Adoption of Climate Smart Agricultural Practices through Women Involvement in Decision Making Process: Exploring the Role of Empowerment and Innovativeness
Abstract
:1. Introduction
1.1. Theoretical Background on Climate-Smart Agriculture (CSA) and Women Empowerment
1.1.1. Climate-Smart Agriculture (CSA)
1.1.2. Adoption of CSA—Women Empowerment and Innovative Behavior
2. Materials and Methods
2.1. Sampling and Data Collection Instrument
2.2. Categorization of CSA Practices and Dependent Variable
2.3. Econometric Procedure and Analytical Technique
3. Results and Discussion
3.1. Sample Background, Decisional Empowerment, and Innovativeness
3.2. Factors Influencing CSA Adoption at Women Farms
3.3. Effect of Decisional Empowerment and Innovativeness on the Adoption of CSA Practices
4. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abd-Elmabod, S.K.; Muñoz-Rojas, M.; Jordán, A.; Anaya-Romero, M.; Phillips, J.D.; Jones, L.; Zhang, Z.; Pereira, P.; Fleskens, L.; van Der Ploeg, M. Climate change impacts on agricultural suitability and yield reduction in a Mediterranean region. Geoderma 2020, 374, 114453. [Google Scholar] [CrossRef]
- Jawid, A. A Ricardian analysis of the economic impact of climate change on agriculture: Evidence from the farms in the central highlands of Afghanistan. J. Asian Econ. 2020, 67, 101177. [Google Scholar] [CrossRef]
- Shahbaz, P.; Boz, I.; Haq, S. Do socio economic characteristics of farming community really matter for the adoption of climate change strategies? A case study of central Punjab, Pakistan. Fresenius Environ. Bull. 2021, 30, 80–92. [Google Scholar]
- Bowman, M.S.; Zilberman, D. Economic factors affecting diversified farming systems. Ecol. Soc. 2013, 18, 33. [Google Scholar] [CrossRef]
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; Van der Wal, T.; Soto, I.; Gómez-Barbero, M.; Barnes, A.; Eory, V. Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability 2017, 9, 1339. [Google Scholar] [CrossRef] [Green Version]
- Sikod, F. Gender division of labour and women’s decision-making power in rural households in Cameroon. Afr. Dev. 2007, 32, 58–71. [Google Scholar] [CrossRef]
- Carr, E.R.; Thompson, M.C. Gender and climate change adaptation in agrarian settings: Current thinking, new directions, and research frontiers. Geogr. Compass 2014, 8, 182–197. [Google Scholar] [CrossRef]
- Li, R.; Wei, C.; Afroz, M.D.; Lyu, J.; Chen, G. A GIS-based framework for local agricultural decision-making and regional crop yield simulation. Agric. Syst. 2021, 193, 103213. [Google Scholar] [CrossRef]
- Enete, A.A.; Amusa, T.A. Determinants of women’s contribution to farming decisions in cocoa based agroforestry households of Ekiti State, Nigeria. Field Actions Science Reports. J. Field Actions 2010, 4, 1–6. [Google Scholar]
- Fleming, A.; Jakku, E.; Fielke, S.; Taylor, B.M.; Lacey, J.; Terhorst, A.; Stitzlein, C. Foresighting Australian digital agricultural futures: Applying responsible innovation thinking to anticipate research and development impact under different scenarios. Agric. Syst. 2021, 190, 103120. [Google Scholar] [CrossRef]
- Chatterjee, C.; Ramu, S. Gender and its rising role in modern Indian innovation and entrepreneurship. IIMB Manag. Rev. 2018, 30, 62–72. [Google Scholar] [CrossRef]
- Meinzen-Dick, R.; Quisumbing, A.; Doss, C.; Theis, S. Women’s land rights as a pathway to poverty reduction: Framework and review of available evidence. Agric. Syst. 2019, 172, 72–82. [Google Scholar] [CrossRef]
- Kieran, C.; Sproule, K.; Quisumbing, A.R.; Doss, C.R. Gender gaps in landownership across and within households in four Asian countries. Land Econ. 2017, 93, 342–370. [Google Scholar] [CrossRef]
- Achandi, E.L.; Mujawamariya, G.; Agboh-Noameshie, A.R.; Gebremariam, S.; Rahalivavololona, N.; Rodenburg, J. Women’s access to agricultural technologies in rice production and processing hubs: A comparative analysis of Ethiopia, Madagascar and Tanzania. J. Rural. Stud. 2018, 60, 188–198. [Google Scholar] [CrossRef]
- Aziz, N.; Nisar, Q.A.; Koondhar, M.A.; Meo, M.S.; Rong, K. Analyzing the women’s empowerment and food security nexus in rural areas of Azad Jammu & Kashmir, Pakistan: By giving consideration to sense of land entitlement and infrastructural facilities. Land Use Policy 2020, 94, 104529. [Google Scholar]
- IFPRI. Women’s Empowerment in Agriculture Index. 2021. Available online: https://www.ifpri.org/publication/womens-empowerment-agriculture-index (accessed on 12 December 2021).
