical Chemists). Official Methods of Analysis, 21st ed.; AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- De Marco, M.; Martínez, S.; Hernandez, F.; Madrid, J.; Gai, F.; Rotolo, L.; Belforti, M.; Bergero, D.; Katz, H.; Dabbou, S.; et al. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim. Feed Sci. Technol. 2015, 209, 211–218. [Google Scholar] [CrossRef]
- Sakamoto, M.I.; Murakami, A.E.; Fernandes, A.M.; Ospina-Rojas, I.C.; Nunes, K.C.; Hirata, A.K. Performance and serum biochemical profile of Japanese quail supplemented with silymarin and contaminated with aflatoxin B1. Poult. Sci. 2018, 97, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Abudabos, A.M.; Aljumaah, M.R.; Alkhulaifi, M.M.; Alabdullatif, A.; Suliman, G.M.; Al Sulaiman, A.R. Comparative effects of Bacillus subtilis and Bacillus licheniformis on live performance, blood metabolites and intestinal features in broiler inoculated with Salmonella infection during the finisher phase. Microb. Pathog. 2020, 139, 103870. [Google Scholar] [CrossRef] [PubMed]
- Magnoli, A.P.; Monge, M.P.; Miazzo, R.D.; Cavaglieri, L.R.; Magnoli, C.E.; Merkis, C.I.; Cristofolini, A.L.; Dalcero, A.M.; Chiacchiera, S.M. Effect of low levels of aflatoxin B1 on performance, biochemical parameters, and aflatoxin B1 in broiler liver tissues in the presence of monensin and sodium bentonite. Poult. Sci. 2011, 90, 48–58. [Google Scholar] [CrossRef]
- Cui, X.; Muhammad, I.; Li, R.; Jin, H.; Guo, Z.; Yang, Y.; Hamid, S.; Li, J.; Cheng, P.; Zhang, X. Development of a UPLC-FLD method for detection of aflatoxin B1 and M1 in animal tissue to study the effect of curcumin on mycotoxin clearance Rates. Front. Pharmacol. 2017, 8, 650. [Google Scholar] [CrossRef] [Green Version]
- Rawal, S.; Kim, J.E.; Coulombe, R. Aflatoxin B1 in poultry: Toxicology, metabolism and prevention. Res. Vet. Sci. 2010, 89, 325–331. [Google Scholar] [CrossRef]
- Tavangar, P.; Gharahveysi, S.; Rezaeipour, V.; Irani, M. Efficacy of phytobiotic and toxin binder feed additives individually or in combination on the growth performance, blood biochemical parameters, intestinal morphology, and microbial population in broiler chickens exposed to aflatoxin B1. Trop. Anim. Health Prod. 2021, 53, 335. [Google Scholar] [CrossRef]
- Sarker, M.T.; Wang, Z.Y.; Yang, H.; Wan, X.; Emmanuel, A. Evaluation of the protective effect of lycopene on growth performance, intestinal morphology, and digestive enzyme activities of aflatoxinB1 challenged broilers. Anim. Sci. J. 2021, 92, e13540. [Google Scholar] [CrossRef]
