Pesticide Use and Associated Greenhouse Gas Emissions in Sugar Beet, Apples, and Viticulture in Austria from 2000 to 2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calculating Conventional Agricultural Area
2.2. Calculating of Greenhouse Gas Emissions from Pesticide Production
2.3. Carbon Footprint Calculations of Pesticides
2.4. Carbon Footprint Calculations of Fertilizers
2.5. Carbon Footprint of Pesticide and Fertilizer Application
2.6. Statistical Analysis
3. Results
3.1. Trends in Farmland Area and Pesticide Use 2000–2019
3.2. Production Related Pesticide GHG Emissions between 2000 and 2019
3.3. Carbon Footprint of Pesticide and Fertilizer Usage per ha
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bradshaw, C.J.A.; Ehrlich, P.R.; Beattie, A.; Ceballos, G.; Crist, E.; Diamond, J.; Dirzo, R.; Ehrlich, A.H.; Harte, J.; Harte, M.E.; et al. Underestimating the Challenges of Avoiding a Ghastly Future. Front. Conserv. Sci. 2021, 1, 615419. [Google Scholar] [CrossRef]
- FAO. Emissions due to Agriculture. Global, Regional and Country Trends 2000–2018. FAOSTAT Analytical Brief Series No 18. Rome. 2020. Available online: https://www.fao.org/3/cb3808en/cb3808en.pdf (accessed on 20 May 2022).
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Lynch, J.; Cain, M.; Frame, D.; Pierrehumbert, R. Agriculture’s Contribution to Climate Change and Role in Mitigation Is Distinct from Predominantly Fossil CO2-Emitting Sectors. Front. Sustain. Food Syst. 2021, 4, 518039. [Google Scholar] [CrossRef] [PubMed]
- Reidsma, P.; Ewert, F.; Lansink, A.O.; Leemans, R. Adaptation to climate change and climate variability in European agriculture: The importance of farm level responses. Eur. J. Agron. 2010, 32, 91–102. [Google Scholar] [CrossRef]
- Vries, G.E.D. Climate changes leads to unstable agriculture. Trends Plant Sci. 2000, 5, 367. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Tabi Tataw, J.; Baier, F.; Krottenthaler, F.; Pachler, B.; Schwaiger, E.; Wyhlidal, S.; Formayer, H.; Hösch, J.; Baumgarten, A.; Zaller, J.G. Climate change induced rainfall patterns affect wheat productivity and agroecosystem functioning dependent on soil types. Ecol. Res. 2016, 31, 203–212. [Google Scholar] [CrossRef]
- Zaller, J.G.; Simmer, L.; Santer, N.; Tabi Tataw, J.; Formayer, H.; Murer, E.; Hösch, J.; Baumgarten, A. Future rainfall variations reduce abundances of aboveground arthropods in model agroecosystems with different soil types. Front. Environ. Sci. 2014, 2, 44. [Google Scholar] [CrossRef] [Green Version]
- Anton, C.; Mengel, J.; Mupepele, A.C.; Steinicke, H. Biodiversität und Management von Agrarlandschaften: Umfassendes Handeln Ist Jetzt Wichtig. Statement. Available online: http://nbn-resolving.org/urn:nbn:de:gbv:3:2-127275 (accessed on 4 June 2021).
- Geiger, F.; Bengtsson, J.; Berendse, F.; Weisser, W.W.; Emmerson, M.; Morales, M.B.; Ceryngier, P.; Liira, J.; Tscharntke, T.; Winqvist, C.; et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 2010, 11, 97–105. [Google Scholar] [CrossRef]
- Brühl, C.A.; Zaller, J.G. Biodiversity Decline as a Consequence of an Inappropriate Environmental Risk Assessment of Pesticides. Front. Environ. Sci. 2019, 7, 177. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Bayo, F.; Wyckhuys, K.A.G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 2019, 232, 8–27. [Google Scholar] [CrossRef]
- Wagner, D.L.; Grames, E.M.; Forister, M.L.; Berenbaum, M.R.; Stopak, D. Insect decline in the Anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. USA 2021, 118, e2023989118. [Google Scholar] [CrossRef]
- Zaller, J.G. Daily Poison. In Pesticides—An Underestimated Danger; Springer Nature: Cham, Switzerland, 2020; p. 315. [Google Scholar]
- Lal, R. Carbon emission from farm operations. Environ. Int. 2004, 30, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Audsley, E.; Stacey, K.; Parsons, D.; Williams, A. Estimation of the Greenhouse Gas Emissions from Agricultural Pesticide Manufacture and Use; Cranfield University: Bedford, UK, 2009; Available online: https://dspace.lib.cranfield.ac.uk/bitstream/handle/1826/3913/Estimation_of_the_greenhouse_gas_emissions_from_agricultural_pesticide_manufacture_and_use-2009.pdf (accessed on 20 May 2022).
