Effects on Net Irrigation Water Requirement of Joint Distribution of Precipitation and Reference Evapotranspiration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calculation of Net Irrigation Water Requirement
2.2. Joint Probability Distribution Based on a Copula Function
2.3. Calculation of Probability of Irrigation Water Requirement
2.4. Study Area
2.5. Data Source
3. Result and Discussion
3.1. Effects of Crop Planting Structure on Net Irrigation Water Requirement
3.2. Joint Distribution of Precipitation and Reference Evapotranspiration
3.3. Uncertainty Analysis of Net Irrigation Water Requirement
3.4. Advantages of the CFMC Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asian Development Bank. Asian Water Development Outlook 2016: Description of Methodology and Data; Asian Development Bank: Mandaluyong, Philippines, 2017. Available online: http://www.adb.org/publications/awdo-2016-description-methodology-data (accessed on 22 January 2022).
- Wang, W.; Zhao, J.; Duan, L. Simulation of irrigation-induced groundwater recharge in an arid area of China. Hydrogeol. J. 2021, 29, 525–540. [Google Scholar] [CrossRef]
- Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Flörke, M.; Wada, Y.; Best, N.; et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3239–3244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wada, Y.; Van Beek, L.P.H.; Bierkens, M.F.P. Modelling global water stress of the recent past: On the relative importance of trends in water demand and climate variability. Hydrol. Earth Syst. Sci. 2011, 8, 7399–7460. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Li, P.; Li, Z.; Hou, J.; Xiao, L.; Ren, Z.; Xu, G.; Yu, K.; Su, Y. The effects of freeze–thaw process on soil water migration in dam and slope farmland on the Loess Plateau, China. Sci. Total Environ. 2019, 666, 721–730. [Google Scholar] [CrossRef] [PubMed]
- Siebert, S.; Döll, P.; Hoogeveen, J.; Faures, J.M.; Frenken, K.; Feick, S. Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci. 2005, 9, 535–547. [Google Scholar] [CrossRef]
- Fu, Q.; Wang, S.; Li, T.; Li, M.; Liu, D.; Cui, S. Temporal-spatial distribution characteristics and influencing factors of regional agricultural water requirement indicators. J. Irrig. Drain. Eng. 2019, 145, 04019019. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, X.; Li, Y.; Ding, W.; Fu, G. Water-energy-food nexus: Concepts, questions and methodologies. J. Clean. Prod. 2018, 195, 625–639. [Google Scholar] [CrossRef]
- Fu, Q.; Li, L.; Li, M.; Li, T.; Liu, D.; Hou, R.; Zhou, Z. An interval parameter conditional value-at-risk two-stage stochastic programming model for sustainable regional water allocation under different representative concentration pathways scenarios. J. Hydrol. 2018, 564, 115–124. [Google Scholar] [CrossRef]
- Mehta, V.K.; Haden, V.R.; Joyce, B.A.; Purkey, D.R.; Jackson, L.E. Irrigation demand and supply, given projections of climate and land-use change, in Yolo County, California. Agric. Water Manag. 2013, 117, 70–82. [Google Scholar] [CrossRef]
- Mo, X.G.; Liu, S.X.; Lin, Z.H.; Guo, R.P. Regional crop yield, water consumption and water use efficiency and their responses to climate change in the North China Plain. Agric. Ecosyst. Environ. 2009, 134, 67–78. [Google Scholar] [CrossRef]
- Ojekunle, Z.O.; Lin, Z.; Xin, T.; Harrer, G.; Martins, A.O.; Bangura, H. Global climate change: The empirical study of sensitivity model in china’s sustainable development. Energy Source 2009, 31, 1777–1789. [Google Scholar] [CrossRef]
- Saadi, S.; Todorovic, M.; Tanasijevic, L.; Pereira, L.S.; Pizzigalli, C.; Lionello, P. Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield. Agric. Water Manag. 2015, 147, 103–115. [Google Scholar] [CrossRef]
- Tong, L.; Kang, S.; Zhang, L. Temporal and spatial variations of evapotranspiration for spring wheat in the Shiyang river basin in northwest China. Agric. Water Manag. 2007, 87, 241–250. [Google Scholar] [CrossRef]