- Arif, M.; Iram, A.; Bhutta, M.A.K.; Naiel, M.A.E.; Abd El-Hack, M.E.; Othman, S.I.; Allam, A.A.; Amer, M.S.; Taha, A.E. The Biodegradation Role of Saccharomyces cerevisiae against Harmful Effects of Mycotoxin Contaminated Diets on Broiler Performance, Immunity Status, and Carcass characteristics. Animals 2020, 10, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesgar, A.; Shahryar, H.A.; Bailey, C.A.; Ebrahimnezhad, Y.; Mohan, A. Effect of Dietary L-Threonine and Toxin Binder on Performance, Blood Parameters, and Immune Response of Broilers Exposed to Aflatoxin B1. Toxins 2022, 14, 192. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Ding, K.; Wang, J.; Deng, Q.; Gu, K.; Wang, J. Effects of lactic acid bacteria and smectite after aflatoxin B1 challenge on the growth performance, nutrient digestibility and blood parameters of broilers. J. Anim. Physiol. Anim. Nutr. 2018, 102, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Han, X.-Y.; Huang, Q.-C.; Li, W.-F.; Jiang, J.-F.; Xu, Z.-R. Changes in growth performance, digestive enzyme activities and nutrient digestibility of cherry valley ducks in response to aflatoxin B1 levels. Livest. Sci. 2008, 119, 216–220. [Google Scholar] [CrossRef]
- Fowler, J.; Li, W.; Bailey, C. Effects of a Calcium Bentonite Clay in Diets Containing Aflatoxin when Measuring Liver Residues of Aflatoxin B1 in Starter Broiler Chicks. Toxins 2015, 7, 3455–3464. [Google Scholar] [CrossRef] [Green Version]
- Rajput, S.A.; Sun, L.; Zhang, N.; Khalil, M.M.; Gao, X.; Ling, Z.; Zhu, L.; Khan, F.A.; Zhang, J.; Qi, D. Ameliorative Effects of Grape Seed Proanthocyanidin Extract on Growth Performance, Immune Function, Antioxidant Capacity, Biochemical Constituents, Liver Histopathology and Aflatoxin Residues in Broilers Exposed to Aflatoxin B1. Toxins 2017, 9, 371. [Google Scholar] [CrossRef] [Green Version]
- Kasmani, F.B.; Torshizi, M.A.K.; Allameh, A.; Shariatmadari, F. A novel aflatoxin-bindingBacillus probiotic: Performance, serum biochemistry, and immunological parameters in Japanese quail. Poult. Sci. 2012, 91, 1846–1853. [Google Scholar] [CrossRef]
- Chen, X.; Horn, N.; Applegate, T.J. Efficiency of hydrated sodium calcium aluminosilicate to ameliorate the adverse effects of graded levels of aflatoxin B1 in broiler chicks. Poult. Sci. 2014, 93, 2037–2047. [Google Scholar] [CrossRef]
- Zabiulla, I.; Malathi, V.; Swamy, H.V.L.N.; Naik, J.; Pineda, L.; Han, Y. The Efficacy of a Smectite-Based Mycotoxin Binder in Reducing Aflatoxin B1 Toxicity on Performance, Health and Histopathology of Broiler Chickens. Toxins 2021, 13, 856. [Google Scholar] [CrossRef]
- Elwan, H.; Xie, C.; Miao, L.P.; Dong, X.; Zou, X.; Mohany, M.; Ahmed, M.M.; Al-Rejaie, S.S.; Elnesr, S.S. Methionine alleviates aflatoxinb1-induced broiler chicks embryotoxicity through inhibition of caspase-dependent apoptosis and enhancement of cellular antioxidant status. Poult. Sci. 2021, 100, 101103. [Google Scholar] [CrossRef]