- Ishaq, W.; Memon, S.Q. Roles of women in agriculture: A case study of rural Lahore, Pakistan. J. Rural. Dev. Agric. 2016, 1, 1–11. [Google Scholar]
- Luqman, M.; Malik, N.H.; Khan, A.S. Extent of rural women’s participation in agricultural and household activities. J. Agric. Soc. Sci. 2006, 2, 5–9. [Google Scholar]
- Asadullah, M.N.; Kambhampati, U. Feminization of farming, food security and female empowerment. Glob. Food Secur. 2021, 29, 100532. [Google Scholar] [CrossRef]
- World Economic Forum. Women Own Less than 20% of the World’s Land. It’s Time to Give Them Equal Property Rights. 2017. Available online: https://www.weforum.org/agenda/2017/01/women-own-less-than-20-of-the-worlds-land-its-time-to-give-them-equal-property-rights/#:~:text=rights%20to%20land.-,Women%20own%20less%20than%2020%25%20of%20the%20world’s%20land.,the%20world’s%20population%20is%20women (accessed on 1 March 2022).
- FAO. Gender and Land Statistics; FAO: Rome, Italy, 2014; Available online: https://www.fao.org/3/i5488e/i5488e.pdf (accessed on 10 March 2022).
- Khatri-Chhetri, A.; Regmi, P.P.; Chanana, N.; Aggarwal, P.K. Potential of climate-smart agriculture in reducing women farmers’ drudgery in high climatic risk areas. Clim. Change 2020, 158, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Goldsmith, R.E.; Feygina, I.; Jost, J.T. The gender gap in environmental attitudes: A system justification perspective. In Research, Action and Policy: Addressing the Gendered Impacts of Climate Change 159–171; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Twyman, J.; Green, M.; Bernier, Q.; Kristjanson, P.M.; Russo, S.; Tall, A.; Ampaire, E.; Nyasimi, M.; Mango, J.; McKune, S.; et al. Adaptation Actions in Africa: Evidence That Gender Matters; CCAFS Working Paper No. 83; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Copenhagen, Denmark, 2014; Available online: https://hdl.handle.net/10568/51391 (accessed on 20 April 2022).
- Aryal, J.P.; Farnworth, C.R.; Khurana, R.; Ray, S.; Sapkota, T.B. Gender dimensions of climate change adaptation through climate smart agricultural practices in India. In Innovation in Indian Agriculture: Ways Forward; New Delhi Institute of Economic Growth (IEG): New Delhi, India; International Food Policy Research Institute: Washington, DC, USA, 2014. [Google Scholar]
- FAO. The State of Food and Agriculture; Food and Agriculture Organization: Rome, Italy, 2011; Available online: http://www.fao.org/docrep/013/i2050e/i2050e00.htm (accessed on 2 May 2022).
- Murray, U.; Gebremedhin, Z.; Brychkova, G.; Spillane, C. Smallholder farmers and climate smart agriculture: Technology and labor-productivity constraints amongst women smallholders in Malawi. Gender. Technol. Dev. 2016, 20, 117–148. [Google Scholar] [CrossRef]
- Oyawole, F.P.; Shittu, A.; Kehinde, M.; Ogunnaike, G.; Akinjobi, L.T. Women empowerment and adoption of climate-smart agricultural practices in Nigeria. Afr. J. Econ. Manag. Stud. 2020, 12, 105–119. [Google Scholar] [CrossRef]
- Seymour, G.; Doss, C.; Marenya, P.; Meinzen-Dick, R.; Passarelli, S. Women’s Empowerment and the Adoption of Improved Maize Varieties: Evidence from Ethiopia, Kenya, and Tanzania, Selected Paper Prepared for. Presentation at the 2016 Agricultural and Applied Economics Association Annual Meeting, Boston, MA, USA, 31 July–2 August 2016; International Food Policy Research Institute: Milwaukee, WI, USA, 2017; Available online: http://ebrary.ifpri.org/utils/getfile/collection/p15738coll5/id/5451/filename/5452.pdf (accessed on 9 May 2022).
