How Communication Affects the Adoption of Digital Technologies in Soybean Production: A Survey in Brazil
Abstract
:1. Introduction
2. Conceptual Framework
3. Materials and Methods
3.1. Data Collection
3.2. Survey Instrument
3.3. Data Analysis
4. Results and Discussion
4.1. Demographic Profile
4.2. Technologies Adoption On-Farm, Decisions, and Benefits
4.3. Communication Channels to Spread Information
4.4. Relationship between the Adoption of Technologies and Communication Channels
4.5. Impacts of the COVID-19 Pandemic
5. Conclusions and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Easley, D.; Kleinberg, J. Networks, Crowds, and Markets; Cambridge University Press: Cambridge, UK, 2010; Volume 8. [Google Scholar]
- Dyer, J. The Data Farm. An Investigation of the Implications of Collecting Data on Farm; n 1506; Nuffield Australia Farming Scholars: North Sydney, Australia, September 2016. [Google Scholar]
- Boehlje, M.; Langemeier, M. The Role of Information in Today’s Uncertain Business Climate. 2021. Available online: https://ag.purdue.edu/commercialag/home/resource/2021/02/the-value-of-data-information-and-the-payoff-of-precision-farming/ (accessed on 15 December 2021).
- Faulkner, A.; Cebul, K.; McHenry, G. Agriculture Gets Smart: The Rise of Data and Robotics; Cleantech Agriculture Report, Cleantech Group: San Francisco, CA, USA, 2014. [Google Scholar]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big data in smart farming–A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Jain, L.; Kumar, H.; Singla, R.K. Assessing Mobile Technology Usage for Knowledge Dissemination among Farmers in Punjab. Inf. Technol. Dev. 2014, 21, 668–676. [Google Scholar] [CrossRef]
- Thompson, N.M.; Bir, C.; Widmar, D.A.; Mintert, J.R. Farmer perceptions of precision agriculture technology benefits. J. Agric. Appl. Econ. 2018, 51, 142–163. [Google Scholar] [CrossRef] [Green Version]
- Shockley, J.; Dillon, C.R.; Stombaugh, T.S. The influence of auto-steer on machinery selection and land acquisition. J. Am. Soc. Farm Manag. Rural. Appraisers 2012, 387, 1–7. [Google Scholar]
- Aubert, B.A.; Schroeder, A.; Grimaudo, J. IT as enabler of sustainable farming: An empirical anal-ysis of farmers’ adoption decision of precision agriculture technology. Decis. Support Syst. 2012, 54, 510–520. [Google Scholar] [CrossRef] [Green Version]
- Reichardt, M.; Jürgens, C. Adoption and future perspective of precision farming in Germany: Results of several surveys among different agricultural target groups. Precis. Agric. 2009, 10, 73–94. [Google Scholar] [CrossRef]
- Stafford, J.V. Implementing Precision Agriculture in the 21st Century. J. Agric. Eng. Res. 2000, 76, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Pope, M.; Sonka, S. Quantifying the Economic Benefits of On-Farm Digital Technologies; Department of Agricultural and Consumer Economics, University of Illinois at Urbana-Champaign: Champaign, IL, USA, 2020. [Google Scholar]
- Bolfe, É.L.; Jorge, L.A.D.C.; Sanches, I.D.A.; Luchiari Júnior, A.; da Costa, C.C.; Victoria, D.D.C.; Ramirez, A.R. Precision and digital agriculture: Adoption of technologies and perception of Brazilian farmers. Agriculture 2020, 10, 653. [Google Scholar] [CrossRef]
- Gelb, E.; Voet, H. ICT Adoption Trends in Agriculture: A summary of the EFITA ICT Adoption Questionnaires (1999–2009). 2009. Available online: http://departments.agri.huji.ac.il/economics/voet-gelb.pdf (accessed on 17 November 2021).