- Salem, R.; El-Habashi, N.; Fadl, S.E.; Sakr, O.A.; Elbialy, Z.I. Effect of probiotic supplement on aflatoxicosis and gene expression in the liver of broiler chicken. Environ. Toxicol. Pharmacol. 2018, 60, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Śliżewska, K.; Cukrowska, B.; Smulikowska, S.; Cielecka-Kuszyk, J. The Effect of Probiotic Supplementation on Performance and the Histopathological Changes in Liver and Kidneys in Broiler Chickens Fed Diets with Aflatoxin B1. Toxins 2019, 11, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismail, I.E.; Farag, M.R.; Alagawany, M.; Mahmoud, H.K.; Reda, F.M. Efficacy of some feed additives to attenuate the hepato-renal damage induced by aflatoxin B1 in rabbits. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1343–1350. [Google Scholar] [CrossRef] [PubMed]
- Rashidi, N.; Khatibjoo, A.; Taherpour, K.; Akbari-Gharaei, M.; Shirzadi, H. Effects of licorice extract, probiotic, toxin binder and poultry litter biochar on performance, immune function, blood indices and liver histopathology of broilers exposed to aflatoxin-B1. Poult. Sci. 2020, 99, 5896–5906. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, I.; Wang, H.; Sun, X.; Wang, X.; Han, M.; Lu, Z.; Cheng, P.; Hussain, M.A.; Zhang, X. Dual role of dietary curcumin through attenuating AFB1-induced oxidative stress and liver injury via modulating liver phase-I and phase-II enzymes involved in AFB1 bioactivation and detoxification. Front. Pharmacol. 2018, 9, 554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hachani, R.; Sabir, H.; Sana, N.; Zohra, K.F.; Nesrine, N.M. Performance Study of a Low-cost Adsorbent—Raw Date Pits—for Removal of Azo Dye in Aqueous Solution. Water Environ. Res. 2017, 89, 827–839. [Google Scholar] [CrossRef]
- Al-Saad, K.; El-Azazy, M.; Issa, A.A.; Al-Yafie, A.; El-Shafie, A.S.; Al-Sulaiti, M.; Shomar, B. Recycling of Date Pits into a Green Adsorbent for Removal of Heavy Metals: A Fractional Factorial Design-Based Approach. Front. Chem. 2019, 7, 552. [Google Scholar] [CrossRef] [Green Version]
- Al-Ghouti, M.A.; Li, J.; Salamh, Y.; Al-Laqtah, N.; Walker, G.; Ahmad, M.N.M. Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent. J. Hazard. Mater. 2010, 176, 510–520. [Google Scholar] [CrossRef]
- Belhamdi, B.; Merzougui, Z.; Trari, M.; Addoun, A. A kinetic, equilibrium and thermodynamic study of l-phenylalanine adsorption using activated carbon based on agricultural waste (date stones). J. Appl. Res. Technol. 2016, 14, 354–366. [Google Scholar] [CrossRef] [Green Version]
- Daneshyar, F.; Afzali, N.; Farhangfar, H. Effects of different levels of date pits in broilers’ feed contaminated with aflatoxin B1 on broilers’ performance and carcass characteristic. Afr. J. Biotechnol. 2015, 13, 185–193. [Google Scholar] [CrossRef]
Ingredients | Starter | Grower | Finisher | ||||
---|---|---|---|---|---|---|---|
Control | 2% DP | 4% DP | Control | 2% DP | 4% DP | ||
Yellow corn | 54.2 | 57.3 | 55.3 | 53.3 | 59.8 | 58.5 | 56.0 |
Soybean meal (46% CP) | 31.4 | 29.3 | 27.8 | 27.8 | 27.0 | 25.0 | 25.0 |
Corn oil | 2.20 | 3.40 | 3.50 | 3.50 | 4.34 | 4.22 | 4.56 |
Corn gluten meal | 7.30 | 6.11 | 7.40 | 7.40 | 5.10 | 6.40 | 6.60 |
Date pits (DP) | 0.00 | 0.00 | 2.00 | 4.00 | 0.00 | 2.00 | 4.00 |
Dicalcium phosphate | 1.88 | 1.82 | 1.85 | 1.85 | 1.68 | 1.68 | 1.68 |