- EC. Tackling Climate Change. Available online: https://ec.europa.eu/info/food-farming-fisheries/sustainability/environmental-sustainability/climate-change_en2021 (accessed on 20 May 2022).
- UN. Paris Agreement: COP 21, United Nations, United Framework Convention on Climate Change. 2015. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 20 May 2022).
- EP. European Parliament Resolution of 14 March 2019 on Climate Change—A European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy in Accordance with the Paris Agreement. 2019. Available online: https://www.europarl.europa.eu/doceo/document/TA-8-2019-0217_EN.pdf (accessed on 20 May 2022).
- Bundeskanzleramt. Aus Verantwortung für Österreich. Regierungsprogramm 2020–2024. Bundesregierung Österreich, Die neue Volkspartei and Die Grünen-Die Grüne Alternative. 2020. Available online: https://www.bundeskanzleramt.gv.at/bundeskanzleramt/die-bundesregierung/regierungsdokumente.html (accessed on 20 May 2022).
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S.I. Climate Change and Food Systems. Annu. Rev. Environ. Res. 2012, 37, 195–222. [Google Scholar] [CrossRef] [Green Version]
- Pazdernik, K.; Friedrich, A.; Gangl, M.; Haider, S.; Köther, T. Austria’s National Inventory Report 2020: Submission under the United Nations Framework Convention on Climate Change and under the Kyoto Protocol. Report/Umweltbundesamt REP-0724. 2020. Available online: https://www.umweltbundesamt.at/fileadmin/site/publikationen/rep0724.pdf (accessed on 20 May 2022).
- Giljum, S. Klimawandel Vermeidung und Anpassung—Die Notwendigkeit Einer Konsumbezogenen Betrachtung der Treibhausgasemissionen Österreichs: CCCA Factsheet #21. Climate Change Centre Austria, 2018. Available online: https://www.wu.ac.at/fileadmin/wu/d/i/ecolecon/PDF/CBA_Brief_final_20170818.pdf (accessed on 20 May 2022).
- EPA. Maleic Anhydride: 108-31-6; United States Environmental Protection Agency: Washington, DC, USA, 2000. Available online: https://www.epa.gov/sites/default/files/2016-09/documents/maleic-anhydride.pdf (accessed on 20 May 2022).
- EPA. Facts about Formaldehyde; US EPA: Washington, DC, USA, 2013. Available online: https://www.epa.gov/formaldehyde/facts-about-formaldehyde#whatisformaldehyde (accessed on 20 May 2022).
- JKI. Behandlungsindex, Behandlungshäufigkeit, Wirkstoffranking, Wirkstoffmengen und Behandlungsflächen. Available online: https://papa.julius-kuehn.de/index.php?menuid=43 (accessed on 31 August 2021).
- BLW. Agrarbericht 2020. Available online: https://2020.agrarbericht.ch/de/umwelt/wasser/verkauf-und-einsatz-von-pflanzenschutzmitteln.SchweizerischeEidgenossenschaftBundesamtfürLandwirtschaftBLW (accessed on 20 May 2022).
- FiBL. FiBL Statistics. Organic Area Share of Total Farmland (%). Forschungsinstitut für biologischen Landbau. Available online: https://statistics.fibl.org/europe/key-indicators.html?tx_statisticdata_pi1%5Bcontroller%5D=Element2Item&cHash=511759e872156740d7cfcbda7f290481 (accessed on 2 December 2021).
- EC. EU Mission: A Soil Deal for Europe. 2022. Available online: https://ec.europa.eu/info/research-and-innovation/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe/eu-missions-horizon-europe/soil-health-and-food_en. (accessed on 20 May 2022).