- Lambert, D.M.; English, B.C.; Harper, D.C.; Larkin, S.L.; Larson, J.A.; Mooney, D.F.; Reeves, J.M. Adoption and frequency of precision soil testing in cotton production. J. Agric. Resour. Econ. 2014, 39, 106–123. [Google Scholar]
- Roberts, R.K.; English, B.C.; Larson, J.A.; Cochran, R.L.; Goodman, W.R.; Larkin, S.L.; Marra, M.C.; Martin, S.W.; Shurley, W.D.; Reeves, J.M. Adoption of Site-Specific Information and Variable-Rate Technologies in Cotton Precision Farming. J. Agric. Appl. Econ. 2004, 36, 143–158. [Google Scholar] [CrossRef]
- Rogers, E. The Diffusion of Innovations; The Free Press: New York, NY, USA, 2003. [Google Scholar]
- Paustian, M.; Theuvsen, L. Adoption of precision agriculture technologies by German crop farmers. Precis. Agric. 2017, 18, 701–716. [Google Scholar] [CrossRef]
- Chowdhury, A.; Odame, H.H. Social media for enhancing innovation in agri-food and rural development: Current dynamics in Ontario, Canada. J. Rural. Community Dev. 2014, 8, 99. [Google Scholar]
- Carrer, M.J.; Filho, H.S.; Batalha, M.O. Factors influencing the adoption of Farm Management Information Systems (FMIS) by Brazilian citrus farmers. Comput. Electron. Agric. 2017, 138, 11–19. [Google Scholar] [CrossRef]
- Haller, L.; Specht, A.R.; Buck, E.B. Exploring the Impact of Ohio Agricultural Organizations’ Social Media Use on Traditional Media Coverage of Agriculture. J. Appl. Commun. 2019, 103, NA. [Google Scholar] [CrossRef] [Green Version]
- Fox, G.; Mooney, J.; Rosati, P.; Lynn, T. AgriTech Innovators: A Study of Initial Adoption and Continued Use of a Mobile Digital Platform by Family-Operated Farming Enterprises. Agriculture 2021, 11, 1283. [Google Scholar] [CrossRef]
- Conab, National Supply Company. Monitoring of the Brazilian Grain Harvest. Brasília, DF, v. 8, 2020/21 crop, n.9. June 2021. Available online: https://www.conab.gov.br/info-agro/safras (accessed on 12 July 2021).
- Conab, National Supply Company. Perspectives for Agriculture 2021/2022 crop season. Grain edition. Brasília, DF, v. 9. August 2021. Available online: https://www.conab.gov.br/institucional/publicacoes/perspectivas-para-a-agropecuaria/item/16668-perspectivas-para-a-agropecuaria-volume-9-safra-2021-2022-edicao-graos (accessed on 21 November 2021).
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Schimmelpfennig, D.; Ebel, R. Sequential adoption and cost savings from precision agriculture. J. Agric. Resour. Econ. 2016, 41, 97–115. [Google Scholar]
- Bakhtiar, A.; Novanda, R.R. The relationship between the adoption of innovation and the communication channel of Madura Cattle farmers. J. Socioecon. Dev. 2018, 1, 72–78. [Google Scholar] [CrossRef]
- Littlejohn, S.W.; Foss, K.A.; Oetzel, J.G. Theories of Human Communication, 12th ed.; Waveland Press: Long Grove, IL, USA, 2021. [Google Scholar]
- Kapoor, K.K.; Dwivedi, Y.K.; Williams, M.D. Rogers’ innovation adoption attributes: A system-atic review and synthesis of existing research. Inf. Syst. Manag. 2014, 31, 74–91. [Google Scholar] [CrossRef] [Green Version]
- Dearing, J.W.; Cox, J.G. Diffusion of innovations theory, principles, and practice. Health Aff. 2018, 37, 183–190. [Google Scholar] [CrossRef]
- Pathak, H.S.; Brown, P.; Best, T. A systematic review of the factors affecting the precision agriculture adoption process. Precis. Agric. 2019, 20, 1292–1316. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G. Why Don’t Men Ever Stop to Ask for Directions? Gender, Social Influence, and Their Role in Technology Acceptance and Usage Behavior. MIS Q. 2000, 24, 115. [Google Scholar] [CrossRef]
- Salmons, J.; Wilson, L. (Eds.) Handbook of Research on Electronic Collaboration and Organizational Synergy; IGI Global: Hershey, PA, USA, 2008. [Google Scholar]
- Wolf, S.A.; Buttel, F.H. The political economy of precision farming. Am. J. Agric. Econ. 1996, 78, 1269–1274. [Google Scholar] [CrossRef]
- Sonka, S.T. Digital Technologies, Big Data, and Agricultural Innovation. Innov. Revolut. Agric. 2020, 207–226. [Google Scholar]
- Erickson, B.; Lowenberg-Deboer, J. 2019 Precision Agriculture Dealership Survey, Department of Agricultural Economics and Agronomy, Purdue University. 2020. Available online: https://ag.purdue.edu/digital-ag-resources/wp-content/uploads/2020/03/2019-CropLife-Purdue-Precision-Survey-Report-4-Mar-2020-1.pdf (accessed on 10 October 2020).