- World Bank. Employment in Agriculture, Female (% of Female Employment) (Modeled ILO Estimate)—Pakistan 2019. Available online: https://data.worldbank.org/indicator/SL.AGR.EMPL.FE.ZS?locations=PK (accessed on 28 May 2022).
- Shahbaz, P.; Boz, I.; Haq, S.U. Adaptation options for small livestock farmers having large ruminants (cattle and buffalo) against climate change in Central Punjab Pakistan. Environ. Sci. Pollut. Res. 2020, 27, 17935–17948. [Google Scholar] [CrossRef]
- Siddiqui, A. Global Gender Gap Report Released: Pakistan Is Second-Worst Country in Terms of Gender Parity 2022. Available online: https://www.thenews.com.pk/print/973552-global-gender-gap-report-released-pakistan-is-second-worst-country-in-terms-of-gender-parity (accessed on 10 June 2022).
- Mohiuddin, I.; Kamran, M.A.; Jalilov, S.-M.; Ahmad, M.-U.-D.; Adil, S.A.; Ullah, R.; Khaliq, T. Scale and Drivers of Female Agricultural Labor: Evidence from Pakistan. Sustainability 2020, 12, 6633. [Google Scholar] [CrossRef]
- FAO. Climate-Smart Agriculture: Sourcebook; FAO: Rome, Italy, 2013. [Google Scholar]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K. Climate-smart agriculture for food security. Nat. Clim. Change 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Blaser, W.J.; Oppong, J.; Hart, S.P.; Landolt, J.; Yeboah, E.; Six, J. Climate-smart sustainable agriculture in low-to-intermediate shade agroforests. Nat. Sustain. 2018, 1, 234–239. [Google Scholar] [CrossRef]
- Brown, B.; Llewellyn, R.; Nuberg, I. Global learnings to inform the local adaptation of conservation agriculture in Eastern and Southern Africa. Glob. Food Secur. 2018, 17, 213–220. [Google Scholar] [CrossRef]
- Haq, S.u.; Boz, I.; Shahbaz, P. Adoption of climate-smart agriculture practices and differentiated nutritional outcome among rural households: A case of Punjab province, Pakistan. Food Secur. 2021, 13, 913–931. [Google Scholar] [CrossRef]
- Kangogo, D.; Dentoni, D.; Bijman, J. Adoption of climate-smart agriculture among smallholder farmers: Does farmer entrepreneurship matter? Land Use Policy 2021, 109, 105666. [Google Scholar] [CrossRef]
- Makate, C.; Makate, M.; Mango, N.; Siziba, S. Increasing resilience of smallholder farmers to climate change through multiple adoption of proven climate-smart agriculture innovations. Lessons from Southern Africa. J. Environ. Manag. 2019, 231, 858–868. [Google Scholar] [CrossRef] [PubMed]
- Leoni, C.; Rossing, W.; van Bruggen, A.H. Crop rotation. In Plant Disease Management in Organic Agriculture; American Phytopathological Society: St. Paul, MN, USA, 2015. [Google Scholar]
- Kaye, J.P.; Quemada, M. Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain. Dev. 2017, 37, 4. [Google Scholar] [CrossRef]
- Kılıç, O.; Boz, İ.; Eryılmaz, G.A. Comparison of conventional and good agricultural practices farms: A socio-economic and technical perspective. J. Clean. Prod. 2020, 258, 120666. [Google Scholar] [CrossRef]
- Glaze-Corcoran, S.; Hashemi, M.; Sadeghpour, A.; Jahanzad, E.; Afshar, R.K.; Liu, X.; Herbert, S.J. Understanding intercropping to improve agricultural resiliency and environmental sustainability. Adv. Agron. 2020, 162, 199–256. [Google Scholar] [CrossRef]
