Growth Characteristics of Dracocephalum moldavica L. in Relation to Density for Sustainable Cropping Technology Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Biological Material
2.3. Statistical Analysis
3. Results
3.1. Influence of Experimental Factors on D. moldavica Growth and Development Parameters
3.2. Influence of Planting Density on D. moldavica Growth and Development Parameters
3.3. Influence of Row-by-Row Distance and Experimental Year on D. moldavica Growth and Development Parameters
3.4. Influence of Plant-by-Plant Distance and Experimental Year on D. moldavica Growth and Development Parameters
3.5. Interrelations between D. moldavica Growth and Development Parameters
3.6. Detection of Factor Importance on D. moldavica Growth and Development Based on Cluster Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baricevic, D.; Bernáth, J.; Maggioni, L.; Lipman, E. Report of a working group on medicinal and aromatic plants. In Proceedings of the European Cooperative Programme for Crop Genetic Resources Networks, First Meeting, Gozd Martuljek, Slovenia, 12–14 September 2002. [Google Scholar]
- Yousefzadeh, S.; Modarres-Sanavy, S.A.M.; Sefidkon, F.; Asgarzadeh, A.; Ghalavand, A.; Sadat-Asilan, K. Effects of Azocompost and Urea on the Herbage Yield and Contents and Compositions of Essential Oils from Two Genotypes of Dragonhead (Dracocephalum moldavica L.) in Two Regions of Iran. Food Chem. 2013, 138, 1407–1413. [Google Scholar] [CrossRef] [PubMed]
- Roychoudhury, A.; Bhowmik, R. State-of-the-Art Technologies for Improving the Quality of Medicinal and Aromatic Plants. In Medicinal and Aromatic Plants; Springer: Berlin/Heidelberg, Germany, 2021; pp. 593–627. [Google Scholar]
- Grigore, A.; Pirvu, L.; Bubueanu, C.; Colceru-Mihul, S.; Ionita, C.; Ionita, L. Medicinal Plant Crops-Important Source of High Value-Added Products. Sci. Pap. Ser. A Agron. LIX 2016, 59, 298–307. [Google Scholar]
- Rezaei-Chiyaneh, E.; Amirnia, R.; Fotohi Chiyaneh, S.; Maggi, F.; Barin, M.; Razavi, B.S. Improvement of Dragonhead (Dracocephalum moldavica L.) Yield Quality through a Coupled Intercropping System and Vermicompost Application along with Maintenance of Soil Microbial Activity. Land Degrad. Dev. 2021, 32, 2833–2848. [Google Scholar] [CrossRef]
- Aprotosoaie, A.C.; Mihai, C.T.; Vochita, G.; Rotinberg, P.; Trifan, A.; Luca, S.V.; Petreus, T.; Gille, E.; Miron, A. Antigenotoxic and Antioxidant Activities of a Polyphenolic Extract from European Dracocephalum moldavica L. Ind. Crops Prod. 2016, 79, 248–257. [Google Scholar] [CrossRef]
- Şimea, S.; Duda, M.; Ghete, A.; Muresan, C.; Crișan, I. The Importance and Use of The Species Dracocepahlum moldavica. Hop Med. Plants 2018, 26, 39–43. [Google Scholar]
- Hussein, M.S.; El-Sherbeny, S.E.; Khalil, M.Y.; Naguib, N.Y.; Aly, S.M. Growth Characters and Chemical Constituents of Dracocephalum moldavica L. Plants in Relation to Compost Fertilizer and Planting Distance. Sci. Hortic. 2006, 108, 322–331. [Google Scholar] [CrossRef]
- Khaleghnezhad, V.; Yousefi, A.R.; Tavakoli, A.; Farajmand, B.; Mastinu, A. Concentrations-Dependent Effect of Exogenous Abscisic Acid on Photosynthesis, Growth and Phenolic Content of Dracocephalum moldavica L. under Drought Stress. Planta 2021, 253, 127. [Google Scholar] [CrossRef]
- Ardelean, A.; Mohan, G. Flora Medicinală a României; Editura All: Bucharest, Romania, 2008; p. 280. ISBN 978-973-571-838-1. [Google Scholar]