- Erickson, B.; Lowenberg-Deboer, J.; Bradford, J. 2017 Precision Agriculture Dealership Survey. Department of Agricultural Economics and Agronomy, Purdue University. Available online: https://agribusiness.purdue.edu/wp-content/uploads/2019/07/croplife-purdue-2017-precision-dealer-survey-report.pdf (accessed on 11 October 2020).
- ABMRA, Brazilian Association of Rural Marketing and Agribusiness. 8th ABMRA Survey Farmer Habits. São Paulo, SP, v. 8. 2020. Available online: https://abmra.org.br/pesquisa-abmra/ (accessed on 18 November 2021).
- Daberkow, S.G.; McBride, W.D. Farm and Operator Characteristics Affecting the Awareness and Adoption of Precision Agriculture Technologies in the US. Precis. Agric. 2003, 4, 163–177. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Censo Agropecuário. 2017. Available online: https://sidra.ibge.gov.br/pesquisa/censo-agropecuario/censo-agropecuario-2017 (accessed on 5 June 2021).
- Jensen, H.G.; Jacobsen, L.-B.; Pedersen, S.M.; Tavella, E. Socioeconomic impact of widespread adoption of precision farming and controlled traffic systems in Denmark. Precis. Agric. 2012, 13, 661–677. [Google Scholar] [CrossRef]
- Tey, Y.S.; Brindal, M. Factors influencing the adoption of precision agricultural technologies: A review for policy implications. Precis. Agric. 2012, 13, 713–730. [Google Scholar] [CrossRef]
- Kutter, T.; Tiemann, S.; Siebert, R.; Fountas, S. The role of communication and co-operation in the adoption of precision farming. Precis. Agric. 2009, 12, 2–17. [Google Scholar] [CrossRef]
- Torbett, J.C.; Roberts, R.K.; Larson, J.A.; English, B.C. Perceived importance of precision farming technologies in improving phosphorus and potassium efficiency in cotton production. Precis. Agric. 2007, 8, 127–137. [Google Scholar] [CrossRef]
- McBride, W.D.; Daberkow, S.G. Information and the adoption of precision farming technologies. J. Agribus. 2003, 21, 21–38. [Google Scholar]
- Olagunju, K.O.; Ogunniyi, A.I.; Oyetunde-Usman, Z.; Omotayo, A.O.; Awotide, B.A. Does agricultural cooperative membership impact technical efficiency of maize production in Nigeria: An analysis correcting for biases from observed and unobserved attributes. PLoS ONE 2021, 16, e0245426. [Google Scholar] [CrossRef] [PubMed]
- Neves, M.D.C.R.; Silva, F.D.F.; de Freitas, C.O.; Braga, M.J. The Role of Cooperatives in Brazilian Agricultural Production. Agriculture 2021, 11, 948. [Google Scholar] [CrossRef]
- Helfand, S.M.; Levine, E.S. Farm size and the determinants of productive efficiency in the Brazilian Center-West. Agric. Econ. 2004, 31, 241–249. [Google Scholar] [CrossRef]
- Neves, M.D.C.R.; Castro, L.S.D.; Freitas, C.O.D. O impacto das cooperativas na produção agropecuária brasileira: Uma análise econométrica espacial. Rev. Econ. Sociol. Rural. 2019, 57, 559–576. [Google Scholar] [CrossRef]
- Jorge-Vázquez, J.; Chivite-Cebolla, M.; Salinas-Ramos, F. The Digitalization of the European Agri-Food Cooperative Sector. Determining Factors to Embrace Information and Communication Technologies. Agriculture 2021, 11, 514. [Google Scholar] [CrossRef]
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Mogili, U.R.; Deepak, B.B.V.L. Review on Application of Drone Systems in Precision Agriculture. Procedia Comput. Sci. 2018, 133, 502–509. [Google Scholar] [CrossRef]
- Mintert, J.R.; Widmar, D.; Langemeier, M.; Boehlje, M.; Erickson, B. The Challenges of Precision Agriculture: Is Big Data the Answer? 2016. Available online: https://ageconsearch.umn.edu/record/230057 (accessed on 21 April 2022).