- Xu, C.; Gong, L.; Jiang, T.; Chen, D.; Singh, V.P. Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment. J. Hydrol. 2006, 327, 81–93. [Google Scholar] [CrossRef]
- McVicar, T.R.; Niel, T.G.V.; Li, L.; Hutchinson, M.F.; Mu, X.; Liu, Z. Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. J. Hydrol. 2007, 338, 196–220. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Ni, G.; Cong, Z. Spatial distribution characteristics of irrigation water requirement for main crops in China. Trans. Chin. Soc. Agric. Eng. 2009, 25, 6–12. [Google Scholar] [CrossRef]
- Nkomozepi, T.; Chung, S.O. Assessing the trends and uncertainty of maize net irrigation water requirement estimated from climate change projections for Zimbabwe. Agric. Water Manag. 2012, 111, 60–67. [Google Scholar] [CrossRef]
- Wang, H.; Tan, G.; Sun, Q.; Zhou, H. Variation of spring corn water requirement and its relationship with the meteorological factors in Chengde, Hebei province. J. Meteorol. Environ. 2012, 28, 69–72. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, H.; Li, C.; Huang, H.; Pan, Z.; Chai, C. Analysis of irrigation water requirement and irrigation requirement index for cotton of Hebei province. Trans. Chin. Soc. Agric. Eng. 2013, 29, 98–104. [Google Scholar] [CrossRef]
- Wang, W.; Sun, F.; Peng, S.; Xu, J.; Luo, Y.; Jiao, X. Simulation of response of water requirement for rice irrigation to climate change. Trans. Chin. Soc. Agric. Eng. 2013, 29, 90–98. [Google Scholar] [CrossRef]
- Liu, X.; Fu, N.; Li, C.; Wang, L.; Yang, Q. Trends and causes analysis of water requirement for main grain crops in Henan Province. Trans. Chin. Soc. Agric. Mach. 2015, 46, 188–197. [Google Scholar] [CrossRef]
- Xie, J.; Su, X. Decomposition of influencing factors on irrigation water requirement based on LMDI method. Trans. Chin. Soc. Agric. Eng. 2017, 33, 123–131. [Google Scholar] [CrossRef]
- Feng, F.; Jiang, N.; Feng, Y.; Wang, M.; Gao, Z.; Zhang, Z. Water requirement calculation and trend analysis of main crops in Yellow River irrigation area. Yellow River 2021, 43, 165–170. [Google Scholar] [CrossRef]
- Surendran, U.; Sushanth, C.M.; George, M.; Joseph, E.J. Modelling the crop water demand using FAO-CROPWAT and assessment of water resource management: A case study of Palakkad district of humid tropical Kerala, India. Aquat. Procedia 2015, 4, 1211–1219. [Google Scholar] [CrossRef]
- Surendran, U.; Sushanth, C.M.; George, M.; Joseph, E.J. FAO-CROPWAT model based estimation of crop water need and appraisal of water resource management: Pilot study for Kollam district- humid tropical region of Kerala. Curr. Sci. 2017, 112, 76–85. [Google Scholar] [CrossRef]
- Kuo, S.F.; Ho, H.H.; Liu, C.W. Estimation irrigation water requirements with derived crop coefficients of upland and paddy crops in Chian Nan Irrigation Association Taiwan. Agric. Water Manag. 2006, 82, 433–451. [Google Scholar] [CrossRef]
- Huang, Z.; Qi, X.; Fan, X.; Qiao, D.; Liang, Z. Impact of rainfall and evapotranspiration on estimation of irrigation requirement of summer maize. Trans. Chin. Soc. Agric. Eng. 2015, 31, 85–92. [Google Scholar] [CrossRef]
- Chang, D.; Huang, Z.; Qi, X.; Han, Y.; Liang, Z. Analysis on spatio-temporal variability and influencing factors of net irrigation requirement in People’s Victory Canal Irrigation Area. Trans. Chin. Soc. Agric. Eng. 2017, 33, 118–125. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Y.; Ding, Z. Research on the joint probability distribution of rainfall and reference crop evapotranspiration. Paddy Water Environ. 2017, 15, 193–200. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. J. Hydrol. 1998, 285, 19–40. Available online: http://www.fao.org/3/X0490E/X0490E00.htm (accessed on 22 January 2022).