- EC. The European Green Deal: Communication from the Commission to the European Parliament, The European Council, The Council, The European Economic and Social Committee and the Committee of the Regions. COM(2019) 640 Final 2019. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF (accessed on 20 May 2022).
- Grüner Bericht. Grüner Bericht 2020; Bundesministerium für Landwirtschaft und Regionen und Tourismus: Wien, Austria, 2020. [Google Scholar]
- Neumeister, L. Pestizideinsatz in Deutschland 2005–2017. Auswertung des Wirkstoffspezifischen Inlandsabsatzes und der PAPA Daten des Julius Kühn-Instituts (JKI). 2020. Available online: https://www.pestizidexperte.de/Publikationen/Pestizideinsatz_DE_2005_2017.pdf (accessed on 20 May 2022).
- AGES. Pflanzenschutzmittel-Verwendungsstatistik. 2020. Available online: https://www.ages.at/themen/landwirtschaft/pflanzenschutzmittel/forschung/pflanzenschutzmittel-verwendungsstatistik/ (accessed on 4 October 2021).
- Baumgarten, A.; Berthold, H.; Buchgraber, K.; Dersch, G.; Egger, H.; Egger, R.; Eigner, H.; Frank, P.; Gerzabek, M.; Hölzl, F.; et al. Richtlinie für Die Sachgerechte Düngung im Ackerbau und Grünland-Anleitung zur Interpretation von Bodenuntersuchungs-Ergebnissen in der Landwirtschaft. Bundesministerium für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft. 2017. Available online: https://ooe.lko.at/richtlinie-f%C3%BCr-die-sachgerechte-d%C3%BCngung-im-ackerbau-und-gr%C3%BCnland-7-auflage+2500+2559162 (accessed on 20 May 2022).
- Agriportal Consult. Bewusste Ernährung im Trend! Frühjahrsdüngung im Fokus. 2021. Available online: https://agriportal.nordzucker.de/irj/go/to/de/ruebenanbau/anbauleitfaden-zum-nachhaltigen-zuckerruebenanbau/duengung (accessed on 20 May 2022).
- Etz, H.; Stangl, M.; Wurm, L.; Baumgarten, A.; Lafer, G.; Modl, P. Richtlinien für die Sachgerechte Düngung im Obstbau. Bundesministerium für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft. 2008. Available online: https://info.bmlrt.gv.at/dam/jcr:59cdd8ba-a11c-4734-898d-a769c0a64759/Richtlinien%20für%20die%20sachgerechte%20Düngung%20im%20Obstbau.pdf (accessed on 20 May 2022).
- Baumgarten, A.; Bauer, K.; Fardossi, A.; Kneissl, G.; Kührer, E.; Mehofer, M.; Palz, M.; Regner, F.; Winkovitsch, C.; Wunderer, W. Sachgerechte Düngung im Weinbau. 2014. Available online: https://info.bmlrt.gv.at/dam/jcr:9a484899-b229-423d-a524-f5e0148ee91d/Sachgerechte%20Düngung%20im%20Weinbau.pdf (accessed on 20 May 2022).
- ÖKL. Kraftstoffverbrauch in der Land- und Forstwirtschaft. Vienna, Österreichisches Kuratorium für Landtechnik und Landentwicklung. 2012. Available online: https://oekl.at/wp-content/uploads/gems/KLRW2012Kraftstoffverbrauch.pdf (accessed on 20 May 2022).
- Curran, W. Persistence of herbicides in soil. Crops Soils 2016, 49, 16–21. [Google Scholar] [CrossRef]
- Bertschinger, L.; Gysi, C.; Häseli, A.; Neuweiler, R.; Pfammatter, W.; Ryser, J.; Schmid, A.; Weibel, F. Grundlagen für die Düngung der Obstkulturen—Kernobst, Steinobst, Kiwi, Strauchbeeren. Eidgenössische Forschungsanstalt für Obst-, Wein- und Gartenbau. 2003. Available online: https://orgprints.org/id/eprint/2880/ (accessed on 20 May 2022).
- Österreichischer Weinbauverband. Düngung: Pflegemaßnahmen, Vienna, Landwirtschaftskammer Österreich. 2021. Available online: https://www.lko.at/d%C3%BCngung+2500+3378950 (accessed on 20 May 2022).