- FAO. Responding to the challenges of a changing world: The role of new plant varieties and high quality seed in agriculture. 2nd world seed conference. In Proceedings of the FAO Headquarters, Rome, Italy, 8–10 September 2009. [Google Scholar]
- Santiago-Freijanes, J.J.; Pisanelli, A.; Rois-Díaz, M.; Aldrey-Vázquez, J.A.; Rigueiro-Rodríguez, A.; Pantera, A.; Vityi, A.; Lojka, B.; Ferreiro-Domínguez, N.; Mosquera-Losada, M.R. Agroforestry development in Europe: Policy issues. Land Use Policy 2018, 76, 144–156. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Shaxson, F.; Pretty, J. The spread of conservation agriculture: Justification, sustainability and uptake. Int. J. Agric. Sustain. 2009, 7, 292–320. [Google Scholar] [CrossRef]
- Maillard, É.; Angers, D.A. Animal manure application and soil organic carbon stocks: A meta-analysis. Glob. Change Biol. 2014, 20, 666–679. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations; Free Press: New York, NY, USA, 2003; p. 551. [Google Scholar]
- Senyolo, M.P.; Long, T.B.; Blok, V.; Omta, O. How the characteristics of innovations impact their adoption: An exploration of climate-smart agricultural innovations in South Africa. J. Clean. Prod. 2018, 172, 3825–3840. [Google Scholar] [CrossRef]
- Ajzen, I. Perceived Behavioural Control, Self-efficacy, Locus of Control and the Theory of Planned Behaviour. J. Appl. Soc. Psychol. 2002, 32, 665–683. [Google Scholar] [CrossRef]
- Dorfman, J.H. Modeling multiple adoption decisions in a joint framework. Am. J. Agric. Econ. 1996, 78, 547–557. [Google Scholar] [CrossRef]
- Hess, S.; Daly, A.; Batley, R. Revisiting consistency with random utility maximisation: Theory and implications for practical work. Theory Decis. 2018, 84, 181–204. [Google Scholar] [CrossRef] [Green Version]
- Kurgat, B.K.; Lamanna, C.; Kimaro, A.; Namoi, N.; Manda, L.; Rosenstock, T.S. Adoption of climate-smart agriculture technologies in Tanzania. Front. Sustain. Food Syst. 2020, 4, 55. [Google Scholar] [CrossRef]
- Quisumbing, A.R.; Roy, S.; Njuki, J.; Tanvin, K.; Waithanji, E. Can Dairy Value-Chain Projects Change Gender Norms in Rural Bangladesh? Impacts on Assets, Gender Norms, and Time Use. 2013. Available online: https://ssrn.com/abstract=2373264 (accessed on 22 May 2022).
- Sraboni, E.; Malapit, H.J.; Quisumbing, A.R.; Ahmed, A.U. Women’s empowerment in agriculture: What role for food security in Bangladesh? World Dev. 2014, 61, 11–52. [Google Scholar] [CrossRef] [Green Version]
- Asfaw, S.; McCarthy, N.; Lipper, L.; Arslan, A.; Cattaneo, A. What determines farmers’ adaptive capacity? Empirical evidence from Malawi. Food Secur. 2016, 8, 643–664. [Google Scholar] [CrossRef]
- Khoza, S.; Van Niekerk, D.; Nemakonde, L.D. Understanding gender dimensions of climate-smart agriculture adoption in disaster-prone smallholder farming communities in Malawi and Zambia. Disaster Prev. Manag. Int. J. 2019, 28, 530–547. [Google Scholar] [CrossRef]
- Lumpkin, G.T.; Dess, G.G. Clarifying the entrepreneurial orientation construct and linking it to performance. Acad. Manag. Rev. 1996, 21, 135–172. [Google Scholar] [CrossRef]
- FAO. Sustainable Development Goals; Working for Zero Hunger. 2021. Available online: http://www.fao.org/3/CA2460EN/ca2460en.pdf (accessed on 5 July 2022).
- PBS. Pakistan Census 2017. 2017. Available online: https://www.pbs.gov.pk/ (accessed on 5 July 2022).