- Verzea, M. Tehnologii de Cultura la Plantele Medicinale Si Aromatice; Editura Orizonturi: Bucharest, Romania, 2012; ISBN 973-9342-33-7. [Google Scholar]
- Istudor, V. Farmacognozie, Fitochimie, Fitoterapie; Editura Medicală: Bucharest, Romania, 2001; Volume 2, p. 321. [Google Scholar]
- Muntean, L.S.; Tămaş, M.; Muntean, S.; Muntean, L.; Duda, M.M.; Vârban, D.I.; Florian, S. Tratat de Plante Medicinale Cultivate Şi Spontane, 2nd ed.; Editura Risoprint: Cluj-Napoca, Romania, 2016; p. 417. ISBN 978-973-53-1873. [Google Scholar]
- Frąc, M.; Oszust, K.; Kocira, A.; Kocira, S. Molecular Identification of Fungi Isolated from Dracocephalum moldavica L. Seeds. Agric. Agric. Sci. Procedia 2015, 7, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Coiciu, E. Plante Medicinale Aromatice; Editura Academiei Republicii Populare Române: Bucharest, Romania, 1961. [Google Scholar]
- Păun, E.; Mihalea, A.; Dumitrescu, A.; Verzea, M.; Coșocariu, O. Tratat de Plante Medicinale Și Aromatice Cultivate; Editura Academiei: Bucharest, Romania, 1988; Volume 2. [Google Scholar]
- Available online: https://www.madr.ro/culturi-de-camp/plante-medicinale-si-aromatice.html (accessed on 10 February 2022).
- Eyres, G.; Dufour, J.-P.; Hallifax, G.; Sotheeswaran, S.; Marriott, P.J. Identification of Character-Impact Odorants in Coriander and Wild Coriander Leaves Using Gas Chromatography-Olfactometry (GCO) and Comprehensive Two-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry (GC × GC-TOFMS). J. Sep. Sci. 2005, 28, 1061–1074. [Google Scholar] [CrossRef]
- Abdossi, V.; Mohammadi, H.; Ahmadi, S.H.H.; Hadipanah, A. The Response of Dragon Head (Dracocephalum moldavica L.) Plant to Sowing Date and Planting Density. Biol. Forum-Int. J. 2015, 7, 36. [Google Scholar]
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio Inc.: Boston, MA, USA, 2019. [Google Scholar]
- RCore Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- De Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. 2019. Available online: https://CRAN.R-project.org/package=agricolae (accessed on 10 November 2021).
- Harrell, F.E., Jr. Hmisc: Harrell Miscellaneous; R Package Version 4.5-0. 2021, R Package. Available online: https://CRAN.R-project.org/package=Hmisc (accessed on 25 February 2022).
- Paradis, E.; Schliep, K. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef]
- Cunningham, A.B. African Medicinal Plants: Setting Priorities at the Interface Between Conservation and Primary Healthcare; United Nations Educational, Scientific and Cultural Organization: Paris, France, 1993. [Google Scholar]
- Marshall, N.T. Searching for a Cure: Conservation of Medicinal Wildlife Resources in East and Southern Africa; Traffic International: Cambridge, UK, 1998; ISBN 978-1-85850-151-2. [Google Scholar]
- Shanan, H.; Sheng, N. Utilization and Conservation of Medicinal Plants in China with Special Reference to Atractylodes Lancea; Food and Agricultural Organization: Rome, Italy, 1997. [Google Scholar]
- Lange, D. Trade in Plant Material for Medicinal and Other Purposes-a German Case Study. Traffic Bull. Wildl. Trade Monit. Unit 1997, 17, 20–32. [Google Scholar]
- Brevoort, P. Booming US Botanical Market: A New Overview. HerbalGram 1998, 1, 33–46. [Google Scholar]
- Gabler, J. Breeding for Resistance to Biotic and Abiotic Factors in Medicinal and Aromatic Plants: General Situation and Current Results in Annual Caraway (Carum carvi L. var. annum). J. Herbs Spices Med. Plants 2002, 9, 1–11. [Google Scholar] [CrossRef]