- BMLRT. Grüner Bericht 2020. In Die Situation der österreichischen Land- und Forstwirtschaft; Austrian Ministry of Agriculture, Regions and Tourism: Vienna, Austria, 2020; p. 294. [Google Scholar]
- Heimpel, G.E.; Yang, Y.; Hill, J.D.; Ragsdale, D.W. Environmental Consequences of Invasive Species: Greenhouse Gas Emissions of Insecticide Use and the Role of Biological Control in Reducing Emissions. PLoS ONE 2013, 8, e72293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cech, R.M.; Jovanovic, S.; Kegley, S.; Hertoge, K.; Leisch, F.; Zaller, J.G. Reducing overall herbicide use may reduce risks to humans but increase toxic loads to honeybees, earthworms and birds. Environ. Sci. Eur. 2022, 34, 44. [Google Scholar] [CrossRef]
- Linhart, C.; Niedrist, G.H.; Nagler, M.; Nagrani, R.; Temml, V.; Bardelli, T.; Wilhalm, T.; Riedl, A.; Zaller, J.G.; Clausing, P.; et al. Pesticide contamination and associated risk factors at public playgrounds near intensively managed apple and wine orchards. Environ. Sci. Eur. 2019, 31, 28. [Google Scholar] [CrossRef] [Green Version]
- Linhart, C.; Panzacchi, S.; Belpoggi, F.; Clausing, P.; Zaller, J.G.; Hertoge, K. Year-round pesticide contamination of public sites near intensively managed agricultural areas in South Tyrol. Environ. Sci. Eur. 2021, 33, 1. [Google Scholar] [CrossRef]
- Zaller, J.G.; Kruse-Plaß, M.; Schlechtriemen, U.; Gruber, E.; Peer, M.; Nadeem, I.; Formayer, H.; Hutter, H.-P.; Landler, L. Pesticides in ambient air, influenced by surrounding land use and weather, pose a potential threat to biodiversity and humans. Sci. Total Environ. 2022, 838, 156012. [Google Scholar] [CrossRef]
- Kruse-Plaß, M.; Hofmann, F.; Wosniok, W.; Schlechtriemen, U.; Kohlschütter, N. Pesticides and pesticide-related products in ambient air in Germany. Environ. Sci. Eur. 2021, 33, 114. [Google Scholar] [CrossRef]
- Brühl, C.A.; Bakanov, N.; Köthe, S.; Eichler, L.; Sorg, M.; Hörren, T.; Mühlethaler, R.; Meinel, G.; Lehmann, G.U.C. Direct pesticide exposure of insects in nature conservation areas in Germany. Sci. Rep. 2021, 11, 24144. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, G.; Irla, E. Ökobilanz der Unkrautregulierung im Ackerbau. Agrarforschung 1999, 6, 219–222. [Google Scholar]
- Ahlgren, S. Environmental Impact of Chemical and Mechanical Weed Control in Agriculture: A Comparing Study using LIFE Cycle Assessment (LCA) Methodology; SIK-Rapport: Göteborg, Sweden, 2004; Volume 719. [Google Scholar]
- Südzucker, A.G. Leitlinie zur effizienten und umweltverträglichen Erzeugung von Zuckerrüben, Thüringer Ministerium für Landwirtschaft, Naturschutz und Umwelt. 2008. Available online: http://www.tll.de/www/daten/publikationen/leitlinien/zuck0908.pdf (accessed on 20 May 2022).