- Anselmi, A.A.; Bredemeier, C.; Federizzi, L.C.; Molin, J.P. Factors Related to Adoption of Precision Agriculture Technologies in Southern Brazil. ISPA (Ed.), Proc. of the 12th International Conference on Precision Agriculture, ISPA, Sacramento, California, 2014, p. 11. Available online: http://afurlan.com.br/lap/cp/assets/layout/files/tc/pub_factors-related-to-adoption-of-precision-agriculture--technologies-in-southern-brazil--anselmi-a-a-c-bredemeier-federizzi-lc-molin-jp-icpa-2014-24-02-2016.pdf (accessed on 21 April 2022).
- Robertson, M.J.; Llewellyn, R.S.; Mandel, R.; Lawes, R.; Bramley, R.G.V.; Swift, L.; O’callaghan, C. Adoption of variable rate fertilizer application in the Australian grains industry: Status, issues and prospects. Precis. Agric. 2012, 13, 181–199. [Google Scholar] [CrossRef]
- Barnes, A.; Soto, I.; Eory, V.; Beck, B.; Balafoutis, A.; Sánchez, B.; Vangeyte, J.; Fountas, S.; van der Wal, T.; Gómez-Barbero, M. Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers. Land Use Policy 2018, 80, 163–174. [Google Scholar] [CrossRef]
- Chyi, H.I.; Ng, Y.M.M. Still Unwilling to Pay: An Empirical Analysis of 50 U.S. Newspapers’ Digital Subscription Results. Digit. J. 2020, 8, 526–547. [Google Scholar] [CrossRef]
- Statista. WhatsApp—Statistics Facts. Statista Research Department. 8 February 2022. Available online: https://www.statista.com/study/20494/whatsapp-statista-dossier/ (accessed on 20 February 2022).
- Arthurs, J.; Drakopoulou, S.; Gandini, A. Researching YouTube. Converg. Int. J. Res. Into New Media Technol. 2018, 24, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Adekunle, B.; Kajumba, C. Social Media and Economic Development: The Role of Instagram in Developing Countries. In Business in Africa in the Era of Digital Technology; Springer: Cham, Switzerland, 2021; pp. 85–99. [Google Scholar]
- O’Donoghue, C.; Heanue, K. The impact of formal agricultural education on farm level innovation and management practices. J. Technol. Transf. 2016, 43, 844–863. [Google Scholar] [CrossRef]
- Deichmann, U.; Goyal, A.; Mishra, D. Will digital technologies transform agriculture in developing countries? Agric. Econ. 2016, 47, 21–33. [Google Scholar] [CrossRef]
- Maertens, A.; Barrett, C.B. Measuring social networks’ effects on agricultural technology adoption. Am. J. Agric. Econ. 2013, 95, 353–359. [Google Scholar] [CrossRef]
- Ellison, G.; Fudenberg, D. Rules of Thumb for Social Learning. J. Polit. Econ. 1993, 101, 612–643. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Annosi, M.C.; Brunetta, F.; Monti, A.; Nati, F. Is the trend your friend? An analysis of technology 4.0 investment decisions in agricultural SMEs. Comput. Ind. 2019, 109, 59–71. [Google Scholar] [CrossRef]
- Lowenberg-DeBoer, J.M.; Erickson, B. Setting the record straight on precision agriculture adoption. Agron. J. 2019, 111, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Gasques, J.G.; Bastos, E.T.; Valdes, C.; Bacchi, M.R.P. Produtividade da agricultura brasileira: Resultados para o Brasil e estados selecionados. Rev. Polít. Agríc. 2014, 23, 87–98. [Google Scholar]
- Fuglie, K.O.; Wang, S.L.; Ball, V.E. (Eds.) Productivity Growth in Agriculture: An International Perspective; CABI International: Wallingford, UK, 2012. [Google Scholar]
- Chaddad, F. The Economics and Organization of Brazilian Agriculture: Recent Evolution and Productivity Gains; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Da Silva, V.P.; van der Werf, H.M.; Spies, A.; Soares, S.R. Variability in environmental impacts of Brazilian soybean according to crop production and transport scenarios. J. Environ. Manag. 2010, 91, 1831–1839. [Google Scholar] [CrossRef] [PubMed]