- Krejcie, R.V.; Morgan, D.W. Determining sample size for research activities. Educ. Psychol. Meas. 1970, 30, 607–610. [Google Scholar] [CrossRef]
- Torquebiau, E.; Rosenzweig, C.; Chatrchyan, A.M.; Andrieu, N.; Khosla, R. Identifying Climate-smart agriculture research needs. Cah. Agric. 2018, 27, 26001. [Google Scholar] [CrossRef] [Green Version]
- Michler, J.D.; Baylis, K.; Arends-Kuenning, M.; Mazvimavi, K. Conservation agriculture and climate resilience. J. Environ. Econ. Manag. 2019, 93, 148–169. [Google Scholar] [CrossRef] [PubMed]
- Howden, S.M.; Soussana, J.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19691–19696. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, P.K.; Jarvis, A.; Campbell, B.M.; Zougmoré, R.B.; Khatri-Chhetri, A.; Vermeulen, S.J.; Yen, B.T. The climate-smart village approach: A framework of an integrative strategy for scaling up adaptation options in agriculture. Ecol. Soc. 2018, 23, 14. [Google Scholar] [CrossRef]
- Collier, D.; LaPorte, J.; Seawright, J. Putting typologies to work: Concept formation, measurement, and analytic rigor. Political Res. Q. 2012, 65, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Amadu, F.O.; McNamara, P.E.; Miller, D.C. Understanding the adoption of climate-smart agriculture: A farm-level typology 616 with empirical evidence from southern Malawi. World Dev. 2020, 126, 104692. [Google Scholar] [CrossRef]
- Teklewold, H.; Gebrehiwot, T.; Bezabih, M. Climate smart agricultural practices and gender differentiated nutrition outcome: An empirical evidence from Ethiopia. World Dev. 2019, 122, 38–53. [Google Scholar] [CrossRef]
- Dehejia, R.H.; Wahba, S. Propensity score-matching methods for nonexperimental causal studies. Rev. Econ. Stat. 2002, 84, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Duckett, M.K. Empowering Female Farmers to Feed the World. National Geographic 2019. Available online: https://www.nationalgeographic.com/culture/article/partner-content-empowering-female-farmers (accessed on 5 July 2022).
- Stevano, S. The Limits of Instrumentalism: Informal Work and Gendered Cycles of Food Insecurity in Mozambique. J. Dev. Stud. 2019, 55, 83–98. [Google Scholar] [CrossRef]
- Mersha, A.A.; Van Laerhoven, F. A gender approach to understanding the differentiated impact of barriers to adaptation: Responses to climate change in rural Ethiopia. Reg. Environ. Change 2016, 16, 1701–1713. [Google Scholar] [CrossRef] [Green Version]
- World Bank; FAO; IFAD. Gender in Climate-Smart Agriculture: Module 18 for Gender in Agriculture Sourcebook; World Bank: Washington, DC, USA, 2015. [Google Scholar]
CSA Practice | CSA Groups | ||
---|---|---|---|
Unskilled Labor | Skilled Labor | Financial Capital | |
Crop rotation | ✔ | ||
Bed raising | ✔ | ||
Cover cropping | ✔ | ||
Livestock manure | ✔ | ||
Conservation tillage | ✔ | ||
Intercropping | ✔ | ||
New seed varieties | ✔ | ||
Agroforestry | ✔ |
Variables | Mean/Mode |
---|---|
Human capital | |
Age (years) | 41.02 (10.76) |
Education (years) | 6.06 (3.18) |
Family size (persons) | 6.51 (2.17) |
Family type (1 = joint, 0 = nuclear) | 0.57 (0.41) |
Farming experience (years) | 8.51(2.33) |
Financial and physical capital | |
Total land (acres) | 4.57 (1.96) |
Livestock (number) | 4.16 (2.10) |
Farming machinery (1 = yes, 0 = no) | 0.13 (0.28) |
Secondary source of income (1 = yes, 0 = no) | 0.62 (0.33) |
Institutional factors | |
Extension services (1 = yes, 0 = no) | 0.25 (0.44) |
Internet access (1 = yes, 0 = no) | 0.21 (0.43) |
Decisional Empowerment (1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, 5 = strongly agree) | Mode |
Sale/purchase of agricultural land | 1 |
Rent in/rent out of agricultural land | 2 |
Crop-related decisions | 4 |
Farm machinery sale/purchase | 1 |
Farm machinery usage | 4 |
Agricultural inputs | 4 |