- Skinner, C.; Gattinger, A.; Krauss, M.; Krause, H.-M.; Mayer, J.; van der Heijden, M.G.A.; Mäder, P. The impact of long-term organic farming on soil-derived greenhouse gas emissions. Sci. Rep. 2019, 9, 1702. [Google Scholar] [CrossRef]
- Mandl, K.; Cantelmo, C.; Gruber, E.; Faber, F.; Friedrich, B.; Zaller, J.G. Effects of Glyphosate-, Glufosinate- and Flazasulfuron-Based Herbicides on Soil Microorganisms in a Vineyard. Bull. Environ. Contam. Toxicol. 2018, 101, 562–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L.; Guo, Y.; Ning, J.; Lou, S.; Hou, F. Herbicide applications increase greenhouse gas emissions of alfalfa pasture in the inland arid region of northwest China. PeerJ 2020, 8, e9231. [Google Scholar] [CrossRef] [PubMed]
- Moreda, G.P.; Muñoz-García, M.A.; Barreiro, P. High voltage electrification of tractor and agricultural machinery—A review. Energy Convers. Manag. 2016, 115, 117–131. [Google Scholar] [CrossRef]
- Bručienė, I.; Aleliūnas, D.; Šarauskis, E.; Romaneckas, K. Influence of Mechanical and Intelligent Robotic Weed Control Methods on Energy Efficiency and Environment in Organic Sugar Beet Production. Agriculture 2021, 11, 449. [Google Scholar] [CrossRef]
- Jabran, K.; Chauhan, B. Overview and significance of non-chemical weed control. In Non-Chemical Weed Control; Jabran, K., Chauhan, B., Eds.; Elsevier Science: Saint Louis, MI, USA, 2018; pp. 1–8. [Google Scholar]
- Andert, S.; Bürger, J.; Stein, S.; Gerowitt, B. The influence of crop sequence on fungicide and herbicide use intensities in North German arable farming. Eur. J. Agron. 2016, 77, 81–89. [Google Scholar] [CrossRef]
- Roarty, S.; Hackett, R.A.; Schmidt, O. Earthworm populations in twelve cover crop and weed management combinations. Appl. Soil Ecol. 2017, 114, 142–151. [Google Scholar] [CrossRef]
- Andersen, L.; Kühn, B.F.; Bertelsen, M.; Bruus, M.; Larsen, S.E.; Strandberg, M. Alternatives to herbicides in an apple orchard, effects on yield, earthworms and plant diversity. Agric. Ecosyst. Environ. 2013, 172, 1–5. [Google Scholar] [CrossRef]
- Euteneuer, P.; Wagentristl, H.; Steinkellner, S.; Scheibreithner, C.; Zaller, J.G. Earthworms affect decomposition of soil-borne plant pathogen Sclerotinia sclerotiorum in a cover crop field experiment. Appl. Soil Ecol. 2019, 138, 88–93. [Google Scholar] [CrossRef]
- Mesnage, R.; Zaller, J.G. Herbicides: Chemistry, Efficacy, Toxicology, and Environmental Impacts. In Emerging Issues in Analytical Chemistry; Thomas, B.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; 366p. [Google Scholar]
- BAES. Pflanzenschutzmittel-Register—Verzeichnis der in Österreich Zugelassenen/Genehmigten Pflanzenschutzmittel. Available online: https://psmregister.baes.gv.at/psmregister/faces/main?_afrLoop=4739298204069462&_afrWindowMode=0&_adf.ctrl-state=begqx7oro_4 (accessed on 20 May 2022).
- Scherer, H. Fertilizers and fertilization. In Encyclopedia of Soils in the Environment; Hillel, D., Hatfield, J., Eds.; Elsevier Academic Press: Amsterdam, The Netherlands, 2005; pp. 20–26. [Google Scholar] [CrossRef]
- Mesnage, R.; Straw, E.A.; Antoniou, M.N.; Benbrook, C.; Brown, M.J.F.; Chauzat, M.-P.; Finger, R.; Goulson, D.; Leadbeater, E.; López-Ballesteros, A.; et al. Improving pesticide-use data for the EU. Nat. Ecol. Evol. 2021, 5, 1560. [Google Scholar] [CrossRef]
- FERA. Pesticide Usage Statistics—PUS STATS. London. 2021. Available online: https://secure.fera.defra.gov.uk/pusstats/myindex.cfm (accessed on 20 May 2022).