- Zhou, J.L.; Dong, X.G. An experimental study on potential evapotranspiration in arid area in Xinjiang Province. J. Irrig. Drain. 2002, 21, 21–24. [Google Scholar] [CrossRef]
- Tolk, J.A.; Howell, T.A.; Evett, S.R. Evapotranspiration and yield of corn grow on three high plains soils. Agron. J. 1998, 90, 447–454. [Google Scholar] [CrossRef]
- Li, J.; Fei, L.; Li, S.; Xue, C.; Shi, Z.; Hinkelmann, R. Development of “water suitable” agriculture based on a statistical analysis of factors affecting irrigation water demand. Sci. Total Environ. 2020, 744, 140986. [Google Scholar] [CrossRef] [PubMed]
- Jie, F.; Fei, L.; Li, S.; Hao, K.; Liu, L.; Zhu, H. Prediction model for irrigation return flow considering lag effect for arid areas. Agric. Water Manag. 2021, 256, 107119. [Google Scholar] [CrossRef]
- Singh, V.P.; Zhang, L. IDF curves using the Frank Archimedean copula. J. Hydrol. Eng. 2007, 12, 651–662. [Google Scholar] [CrossRef]
- Stewart, E.J.; Reed, D.W.; Faulkner, D.S.; Reynard, N.S. The FORGEX method of rainfall growth estimation I: Review of requirement. Hydrol. Earth Syst. Sci. 1999, 3, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Goel, N.K.; Kurothe, R.S.; Mather, B.S.; Vogel, R.M. A derived flood frequency distribution for correlated rainfall intensity and duration. J. Hydrol. 2000, 228, 56–67. [Google Scholar] [CrossRef]
- Madsen, H.; Mikkelsen, R.S.; Rosbjerg, D.; Harremoes, P. Regional estimation of rainfall intensity-duration-frequency curve using generalized least square regression of partial duration series. Water Resour. Res. 2002, 38, 34–38. [Google Scholar] [CrossRef]
- Shabri, A.B.; Darud, Z.M.; Ariff, N.M. Regional analysis of annual maximum rainfall using TL-moments method. Theor. Appl. Climatol. 2011, 140, 561–570. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, S.; Duan, A. Least squares support vector machines model for predicting reference evapotranspiration based on weather forecasts. Adv. Water Sci. 2010, 21, 63–68. [Google Scholar] [CrossRef]
- Ma, L.; Kang, S.; Su, X.; Tong, L. Simulation and uncertainty analysis of net irrigation requirement in agricultural area. Trans. Chin. Soc. Agric. Eng. 2012, 28, 11–18. [Google Scholar] [CrossRef]
- Wang, Z. Irrigation and Drainage Engineering; China Agriculture Press: Beijing, China, 2010; Available online: http://hn.sslibrary.com/showbook.do?dxNumber=10253024&d=38712C21D2FB0683E2A156055DD36BD2&fFenleiID=0S2070 (accessed on 22 January 2022).