- Allkin, B. Useful plants: Medicines at least 28,187 plant species are currently recorded as being of medicinal use. In State of the World’s Plants 2017; Royal Botanic Gardens: London, UK, 2017. [Google Scholar]
- Pešić, M.; Stanković, S. Development of natural product drugs in a sustainable manner. In Brief for United Nations Global Sustainable Development Report; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Fitzgerald, M.; Heinrich, M.; Booker, A. Medicinal Plant Analysis: A Historical and Regional Discussion of Emergent Complex Techniques. Front. Pharmacol. 2020, 10, 1480. [Google Scholar] [CrossRef]
- Acimovic, M.G.; Stanković, J.; Cvetković, M.; Todosijević, M.; Rat, M. Essential Oil Analysis of Dracocephalum moldavica L. from Serbia. Biol. Nyssana 2019, 10, 18–28. [Google Scholar]
- Jiang, J.; Yuan, X.; Wang, T.; Chen, H.; Zhao, H.; Yan, X.; Wang, Z.; Sun, X.; Zheng, Q. Antioxidative and Cardioprotective Effects of Total Flavonoids Extracted from Dracocephalum moldavica L. against Acute Ischemia/Reperfusion-Induced Myocardial Injury in Isolated Rat Heart. Cardiovasc. Toxicol. 2014, 14, 74–82. [Google Scholar] [CrossRef]
- Zubay, P.; Ruttner, K.; Ladányi, M.; Deli, J.; Zámboriné, É.N.; Szabó, K. In the Shade–Screening of Medicinal and Aromatic Plants for Temperate Zone Agroforestry Cultivation. Ind. Crops Prod. 2021, 170, 113764. [Google Scholar] [CrossRef]
- Zubay, P.; Kunzelmann, J.; Ittzés, A.; Németh Zámboriné, É.; Szabó, K. Allelopathic Effects of Leachates of Juglans regia L., Populus tremula L. and Juglone on Germination of Temperate Zone Cultivated Medicinal and Aromatic Plants. Agroforest Syst. 2021, 95, 431–442. [Google Scholar] [CrossRef]
- Yousefzadeh, S.; Daryai, F.; Mokhtassi-Bidgoli, A.; Hazrati, S.; Yousefzadeh, T.; Mohammadi, K. Morphological, Essential Oil and Biochemical Variation of Dracocephalum moldavica L. Populations. J. Appl. Res. Med. Aromat. Plants 2018, 10, 59–66. [Google Scholar] [CrossRef]
- Amini, R.; Ebrahimi, A.; Nasab, A.D.M. Moldavian Balm (Dracocephalum moldavica L.) Essential Oil Content and Composition as Affected by Sustainable Weed Management Treatments. Ind. Crops Prod. 2020, 150, 112416. [Google Scholar] [CrossRef]
- Năstase, S. Cercetări Privind Biologia Și Tehnologia De Cultivare a Speciei Primula Officinalis În Vederea Introducerii În Cultură. Ph.D. Thesis, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania. Available online: www.rei.gov.ro/F-CA-30048/29.06.2020 (accessed on 12 March 2022).
- Amani Machiani, M.; Rezaei-Chiyaneh, E.; Javanmard, A.; Maggi, F.; Morshedloo, M.R. Evaluation of Common Bean (Phaseolus vulgaris L.) Seed Yield and Quali-Quantitative Production of the Essential Oils from Fennel (Foeniculum vulgare Mill.) and Dragonhead (Dracocephalum moldavica L.) in Intercropping System under Humic Acid Application. J. Clean. Prod. 2019, 235, 112–122. [Google Scholar] [CrossRef]
- Dušková, E.; Dušek, K.; Smékalová, K.; Orságová, M. Introduction of wild MAP species into the field culture. Jul. Kühn-Arch. 2016, 453, 124–127. [Google Scholar]
- Omidbaigi, R.; Yavari, S.; Hassani, M.E.; Yavari, S. Induction of Autotetraploidy in Dragonhead (Dracocephalum moldavica L.) by Colchicine Treatment. J. Fruit Ornam. Plant Res. 2010, 18, 23–35. [Google Scholar]
- Available online: https://data.apps.fao.org/catalog/dataset/crop-calendar-by-country-crop-and-activity (accessed on 9 May 2022).