Ground limestone | 1.10 | 0.88 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 |
Choline chloride | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
DL-methionine | 0.30 | 0.23 | 0.24 | 0.24 | 0.25 | 0.26 | 0.26 |
L-lysine | 0.40 | 0.26 | 0.35 | 0.35 | 0.26 | 0.33 | 0.33 |
Salt | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 |
Threonine | 0.14 | 0.10 | 0.10 | 0.10 | 0.08 | 0.10 | 0.10 |
Vitamin–mineral premix 1 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Nutritional levels 2 | |||||||
ME (kcal/kg) | 3000 | 3100 | 3100 | 3100 | 3200 | 3200 | 3200 |
Crude protein | 23.0 | 21.5 | 21.5 | 21.5 | 20.0 | 20.0 | 20.0 |
Non-phytate phosphorus | 0.48 | 0.44 | 0.44 | 0.44 | 0.41 | 0.41 | 0.41 |
Calcium | 0.96 | 0.87 | 0.87 | 0.87 | 0.81 | 0.81 | 0.81 |
Digestible lysine | 1.28 | 1.15 | 1.15 | 1.15 | 1.06 | 1.06 | 1.06 |
Sulfur amino acids | 0.95 | 0.85 | 0.85 | 0.85 | 0.83 | 0.83 | 0.83 |
Threonine | 0.86 | 0.77 | 0.77 | 0.77 | 0.71 | 0.71 | 0.71 |
Treatments | 11–20 d | 21–30 d | 11–30 d | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DFI 2 | DWG | FCR | PEF | DFI | DWG | FCR | PEF | DFI | DWG | FCR | PEF | |
g | G | g:g | % | g | g | g:g | % | g | g | g:g | % | |
NC 1 | 67.3 a | 49.4 a | 1.36 b | 282 a | 119 | 79.6 a | 1.49 c | 349 a | 92.0 a | 64.5 a | 1.44 c | 360 a |
NC + 2% DP | 67.4 a | 49.1 a | 1.37 b | 278 a | 119 | 78.7 a | 1.52 bc | 344 a | 93.2 a | 63.9 a | 1.46 bc | 348 ab |
NC + 4% DP | 68.1 a | 49.5 a | 1.38 b | 282 a | 122 | 79.9 a | 1.53 bc | 344 a | 95.2 a | 64.7 a | 1.47 bc | 357 a |
PC | 59.9 b | 38.8 b | 1.55 a | 200 b | 112 | 64.3 b | 1.74 a | 257 c | 85.8 b | 51.6 b | 1.67 a | 287 d |
PC + 2% DP | 64.5 b | 44.7 ab | 1.45 b | 233 b | 119 | 74.0 a | 1.58 b | 300 b | 91.5 ab | 59.8 a | 1.53 b | 310 cd |
PC + 4% DP | 64.9 b | 45.4 a | 1.43 b | 239 ab | 118 | 76.5 a | 1.55 bc | 315 ab | 91.6 ab | 60.9 a | 1.50 bc | 324 bc |
SEM 3 | 1.62 | 1.32 | 0.02 | 10.20 | 2.21 | 1.86 | 0.02 | 8.49 | 1.49 | 1.14 | 0.02 | 7.47 |
p-value | 0.012 | 0.001 | 0.001 | 0.001 | 0.060 | 0.001 | 0.001 | 0.001 | 0.003 | 0.001 | 0.001 | 0.001 |
Treatments | Dressing | Breast | Leg | Fat | Liver | Bursa | Spleen | Gizzard |
---|---|---|---|---|---|---|---|---|
NC 1 | 71.2 a | 27.8 a | 20.4 | 0.95 | 2.01 c | 0.16 | 0.10 | 1.74 |
NC + 2% DP | 71.3 a | 27.3 a | 20.5 | 1.16 | 2.03 c | 0.15 | 0.10 | 1.96 |
NC + 4% DP | 71.2 a | 27.8 a | 20.0 | 0.87 | 2.00 c | 0.19 | 0.19 | 2.18 |
PC | 69.0 c | 24.7 b | 20.1 | 1.07 | 2.77 a | 0.18 | 0.12 | 2.37 |
PC + 2% DP | 69.8 bc | 24.0 b | 21.2 | 1.04 | 2.47 ab | 0.17 | 0.09 | 2.02 |
PC + 4% DP | 70.5 ab | 26.5 ab | 20.5 | 0.81 | 2.27 bc | 0.19 | 0.12 | 2.06 |
SEM 2 | 0.28 | 0.54 | 0.30 | 0.14 | 0.08 | 0.01 | 0.04 | 0.19 |
p-value | 0.001 | 0.001 | 0.109 | 0.533 | 0.001 | 0.407 | 0.588 | 0.306 |
Treatments | Biochemical Indices | Liver Function | Antioxidant Capacity | ||||||
---|---|---|---|---|---|---|---|---|---|