- Patwardhan, A.S.; Nieber, J.L.; Johns, E.L. Effective rainfall estimation methods. J. Irrig. Drain. Eng. 1990, 116, 182–193. [Google Scholar] [CrossRef]
- Düll, P.; Siebert, S. Global modeling of irrigation water requirements. Water Resour. Res. 2002, 38, 1037. [Google Scholar] [CrossRef]
- Schweizer, B. Introduction to copulas. J. Hydrol. Eng. 2007, 12, 346. Available online: http://ascelibrary.org/doi/abs/10.1061/%28ASCE%291084-0699%282007%2912%3A4%28346%29 (accessed on 22 January 2022). [CrossRef] [Green Version]
- Ma, C.; Huang, Q.; Guo, A. Characteristic analysis and uncertainty assessment of joint distribution of flow and sand in Jinghe River basin. J. Hydraul. Eng. 2019, 50, 273–282. [Google Scholar] [CrossRef]
- Xiong, L.; Yu, K.; Gottschalk, L. Estimation of the distribution of annual runoff from climatic variables using copulas. Water Resour. Res. 2014, 50, 7134–7152. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, S.; Xiong, L.; Xu, C.Y. Hydrological uncertainty processor based on a copula function. Hydrol. Sci. J. 2017, 63, 74–86. [Google Scholar] [CrossRef]
Crop Type | Initial Growth Period | Puberty Period | Maturity Period | |||
---|---|---|---|---|---|---|
Date | Kc | Date | Kc | Date | Kc | |
Spring wheat | 15 March–24 April | 0.30 | 25 April–25 June | 1.32 | 26 June–15 July | 0.30 |
Barley | 15 March–4 April | 0.30 | 5 April–1 July | 1.32 | 2 July–31 July | 0.30 |
Corn | 15 April–15 May | 0.70 | 16 May–5 September | 1.03 | 6 September–15 October | 0.70 |
Soybeans | 10 March–31 March | 0.50 | 1 April–30 June | 1.31 | 1 July–25 July | 0.50 |
Hemp | 15 March–9 April | 0.35 | 10 April–5 July | 1.27 | 6 July–15 August | 0.35 |
Taro | 1 May–31 May | 0.50 | 1 June–31 August | 0.99 | 1 September–1 October | 0.50 |
Melon | 15 March–9 April | 0.50 | 10 April–24 June | 1.23 | 25 June–15 July | 0.50 |
Goji berry | 1 May–9 June | 0.30 | 10 June–20 August | 0.64 | 21 August–20 September | 0.30 |
Forest fruits | 15 March–14 April | 0.45 | 15 April–4 September | 0.90 | 5 September–5 October | 0.25 |
Distribution Function | Parameters | March | April | May | June | July | August | September | October |
---|---|---|---|---|---|---|---|---|---|
Gamma | α | 0.42 | 0.84 | 1.70 | 1.86 | 2.00 | 2.71 | 2.13 | 1.06 |
β | 6.56 | 10.16 | 11.95 | 14.24 | 19.55 | 16.34 | 13.64 | 11.30 | |
K–S test | 0.00 | 0.91 * | 0.82 * | 0.92 * | 0.74 * | 0.99 * | 0.46 * | 0.59 * | |
AIC | 206.0 | 386.4 | 484.7 | 514.3 | 559.1 | 562.4 | 520.6 | 428.4 | |