- Douglas, M.R.; Sponsler, D.B.; Lonsdorf, E.V.; Grozinger, C.M. County-level analysis reveals a rapidly shifting landscape of insecticide hazard to honey bees (Apis mellifera) on US farmland. Sci. Rep. 2020, 10, 797. [Google Scholar] [CrossRef] [Green Version]
- APCC. Zusammenfassung für Entscheidungstragende (ZfE). In Österreichischer Sachstandsbericht Klimawandel 2014 (AAR14); Verlag der Österreichischen Akademie der Wissenschaften, Wien; Austrian Panel on Climate Change (APCC): Österreich, Austria, 2014; pp. 27–44. [Google Scholar]
- Brühl, C.A.; Zaller, J.G.; Liess, M.; Wogram, J. The rejection of synthetic pesticides in organic farming has multiple benefits. Trends Ecol. Evol. 2022, 37, 113–114. [Google Scholar] [CrossRef] [PubMed]
- Gunstone, T.; Cornelisse, T.; Klein, K.; Dubey, A.; Donley, N. Pesticides and Soil Invertebrates: A Hazard Assessment. Front. Environ. Sci. 2021, 9, 643847. [Google Scholar] [CrossRef]
- Liess, M.; Liebmann, L.; Vormeier, P.; Weisner, O.; Altenburger, R.; Borchardt, D.; Brack, W.; Chatzinotas, A.; Escher, B.; Foit, K.; et al. Pesticides are the dominant stressors for vulnerable insects in lowland streams. Water Res. 2021, 201, 117262. [Google Scholar] [CrossRef]
- Schulz, R.; Bub, S.; Petschick, L.L.; Stehle, S.; Wolfram, J. Applied pesticide toxicity shifts toward plants and invertebrates, even in GM crops. Science 2021, 372, 81–84. [Google Scholar] [CrossRef]
- DiBartolomeis, M.; Kegley, S.; Mineau, P.; Radford, R.; Klein, K. An assessment of acute insecticide toxicity loading (AITL) of chemical pesticides used on agricultural land in the United States. PLoS ONE 2019, 14, e0220029. [Google Scholar] [CrossRef] [Green Version]
- Goulson, D.; Thompson, J.; Croombs, A. Rapid rise in toxic load for bees revealed by analysis of pesticide use in Great Britain. PeerJ 2018, 6, e5255. [Google Scholar] [CrossRef]
- Niedobová, J.; Skalský, M.; Ouředníčková, J.; Michalko, R.; Bartošková, A. Synergistic effects of glyphosate formulation herbicide and tank-mixing adjuvants on Pardosa spiders. Environ. Pollut. 2019, 249, 338–344. [Google Scholar] [CrossRef]
- Siviter, H.; Bailes, E.J.; Martin, C.D.; Oliver, T.R.; Koricheva, J.; Leadbeater, E.; Brown, M.J.F. Agrochemicals interact synergistically to increase bee mortality. Nature 2021, 596, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Van Hoesel, W.; Tiefenbacher, A.; König, N.; Dorn, V.M.; Hagenguth, J.F.; Prah, U.; Widhalm, T.; Wiklicky, V.; Koller, R.; Bonkowski, M.; et al. Single and Combined Effects of Pesticide Seed Dressings and Herbicides on Earthworms, Soil Microorganisms, and Litter Decomposition. Front. Plant Sci. 2017, 8, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patzel, N.; Wilhelm, B. Das Boden-Bulletin: Landbau in Zeiten der Erderhitzung; World Wildlife Fund for Nature: Berlin, Germany, 2018; p. 22. [Google Scholar]
Parameter | Chemical Class | GHG per Item | Dosage Sugar Beets | Dosage Apples | Dosage Grapevines |
---|---|---|---|---|---|
kg CO2-eq kg−1 | kg ha−1 yr−1 | kg ha−1 yr−1 | kg ha−1 yr−1 | ||