- Haggag, W.M. Agricultural digitalization and rural development in COVID-19 response plans: A review article. Int. J. Agric. Technol. 2021, 17, 67–74. [Google Scholar]
Precision and Digital Technologies | Means |
---|---|
Guidance/autosteer | 3.56 |
Satellite/drone imagery | 2.99 |
Yield monitors | 2.92 |
Telematic systems | 2.11 |
Wired or wireless sensor networks | 2.10 |
Electronic records/mapping for traceability | 2.09 |
Spot spray systems | 1.98 |
Soil EC mapping | 1.50 |
Decisions | Means |
Nitrogen, phosphorus, potassium (NPK) fertilization and liming applications | 3.64 |
Overall hybrid/variety selection | 3.49 |
Overall crop planting rates | 3.44 |
Planting date decision | 3.35 |
Pesticide selection (herbicides, insecticides or fungicides) | 3.26 |
Cropping sequence/rotation decisions | 3.12 |
Variable seeding rate | 2.38 |
Irrigation decisions | 2.02 |
Benefits | Means |
Increased crop productivity/yields | 3.70 |
Cost reductions | 3.63 |
Labor efficiencies | 3.57 |
Autosteer (less fatigue/stress) | 3.54 |
Time savings (paper filing to digital) | 3.51 |
Purchase of inputs | 3.38 |
Lower environmental impact | 3.34 |
Marketing choices | 3.31 |
Mass Media | Means |
---|---|
Website and blog | 3.38 |
Subscription television | 2.41 |
Radio | 2.17 |
Open television | 2.15 |
Magazine | 2.11 |
Newspaper | 1.75 |
Social Media | Means |
3.65 | |
YouTube | 3.17 |
2.61 | |
2.40 | |
2.03 | |
Messenger | 1.71 |
Interpersonal Meetings | Means |
Field days | 3.87 |
Conferences, forums, and seminars | 3.86 |
Extension agents | 3.63 |
Conversation with neighbors | 3.62 |
Peer groups (formal or informal) | 3.42 |
Retailers | 3.20 |
Precision and Digital Technologies | Communication Channels | Spearman’s Rank Correlation Coefficient (ρS) |
---|---|---|
Guidance/Autosteer | 1st Conversation with neighbors | 0.209 ** |
2nd Conferences, forums, and seminars | 0.120 ** | |
3rd Field days | 0.096 ** | |
Yield monitors | 1st LinkedIn | 0.178 ** |
2nd Conversation with neighbors | 0.170 ** | |
3rd Subscription television | 0.145 ** | |
Satellite/drone imagery | 1st LinkedIn | 0.253 ** |
2nd Conferences, forums, and seminars | 0.246 ** | |
3rd Instagram | 0.226 ** | |
Soil EC mapping | 1st LinkedIn | 0.228 ** |
2nd Instagram | 0.183 ** | |
3rd Messenger | 0.182 ** | |
Wired or wireless sensor networks | 1st LinkedIn | 0.261 ** |
2nd Instagram | 0.208 ** | |
3rd Conferences, forums, and seminars | 0.183 ** | |
Electronic records/mapping for traceability | 1st LinkedIn | 0.224 ** |
2nd Instagram | 0.180 ** | |
3rd Conferences, forums, and seminars | 0.148 ** | |
Spot spray systems | 1st LinkedIn | 0.221 ** |
2nd Subscription television | 0.189 ** | |
3rd WhatsApp | 0.151 ** | |
Telematic systems | 1st LinkedIn | 0.246 ** |
2nd Instagram | 0.186 ** | |
3rd Peer groups (formal or informal) | 0.135 ** |
N | Mean | Std. Deviation | |
---|---|---|---|
Less than a bachelor’s degree | 113 | 1.66 | 1.057 |
Bachelor’s degree | 182 | 1.88 | 1.186 |
Graduate degree | 158 | 2.46 | 1.461 |
Total | 453 | 2.03 | 1.300 |
N | Mean | Std. Deviation | |
---|---|---|---|
Under 41 years | 198 | 3.02 | 1.342 |
From 41 to 55 years | 161 | 2.50 | 1.309 |
More than 56 years | 98 | 1.98 | 1.201 |
Total | 457 | 2.61 | 1.359 |
Making Decisions | Communication Channels | Spearman’s Rank Correlation Coefficient (ρS) |