- Available online: https://www.fao.org/faolex/country-profiles/en (accessed on 9 May 2022).
- Ahmadi, S.H.H.; Hadipanah, A. The Effect of Swoing Date, Planting Density and Bio-Fertilizers on the Essential Oil Content of Dragonhead (Dracocephalum moldavica L.) in Sari Climatic Condition. Electron. J. Biol. 2014, 10, 98–106. [Google Scholar]
- Naie, M.; Mirzan, O.; Dobrea, D.-I. Researches regarding the influence of the nutrition space at Dracocephalum moldavica L. (dragonhead) species cultivated under the conditions of A.R.D.S. secuieni. J. Eng. Stud. Res. 2017, 23, 16–21. [Google Scholar] [CrossRef]
- Shalaby, A.S.; El-Gengaihi, S.E.; Agina, E.A.; El-Khayat, A.S.; Hendawy, S.F. Growth and Yield of Echinacea purpurea L. as Influenced by Planting Density and Fertilization. J. Herbs Spices Med. Plants 1997, 5, 69–76. [Google Scholar] [CrossRef]
- Wahba, H.E.; El-Din, A.E. Growth, Yield and Essential Oil Response of Chrysanthemum coronarium L. to Plant Spacing and Foliar Micro Elements. Egypt. J. Hortic. 2002, 29, 229–248. [Google Scholar]
- Benjamin, L.R. Growth analysis, crops. In Encyclopedia of Applied Plant Sciences, 2nd ed.; Thomas, B., Murray, B.G., Murphy, D.J., Eds.; Academic Press: Oxford, UK, 2017; pp. 23–28. ISBN 978-0-12-394808-3. [Google Scholar]
- Karimzadeh Asl, K.; Hatami, M. Application of Zeolite and Bacterial Fertilizers Modulates Physiological Performance and Essential Oil Production in Dragonhead under Different Irrigation Regimes. Acta Physiol. Plant 2019, 41, 17. [Google Scholar] [CrossRef]
- Shayanowako, A.; Mangani, R.; Mtaita, T.; Mazarura, U. Effect of Stem Density on Growth, Yield and Quality of Potato Variety Amethyst. Afr. J. Agric. Res. 2014, 9, 1391–1397. [Google Scholar]
- Morar, G. Cultura Cartofului; Editura Risoprint: Cluj-Napoca, Romania, 1999. [Google Scholar]
- Darwinkel, A.; Ten Hag, B.A.; Kuizenga, J. Effect of Sowing Date and Seed Rate on Crop Development and Grain Production of Winter Wheat. Neth. J. Agric. Sci. 1977, 25, 83–94. [Google Scholar] [CrossRef]
- Galambosi, B.; Galambosi, Z.S.; Pessala, R.; Repcak, M.; Hupila, I.; Aflatuni, A. Yield and Quality of Selected Herb Cultivars in Finland. In Proceedings of the International Conference on Medicinal and Aromatic Plants. Possibilities and Limitations of Medicinal and Aromatic Plant, Budapest, Hungary, 30 April 2002; pp. 139–149. [Google Scholar]
- Whaley, J.M.; Sparkes, D.L.; Foulkes, M.J.; Spink, J.H.; Semere, T.; Scott, R.K. The Physiological Response of Winter Wheat to Reductions in Plant Density. Ann. Appl. Biol. 2000, 137, 165–177. [Google Scholar] [CrossRef]