Insecticides | Pyrethroid | 11.70 | 0.01 | 0.02 | 1.67 × 10-4 |
Carbamate + oximcarbamate | 6.10 | 0.00 | 0.04 | 0.00 | |
Organophosphate | 3.70 | 0.02 | 0.23 | 0.04 | |
Neonicotinoid | 15.10 | 0.06 | 0.06 | 0.00 | |
Microbiological insect. | 5.10 | 0.00 | 0.00 | 0.00 | |
Molluscicides | 5.10 | 1.18 × 10−3 | 0.00 | 0.00 | |
Total | 0.10 | 0.34 | 0.04 | ||
Fungicides | Benzimidazole | 8.00 | 0.17 | 0.00 | 0.00 |
Carbamate + dithiocarbamates | 1.60 | 1.23 | 1.89 | 1.10 | |
Imidazole + trizole | 3.90 | 0.27 | 0.09 | 0.22 | |
Morpholine | 3.90 | 0.00 | 0.00 | 0.14 | |
Other organic fungicides | 3.90 | 0.07 | 5.87 | 3.59 | |
Inorganic fungicides | 3.90 | 2.29 | 11.99 | 16.74 | |
Microbiol./vegetal origin | 3.90 | 0.00 | 0.00 | 0.02 | |
Total | 4.03 | 19.84 | 21.82 | ||
Herbicides | Amide + anilide | 5.63 | 0.11 | 0.01 | 0.00 |
Carbamate + biscarbamate | 3.00 | 0.35 | 0.00 | 0.00 | |
Dinitroanilin | 3.00 | 0.00 | 0.00 | 0.00 | |
Urea-, uracil-, sulphonylurea | 7.00 | 0.07 | 0.00 | 7.5 × 10−4 | |
Organophosphate | 9.10 | 0.59 | 0.50 | 0.41 | |
Phenoxy-phytohormones | 2.15 | 0.01 | 0.14 | 9.19 × 10−4 | |
Triazine + triazinone | 3.90 | 2.26 | 0.00 | 0.00 | |
Other organic herbicides | 6.95 | 0.48 | 0.00 | 4.93 × 10−3 | |
Total | 3.86 | 0.65 | 0.42 | ||
Fertilizer | Mineral N | 1.30 | 125.00 | 80.00 | 50.00 |
Phosphorus (P2O5) | 0.20 | 85.00 | 40.00 | 20.00 | |
Potassium (K2O) | 0.15 | 320.00 | 110.00 | 80.00 | |
Lime (CaO) | 0.16 | 400.00 | 341.67 | 783.30 |
Application Activity | Sugar Beet | Apple | Grapes | |||
---|---|---|---|---|---|---|
TF | Fuel Consum. | TF | Fuel Consum. | TF | Fuel Consum. | |
Number | L ha−1 | Number | L ha−1 | Number | L ha−1 | |
Insecticides | 0.19 | 2.00 | 5.46 | 7.00 | 0.37 | 5.00 |
Molluscicides | 0.03 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fungicides | 0.93 | 2.00 | 19.44 | 7.00 | 9.25 | 5.00 |
Herbicides | 3.76 | 2.00 | 0.68 | 7.00 | 0.40 | 5.00 |
N fertilization | 2.00 | 1.50 | 2.00 | 7.50 | 1.50 | 1.50 |
P fertilization | 1.50 | 1.50 | 1.00 | 7.50 | 1.00 | 1.50 |
K fertilization | 1.50 | 1.50 | 1.00 | 7.50 | 1.00 | 1.50 |
Liming | 2.50 | 2.50 | 1.00 | 2.50 | 1.00 | 2.50 |
Total application activity | 12.41 | 15.00 | 30.58 | 46.00 | 14.12 | 22.00 |
Pesticide Amounts Sold | %-Change 2000–2019 | R2 | F-Value | β1 | β0 | p-Value |
---|---|---|---|---|---|---|
Arable farmland, conv. | −19.60 | 0.97 | 531.00 | −1 × 104 | 3 × 107 | 8 × 10−15 ↓ |
Orchard area, conv. | −21.76 | 0.85 | 98.89 | −135.37 | 3 × 105 | 1 × 10−8 ↓ |
Viticulture area, conv. | −16.15 | 0.91 | 182.50 | −397.97 | 8 × 105 | 7 × 10−11 ↓ |
Insecticide amount | +58.23 | 0.52 | 19.48 | 3110.80 | −6 × 106 | 3 × 10−4 ↑ |
Fungicide amount | +29.38 | 0.54 | 21.29 | 4 × 104 | −7 × 107 | 2 × 10−4 ↑ |
Herbicide amount | −28.47 | 0.33 | 9.02 | −2 × 104 | 4 × 107 | 0.008 ↓ |
Total pesticide amount | +2.19 | 0.19 | 4.34 | 20.26 | −4 × 104 | 0.052 |
GHG Emissions | %-Change 2000–2019 | R2 | F-Value | β1 | β0 | p-Value |
---|---|---|---|---|---|---|
Insecticides | +58.23 | 0.52 | 19.48 | 2 × 104 | −3 × 107 | 3×10−4 ↑ |
Fungicides | +29.38 | 0.54 | 21.29 | 1 × 105 | −3 × 108 | 2×10−4↑ |