Agricultural output/produce | 3 |
Accessing agricultural credit | 4 |
Use of agricultural credit | 2 |
Allocation of time to different agricultural activities | 4 |
Use of agricultural income | 2 |
Decisional empowerment (mean) | 3.39 (1.2) |
Innovativeness (1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, 5 = strongly agree) | |
Use of new farming strategies | 5 |
Get up-to-date information on farming strategies | 4 |
Learn about new farming strategies from my fellow farmers | 4 |
Often improve my farming strategies | 3 |
Innovativeness (mean) | 4.25 (1.3) |
Explanatory Variables | Unskilled Labor | Skilled Labor | Financial Capital | |||
---|---|---|---|---|---|---|
Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | |
Human capital | ||||||
Age | 0.03 | 0.02 | −0.05 | 0.3 | −0.47 *** | 0.09 |
Education | 0.08 *** | 0.01 | 0.37 *** | 0.04 | 0.32 *** | 0.10 |
Family size | 0.07 *** | 0.02 | −0.03 | 0.06 | 0.44 | 0.54 |
Farming experience | 0.05 | 0.06 | 0.43 *** | 0.05 | 0.65 | 0.38 |
Financial and physical capital | ||||||
Total land | −0.22 | 0.39 | 0.05 *** | 0.02 | 0.47 *** | 0.09 |
Livestock | 0.32 *** | 0.10 | 0.03 | 0.02 | 0.06 ** | 0.03 |
Farming machinery | 0.44 | 0.54 | 1.08 *** | 0.33 | 0.13 ** | 0.06 |
Secondary source | −1.46 | 1.59 | 0.32 | 0.30 | 0.65 *** | 0.14 |
Institutional factors | ||||||
Extension services | 0.28 | 0.32 | 1.06 *** | 0.23 | 0.33 ** | 0.12 |
Internet access | −0.22 | 0.39 | 1.03 *** | 0.34 | 0.47 *** | 0.09 |
Decisional empowerment | 0.06 ** | 0.03 | 0.09 *** | 0.03 | 0.32 *** | 0.10 |
Innovativeness | 0.13 ** | 0.06 | 0.06 *** | 0.01 | 0.44 ** | 0.19 |
Constant | −1.46 | 1.59 | −1.50 | 1.43 | 0.65 *** | 0.14 |
Wald χ2 | 248.35 | |||||
Log Likelihood | −461.94 |
Sample | Decisional Empowerment Status | Average Difference | |
---|---|---|---|
Highly empowered | Highly empowered | Moderately empowered | |
0.69 (0.08) | 0.47 (0.08) | 0.23 *** | |
Highly empowered | Highly empowered | Low empowered | |
0.69 (0.08) | 0.16 (0.07) | 0.54 *** | |
Moderately empowered | Moderately empowered | Low empowered | |
0.43 (0.10) | 0.22 (0.09) | 0.21 *** | |
Sample | Innovativeness Status | ||
Highly Innovative | Highly innovative | Moderately innovative | |
0.78 (0.05) | 0.49 (0.05) | 0.29 *** | |
Highly Innovative | Highly innovative | Low innovative | |
0.78 (0.05) | 0.46 (0.08) | 0.32 *** | |
Moderately innovative | Moderately innovative | Low innovative | |
0.54 (0.06) | 0.44 (0.06) | 0.10 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahbaz, P.; ul Haq, S.; Abbas, A.; Batool, Z.; Alotaibi, B.A.; Nayak, R.K. Adoption of Climate Smart Agricultural Practices through Women Involvement in Decision Making Process: Exploring the Role of Empowerment and Innovativeness. Agriculture 2022, 12, 1161. https://doi.org/10.3390/agriculture12081161
Shahbaz P, ul Haq S, Abbas A, Batool Z, Alotaibi BA, Nayak RK. Adoption of Climate Smart Agricultural Practices through Women Involvement in Decision Making Process: Exploring the Role of Empowerment and Innovativeness. Agriculture. 2022; 12(8):1161. https://doi.org/10.3390/agriculture12081161
Chicago/Turabian StyleShahbaz, Pomi, Shamsheer ul Haq, Azhar Abbas, Zahira Batool, Bader Alhafi Alotaibi, and Roshan K. Nayak. 2022. "Adoption of Climate Smart Agricultural Practices through Women Involvement in Decision Making Process: Exploring the Role of Empowerment and Innovativeness" Agriculture 12, no. 8: 1161. https://doi.org/10.3390/agriculture12081161
APA StyleShahbaz, P., ul Haq, S., Abbas, A., Batool, Z., Alotaibi, B. A., & Nayak, R. K. (2022). Adoption of Climate Smart Agricultural Practices through Women Involvement in Decision Making Process: Exploring the Role of Empowerment and Innovativeness. Agriculture, 12(8), 1161. https://doi.org/10.3390/agriculture12081161