TP 2 | ALB | GLO | GLU | GOT | GPT | T-AOC | T-SOD | GR | |
g/dL | g/dL | g/dL | mg/dL | U/L | U/L | U/mg of Protein | |||
NC 1 | 5.29 a | 2.56 a | 2.73 ab | 207 a | 45.8 c | 7.44 b | 1.86 a | 185 a | 3.36 ab |
NC + 2% DP | 5.30 a | 2.37 ab | 2.94 b | 208 a | 46.2 c | 7.54 b | 1.85 a | 186 a | 3.26 ab |
NC + 4% DP | 5.33 a | 2.48 ab | 2.85 ab | 208 a | 45.4 c | 7.76 b | 1.84 a | 186 a | 2.98 ab |
PC | 4.42 b | 1.84 d | 2.58 ab | 165 c | 57.8 a | 10.83 a | 1.41 b | 171 c | 2.68 b |
PC + 2% DP | 5.00 a | 1.94 cd | 3.06 a | 188 b | 55.5 ab | 10.10 a | 1.69 a | 179 b | 3.48 a |
PC + 4% DP | 5.08 a | 2.18 bc | 2.90 ab | 189 b | 52.9 b | 8.34 b | 1.81 a | 181 ab | 3.03 ab |
SEM 3 | 0.08 | 0.08 | 0.10 | 2.78 | 0.79 | 0.29 | 0.05 | 1.31 | 0.17 |
p-value | 0.001 | 0.001 | 0.027 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.039 |
Treatments | Ileal Histology | Nutrient Digestibility | ||||||
---|---|---|---|---|---|---|---|---|
VH 2 | VW | VSA | CP | EE | AME | AMEn | AFB1 | |
µm | µm | μm2 | % | % | kcal/kg | kcal/kg | µg/kg | |
NC 1 | 609 a | 67.1 | 0.13 a | 63.4 ab | 77.3 a | 3284 a | 3154 a | 0.00 c |
NC + 2% DP | 616 a | 72.1 | 0.13 a | 63.3 ab | 77.3 a | 3287 a | 3151 a | 0.00 c |
NC + 4% DP | 622 a | 71.0 | 0.14 a | 63.7 a | 77.6 a | 3295 a | 3153 a | 0.00 c |
PC | 518 b | 59.5 | 0.10 b | 56.6 c | 74.8 b | 3209 c | 3049 c | 3.32 a |
PC + 2% DP | 608 a | 66.2 | 0.12 ab | 61.5 ab | 77.5 a | 3248 b | 3099 b | 1.23 b |
PC + 4% DP | 610 a | 65.0 | 0.13 a | 61.7 ab | 77.1 a | 3256 b | 3124 ab | 1.02 b |
SEM 3 | 17.94 | 3.50 | 0.01 | 0.49 | 0.26 | 5.98 | 9.87 | 0.11 |
p-value | 0.001 | 0.144 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharthi, A.S.; Al Sulaiman, A.R.; Aljumaah, R.S.; Alabdullatif, A.A.; Elolimy, A.A.; Alqhtani, A.H.; Al-Garadi, M.A.; Abudabos, A.M. Protective Effect of Date Pits on Growth Performance, Carcass Traits, Blood Indices, Intestinal Morphology, Nutrient Digestibility, and Hepatic Aflatoxin Residues of Aflatoxin B1-Exposed Broilers. Agriculture 2022, 12, 476. https://doi.org/10.3390/agriculture12040476
Alharthi AS, Al Sulaiman AR, Aljumaah RS, Alabdullatif AA, Elolimy AA, Alqhtani AH, Al-Garadi MA, Abudabos AM. Protective Effect of Date Pits on Growth Performance, Carcass Traits, Blood Indices, Intestinal Morphology, Nutrient Digestibility, and Hepatic Aflatoxin Residues of Aflatoxin B1-Exposed Broilers. Agriculture. 2022; 12(4):476. https://doi.org/10.3390/agriculture12040476
Chicago/Turabian StyleAlharthi, Abdulrahman S., Ali R. Al Sulaiman, Riyadh S. Aljumaah, Abdulaziz A. Alabdullatif, Ahmed A. Elolimy, Abdulmohsen H. Alqhtani, Maged A. Al-Garadi, and Alaeldein M. Abudabos. 2022. "Protective Effect of Date Pits on Growth Performance, Carcass Traits, Blood Indices, Intestinal Morphology, Nutrient Digestibility, and Hepatic Aflatoxin Residues of Aflatoxin B1-Exposed Broilers" Agriculture 12, no. 4: 476. https://doi.org/10.3390/agriculture12040476