- Laghari, G.M.; Oad, F.C.; Tunio, S.; Chachar, Q.; Ghandahi, A.W.; Siddiqui, M.H.; Hassan, S.W.; Ali, A. Growth and Yield Attributes of Wheat at Different Seed Rates. Sarhad J. Agric. 2011, 27, 177–183. [Google Scholar]
- Musa, S.F.P.D.; Basir, K.H. Smart Farming: Towards a Sustainable Agri-Food System. Br. Food J. 2021, 123, 3085–3099. [Google Scholar] [CrossRef]
- El-Gengaihi, S.; Wahba, H. The Response of Dracocephalum moldavica Plant to Nitrogen Fertilisation and Planting Density. In Proceedings of the Internet Symposium on Medicinal and Aromatic Plants, Kyoto, Japan, 1 November 1995; pp. 33–40. [Google Scholar]
Factor Combination | Height (cm) | Branch (no.) | Weight (g) | Fresh Biomass (t ha−1) | Dry Biomass (t ha−1) |
---|---|---|---|---|---|
A1_B1 | 82.67 ± 2.23 a | 9.11 ± 0.39 a | 146.67 ± 9.88 d | 88.00 ± 5.93 a | 15.63 ± 0.99 a |
A1_B2 | 81.33 ± 1.94 a | 9.00 ± 0.76 a | 210.44 ± 21.96 cd | 58.92 ± 6.15 bc | 10.24 ± 1.11 bc |
A1_B3 | 83.78 ± 3.46 a | 10.11 ± 0.26 a | 295.22 ± 24.15 abc | 47.24 ± 3.86 cd | 8.54 ± 0.66 cd |
A2_B1 | 78.56 ± 1.72 a | 8.78 ± 0.43 a | 246.89 ± 25.33 abcd | 74.07 ± 7.60 ab | 13.20 ± 1.37 ab |
A2_B2 | 79.33 ± 2.77 a | 9.11 ± 0.31 a | 290.44 ± 25.46 abc | 34.70 ± 3.41 de | 61.84 ± 0.64 def |
A2_B3 | 77.22 ± 3.34 a | 9.00 ± 0.33 a | 329.00 ± 30.78 ab | 26.32 ± 2.46 de | 46.12 ± 0.48 ef |
A3_B1 | 77.00 ± 1.57 a | 8.89 ± 0.39 a | 213.11 ± 17.19 bcd | 45.67 ± 3.68 cd | 79.31 ± 0.74 cde |
A3_B2 | 73.00 ± 1.79 a | 9.56 ± 0.41 a | 321.22 ± 19.44 abc | 32.12 ± 1.94 de | 54.55 ± 0.36 def |
A3_B3 | 77.33 ± 2.57 a | 9.00 ± 0.33 a | 352.67 ± 38.78 a | 20.15 ± 2.22 e | 34.10 ± 0.38 f |
Factor Combination | Height (cm) | Branch (no.) | Weight (g) | Fresh Biomass (t ha−1) | Dry Biomass (t ha−1) |
---|---|---|---|---|---|
A1_C1 | 78.89 ± 1.40 bcd | 9.11 ± 0.54 a | 180 ± 17.66 b | 54.32 ± 5.88 ab | 9.65 ± 1.05 ab |
A1_C2 | 77.89 ± 1.47 bcde | 9.22 ± 0.57 a | 237.89 ± 28.32 b | 67.96 ± 4.34 a | 12.04 ± 0.74 a |
A1_C3 | 91.00 ± 1.90 a | 9.89 ± 0.48 a | 234.44 ± 34.27 b | 71.88 ± 11.11 a | 12.73 ± 1.94 a |
A2_C1 | 76.67 ± 1.62 cde | 8.89 ± 0.35 a | 262.33 ± 11.72 ab | 41.23 ± 7.12 ab | 7.31 ± 1.28 ab |
A2_C2 | 72.67 ± 1.89 de | 8.44 ± 0.34 a | 306.67 ± 23.17 ab | 44.82 ± 5.44 ab | 7.93 ± 0.98 ab |
A2_C3 | 85.78 ± 2.16 ab | 9.56 ± 0.29 a | 297.33 ± 42.99 ab | 49.03 ± 12.40 ab | 8.75 ± 2.24 ab |
A3_C1 | 70.67 ± 1.22 e | 8.78 ± 0.46 a | 272.44 ± 14.80 ab | 31.62 ± 4.70 b | 5.41 ± 0.83 b |
A3_C2 | 75.67 ± 1.78 cde | 9.11 ± 0.39 a | 373.33 ± 39.64 a | 39.67 ± 4.20 ab | 6.81 ± 0.81 ab |