---|---|---|
Nitrogen, phosphorus, potassium (NPK) fertilization and liming applications | 1st Conferences, forums, and seminars | 0.284 ** |
2nd Peer groups (formal or informal) | 0.247 ** | |
3rd Field days | 0.244 ** | |
Overall hybrid/variety selection | 1st Field days and WhatsApp | 0.263 ** |
2nd Conferences, forums, and seminars | 0.260 ** | |
3rd Website and blog | 0.238 ** | |
Overall crop planting rates | 1st WhatsApp | 0.230 ** |
2nd Field days | 0.218 ** | |
3rd Website and blog | 0.186 ** | |
Variable seeding rate | 1st LinkedIn | 0.209 ** |
2nd Retailers | 0.205 ** | |
3rd Subscription television | 0.175 ** | |
Planting date decision | 1st Field days | 0.229 ** |
2nd Subscription television | 0.217 ** | |
3rd Radio | 0.215 ** | |
Pesticide selection (herbicides, insecticides or fungicides) | 1st WhatsApp | 0.270 ** |
2nd Field days | 0.260 ** | |
3rd Subscription television | 0.234 ** | |
Cropping sequence/rotation decisions | 1st WhatsApp | 0.244 ** |
2nd Subscription television | 0.238 ** | |
3rd Conferences, forums, and seminars | 0.234 ** | |
Irrigation | 1st LinkedIn | 0.220 ** |
2nd Magazines | 0.213 ** | |
3rd Radio | 0.190 ** |
Perceived Benefits | Communication Channels | Spearman’s Rank Correlation Coefficient (ρS) |
---|---|---|
Increased crop productivity/yields | 1st Field days and Conferences, forums, and seminars | 0.312 ** |
2nd Website and blog | 0.274 ** | |
3rd WhatsApp | 0.240 ** | |
Cost reductions | 1st Conferences, forums, and seminars | 0.344 ** |
2nd Field days | 0.280 ** | |
3rd WhatsApp | 0.245 ** | |
Purchase of inputs | 1st WhatsApp | 0.262 ** |
2nd Conferences, forums, and seminars | 0.260 ** | |
3rd Website and blog | 0.244 ** | |
Marketing choices | 1st WhatsApp | 0.311 ** |
2nd Website and blog | 0.227 ** | |
3rd Conferences, forums, and seminars | 0.204 ** | |
Time savings (paper filing to digital) | 1st Conferences, forums, and seminars | 0.343 ** |
2nd Website and blog | 0.269 ** | |
3rd Field days | 0.249 ** | |
Labor efficiencies | 1st Conferences, forums, and seminars | 0.351 ** |
2nd Field days | 0.270 ** | |
3rd Extension agents | 0.260 ** | |
Lower environmental impact | 1st Conferences, forums, and seminars | 0.340 ** |
2nd Field days | 0.279 ** | |
3rd Extension agents | 0.269 ** | |
Autosteer (less fatigue/stress) | 1st Conferences, forums, and seminars | 0.240 ** |
2nd Conversation with neighbors | 0.231 ** | |
3rd Instagram | 0.184 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colussi, J.; Morgan, E.L.; Schnitkey, G.D.; Padula, A.D. How Communication Affects the Adoption of Digital Technologies in Soybean Production: A Survey in Brazil. Agriculture 2022, 12, 611. https://doi.org/10.3390/agriculture12050611
Colussi J, Morgan EL, Schnitkey GD, Padula AD. How Communication Affects the Adoption of Digital Technologies in Soybean Production: A Survey in Brazil. Agriculture. 2022; 12(5):611. https://doi.org/10.3390/agriculture12050611
Chicago/Turabian StyleColussi, Joana, Eric L. Morgan, Gary D. Schnitkey, and Antônio D. Padula. 2022. "How Communication Affects the Adoption of Digital Technologies in Soybean Production: A Survey in Brazil" Agriculture 12, no. 5: 611. https://doi.org/10.3390/agriculture12050611
APA StyleColussi, J., Morgan, E. L., Schnitkey, G. D., & Padula, A. D. (2022). How Communication Affects the Adoption of Digital Technologies in Soybean Production: A Survey in Brazil. Agriculture, 12(5), 611. https://doi.org/10.3390/agriculture12050611