Herbicides | −28.47 | 0.33 | 9.02 | −1 × 105 | 2 × 108 | 0.008 ↓ |
Total | −4.40 | 0.03 | 0.65 | 4 × 104 | −6 × 107 | 0.432 |
Pesticide Type | GHG Emission during Production and Application of Chemical Class | Sugar Beet | Apples | Grapes | |||
---|---|---|---|---|---|---|---|
GHG Emissions | Emission Share | GHG Emissions | Emission Share | GHG Emissions | Emission Share | ||
kg CO2-eq ha−1 season−1 | % | kg CO2-eq ha−1 season−1 | % | kg CO2-eq ha−1 season−1 | % | ||
Insecticides | Pyrethroid | 0.13 | 15.14 | 0.21 | 0.66 | 1.96 × 10−3 | 0.12 |
Carbamate + oximcarbam. | 0.00 | 0.00 | 0.22 | 0.69 | 0.00 | 0.00 | |
Organophosphate | 0.08 | 9.76 | 0.84 | 2.67 | 0.15 | 9.50 | |
Neonicotinoid | 0.31 | 35.56 | 0.28 | 0.89 | 0.00 | 0.00 | |
Microbiological insect. | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Molluscicides | 0.01 | 0.70 | 0.00 | 0.00 | 0.00 | 0.00 | |
Fuel consum. for applic. | 0.33 | 38.33 | 29.90 | 95.09 | 1.45 | 90.38 | |
Total | 0.86 | 31.45 | 1.60 | ||||
Fungicides | Benzimidazole | 1.38 | 9.14 | 0.00 | 0.00 | 0.00 | 0.00 |
Carbamate + dithiocarbam. | 1.96 | 13.06 | 3.03 | 1.69 | 1.76 | 1.48 | |
Imidazole + trizole | 1.06 | 7.04 | 0.34 | 0.19 | 0.88 | 0.74 | |
Morpholine | 0.00 | 0.00 | 0.00 | 0.00 | 0.56 | 0.47 | |
Other organic fungicides | 0.26 | 1.75 | 22.89 | 12.75 | 14.00 | 11.79 | |
Inorganic fungicides | 8.92 | 59.30 | 46.77 | 26.05 | 65.30 | 54.98 | |
Microbiological/veg. origin | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | |
Fuel consum. for applic. | 1.46 | 9.72 | 106.49 | 59.32 | 36.20 | 30.48 | |
Total | 15.40 | 179.52 | 118.76 | ||||
Herbicides | Amide + anilide | 0.60 | 2.35 | 3.39 × 10−2 | 0.39 | 0.00 | 0.00 |
Carbamate + biscarbamate | 1.06 | 4.13 | 0.00 | 0.00 | 0.00 | 0.00 | |
Dinitroanilin | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Urea-, uracil-, sulphonylurea | 0.49 | 1.92 | 2.34 × 10−3 | 0.03 | 0.01 | 0.10 | |
Organophosphate | 5.39 | 21.09 | 4.56 | 52.99 | 3.74 | 69.70 | |
Phenoxy-phytohormones | 0.01 | 0.05 | 0.31 | 3.62 | 1.98 × 10−3 | 0.04 | |
Triazine + triazinone | 8.81 | 34.46 | 1.30 × 10−3 | 0.02 | 0.00 | 0.00 | |
Other organic herbicides | 3.32 | 12.98 | 2.32 × 10−3 | 0.03 | 0.03 | 0.64 | |
Fuel consum. for applic. | 5.88 | 23.02 | 3.70 | 42.93 | 1.58 | 29.53 | |
Total | 25.56 | 8.61 | 5.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cech, R.; Leisch, F.; Zaller, J.G. Pesticide Use and Associated Greenhouse Gas Emissions in Sugar Beet, Apples, and Viticulture in Austria from 2000 to 2019. Agriculture 2022, 12, 879. https://doi.org/10.3390/agriculture12060879
Cech R, Leisch F, Zaller JG. Pesticide Use and Associated Greenhouse Gas Emissions in Sugar Beet, Apples, and Viticulture in Austria from 2000 to 2019. Agriculture. 2022; 12(6):879. https://doi.org/10.3390/agriculture12060879
Chicago/Turabian StyleCech, Ramona, Friedrich Leisch, and Johann G. Zaller. 2022. "Pesticide Use and Associated Greenhouse Gas Emissions in Sugar Beet, Apples, and Viticulture in Austria from 2000 to 2019" Agriculture 12, no. 6: 879. https://doi.org/10.3390/agriculture12060879