A3_C3 | 81.00 ± 1.54 bc | 9.56 ± 0.24 a | 241.22 ± 23.13 ab | 26.65 ± 3.53 b | 4.58 ± 0.65 b |
Factor Combination | Height (cm) | Branch (no.) | Weight (g) | Fresh Biomass (t ha−1) | Dry Biomass (t ha−1) |
---|---|---|---|---|---|
B1_C1 | 78.00 ± 1.64 bc | 8.67 ± 0.33 a | 195.00 ± 17.08 c | 64.86 ± 4.39 abc | 11.46 ± 0.83 abc |
B1_C2 | 76.00 ± 1.40 bc | 8.33 ± 0.41 a | 199.78 ± 18.86 c | 66.59 ± 4.80 ab | 11.78 ± 0.92 ab |
B1_C3 | 84.22 ± 1.82 ab | 9.78 ± 0.28 a | 211.89 ± 31.92 bc | 76.28 ± 13.08 a | 13.53 ± 2.33 a |
B2_C1 | 75.33 ± 2.03 bc | 8.78 ± 0.57 a | 240.00 ± 20.61 bc | 35.70 ± 3.08 cd | 6.20 ± 0.54 cd |
B2_C2 | 74.56 ± 1.80 c | 9.44 ± 0.56 a | 322.33 ± 21.33 ab | 49.12 ± 5.12 abcd | 8.52 ± 0.89 abcd |
B2_C3 | 83.78 ± 2.34 ab | 9.44 ± 0.44 a | 259.78 ± 31.37 bc | 40.94 ± 7.80 bcd | 7.16 ± 1.41 bcd |
B3_C1 | 72.89 ± 1.47 c | 9.33 ± 0.41 a | 279.78 ± 12.02 abc | 26.62 ± 3.37 d | 4.71 ± 0.66 d |
B3_C2 | 75.67 ± 2.29 bc | 9.00 ± 0.29 a | 395.78 ± 28.19 a | 36.74 ± 4.16 bcd | 6.48 ± 0.80 bcd |
B3_C3 | 89.78 ± 2.30 a | 9.78 ± 0.32 a | 301.33 ± 36.76 abc | 30.34 ± 6.41 d | 5.37 ± 1.16 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moldovan, C.; Nițu, S.; Hermeziu, M.; Vidican, R.; Sandor, M.; Gâdea, Ș.; David, A.; Stoian, V.A.; Vâtcă, S.D.; Stoian, V. Growth Characteristics of Dracocephalum moldavica L. in Relation to Density for Sustainable Cropping Technology Development. Agriculture 2022, 12, 789. https://doi.org/10.3390/agriculture12060789
Moldovan C, Nițu S, Hermeziu M, Vidican R, Sandor M, Gâdea Ș, David A, Stoian VA, Vâtcă SD, Stoian V. Growth Characteristics of Dracocephalum moldavica L. in Relation to Density for Sustainable Cropping Technology Development. Agriculture. 2022; 12(6):789. https://doi.org/10.3390/agriculture12060789
Chicago/Turabian StyleMoldovan, Cristina, Sorina Nițu (Năstase), Manuela Hermeziu, Roxana Vidican, Mignon Sandor, Ștefania Gâdea, Adriana David, Valentina Ancuța Stoian, Sorin Daniel Vâtcă, and Vlad Stoian. 2022. "Growth Characteristics of Dracocephalum moldavica L. in Relation to Density for Sustainable Cropping Technology Development" Agriculture 12, no. 6: 789. https://doi.org/10.3390/agriculture12060789
APA StyleMoldovan, C., Nițu, S., Hermeziu, M., Vidican, R., Sandor, M., Gâdea, Ș., David, A., Stoian, V. A., Vâtcă, S. D., & Stoian, V. (2022). Growth Characteristics of Dracocephalum moldavica L. in Relation to Density for Sustainable Cropping Technology Development. Agriculture, 12(6), 789. https://doi.org/10.3390/agriculture12060789