Lognormal | μ | −0.52 | 1.44 | 2.69 | 2.99 | 3.40 | 3.60 | 3.12 | 1.94 |
σ | 1.86 | 1.44 | 1.04 | 0.86 | 0.84 | 0.66 | 0.83 | 1.30 | |
K–S test | 0.00 | 0.25 * | 0.15 * | 0.55 * | 0.47 * | 0.86 * | 0.08 * | 0.17 * | |
AIC | 189.1 | 397.8 | 510.5 | 523.5 | 569.7 | 565.4 | 534.9 | 445.8 | |
GEV | k | 2.89 | 0.57 | 0.01 | 0.19 | −0.01 | 0.09 | 0.09 | 0.24 |
σ | 0.00 | 3.91 | 10.30 | 11.89 | 19.93 | 19.38 | 13.17 | 6.40 | |
μ | 0.10 | 3.46 | 14.19 | 17.00 | 27.60 | 31.34 | 20.20 | 6.58 | |
K–S test | 0.00 | 0.43 * | 0.96 * | 1.00 * | 0.88 * | 0.91 * | 0.86 * | 0.68 * | |
AIC | N/C | 402.7 | 484.7 | 513.9 | 563.7 | 566.7 | 518.7 | 442.0 |
Distribution Function | Parameters | March | April | May | June | July | August | September | October |
---|---|---|---|---|---|---|---|---|---|
Gamma | α | 61.30 | 97.73 | 95.62 | 76.23 | 105.67 | 73.12 | 68.06 | 46.31 |
β | 1.33 | 1.21 | 1.58 | 2.10 | 1.52 | 1.91 | 1.42 | 1.48 | |
K–S test | 0.84 * | 0.87 * | 0.99 * | 0.74 * | 0.95 * | 0.50 * | 0.74 * | 0.47 * | |
AIC | 462.0 | 479.7 | 510.5 | 531.3 | 512.5 | 517.5 | 476.4 | 458.2 | |
Lognormal | μ | 4.39 | 4.77 | 5.01 | 5.07 | 5.08 | 4.93 | 4.56 | 4.22 |
σ | 0.13 | 0.10 | 0.10 | 0.11 | 0.10 | 0.12 | 0.12 | 0.15 | |
K–S test | 0.86 * | 0.92 * | 1.00 * | 0.80 * | 0.97 * | 0.60 * | 0.78 * | 0.51 * | |
AIC | 462.0 | 478.7 | 510.3 | 531.0 | 511.9 | 516.1 | 476.3 | 457.8 | |
GEV | k | −0.21 | −0.07 | −0.17 | −0.17 | −0.14 | 0.01 | −0.19 | −0.14 |
σ | 9.87 | 10.33 | 14.54 | 17.05 | 14.26 | 13.14 | 11.07 | 9.37 | |
μ | 77.35 | 113.15 | 144.67 | 152.52 | 154.62 | 132.16 | 91.78 | 64.51 | |
K–S test | 0.88 * | 0.99 * | 1.00 * | 0.76 * | 0.93 * | 0.88 * | 0.70 * | 0.42 * | |
AIC | 463.5 | 478.5 | 512.6 | 532.7 | 513.1 | 513.7 | 478.2 | 460.1 |
Parameter | March | April | May | June | July | August | September | October |
---|---|---|---|---|---|---|---|---|
θ | −4.82 | −2.66 | −3.03 | −4.76 | −2.08 | −2.93 | −4.54 | −5.25 |
Year | Probability | March | April | May | June | July | August | September | October | Total |
---|---|---|---|---|---|---|---|---|---|---|
2000 | 95% | 15.8 | 87.9 | 197.7 | 206.3 | 71.1 | 36.5 | 9.3 | 0.2 | 719.9 |
75% | 13.5 | 78.5 | 174.2 | 177.5 | 56.1 | 21.3 | 0.0 | 0.0 | 596.1 | |
50% | 11.5 | 70.2 | 155.5 | 155.1 | 41.4 | 5.8 | 0.0 | 0.0 | 489.6 | |
25% | 8.1 | 60.0 | 136.0 | 131.3 | 19.7 | 0.0 | 0.0 | 0.0 | 380.2 | |
5% | 0.7 | 44.6 | 107.0 | 93.0 | 0.0 | 0.0 | 0.0 | 0.0 | 250.4 | |
2005 | 95% | 14.4 | 90.0 | 192.2 | 206.0 | 78.7 | 43.4 | 13.9 | 2.8 | 642.3 |
75% | 12.3 | 80.2 | 169.1 | 177.2 | 63.1 | 27.9 | 2.2 | 0.0 | 532.7 | |
50% | 10.4 | 71.9 | 150.7 | 154.8 | 48.0 | 12.9 | 0.0 | 0.0 | 449.2 | |
25% | 7.0 | 61.6 | 131.6 | 131.0 | 26.5 | 0.0 | 0.0 | 0.0 | 357.9 | |
5% | 0.0 | 46.2 | 103.0 | 92.7 | 0.0 | 0.0 | 0.0 | 0.0 | 242.1 | |
2010 | 95% | 12.1 | 85.1 | 186.8 | 203.9 | 94.1 | 61.1 | 24.3 | 7.0 | 675.4 |
75% | 10.3 | 75.8 | 164.4 | 175.3 | 77.5 | 43.6 | 12.6 | 0.4 | 560.7 | |
50% | 8.7 | 67.7 | 146.1 | 153.1 | 62.1 | 28.8 | 0.1 | 0.0 | 467.1 | |
25% | 5.3 | 57.8 | 127.6 | 129.6 | 40.0 | 9.0 | 0.0 | 0.0 | 369.5 | |
5% | 0.0 | 42.4 | 99.2 | 91.3 | 6.1 | 0.0 | 0.0 | 0.0 | 239.1 | |
2015 | 95% | 8.2 | 65.8 | 169.1 | 191.8 | 121.0 | 95.1 | 42.3 | 12.8 | 707.0 |
75% | 6.9 | 58.4 | 148.4 | 164.6 | 103.0 | 75.3 | 29.8 | 7.6 | 594.8 | |
50% | 5.6 | 51.1 | 131.2 | 142.9 | 86.0 | 58.0 | 17.4 | 0.1 | 492.8 | |
25% | 2.5 | 42.1 | 113.5 | 120.5 | 63.4 | 37.8 | 1.1 | 0.0 | 381.1 | |
5% | 0.0 | 26.4 | 85.8 | 83.1 | 28.6 | 7.9 | 0.0 | 0.0 | 231.9 | |
2020 | 95% | 6.9 | 60.1 | 153.8 | 182.7 | 138.1 | 114.4 | 50.1 | 14.8 | 721.9 |
75% | 5.8 | 53.2 | 134.3 | 156.4 | 118.8 | 93.2 | 37.4 | 10.0 | 610.0 | |
50% | 4.5 | 46.4 | 118.2 | 135.3 | 100.8 | 74.2 | 24.3 | 2.5 | 506.7 | |
25% | 1.5 | 37.2 | 101.7 | 113.8 | 78.2 | 53.4 | 7.6 | 0.0 | 393.6 | |
5% | 0.0 | 21.6 | 75.4 | 77.0 | 42.8 | 22.3 | 0.0 | 0.0 | 239.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jie, F.; Fei, L.; Li, S.; Hao, K.; Liu, L.; Peng, Y. Effects on Net Irrigation Water Requirement of Joint Distribution of Precipitation and Reference Evapotranspiration. Agriculture 2022, 12, 801. https://doi.org/10.3390/agriculture12060801
Jie F, Fei L, Li S, Hao K, Liu L, Peng Y. Effects on Net Irrigation Water Requirement of Joint Distribution of Precipitation and Reference Evapotranspiration. Agriculture. 2022; 12(6):801. https://doi.org/10.3390/agriculture12060801
Chicago/Turabian StyleJie, Feilong, Liangjun Fei, Shan Li, Kun Hao, Lihua Liu, and Youliang Peng. 2022. "Effects on Net Irrigation Water Requirement of Joint Distribution of Precipitation and Reference Evapotranspiration" Agriculture 12, no. 6: 801. https://doi.org/10.3390/agriculture12060801
APA StyleJie, F., Fei, L., Li, S., Hao, K., Liu, L., & Peng, Y. (2022). Effects on Net Irrigation Water Requirement of Joint Distribution of Precipitation and Reference Evapotranspiration. Agriculture, 12(6), 801. https://doi.org/10.3390/agriculture12060801