The Effect of Harvest Date and Storage Conditions on the Quality of Remontant Strawberry Cultivars Grown in a Gutter System under Covers
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bieniasz, M.; Dziedzic, E.; Kaczmarczyk, E. The effect of storage and processing on vitamin C content in Japanese quince fruit. Folia Hort. 2017, 29, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Bieniek, A. Fruits of Actinidia Arguta and Actinidia Purpurea and Some of Their Hybrid Cultivars Grown in Northeastern Poland. Pol. J. Environ. Stud. 2012, 21, 1543–1550. [Google Scholar]
- Dziedzic, E.; Błaszczyk, J.; Bieniasz, M.; Dziadek, K.; Kopeć, A. Effect of modified (MAP) and controlled atmosphere (CA) storage on the quality and bioactive compounds of blue honeysuckle fruits (Lonicera caerulea L.). Sci. Hortic. 2020, 265, 109226. [Google Scholar] [CrossRef]
- Mech-Nowak, A.; Kruczek, M.; Kaszycki, P.; Bieniasz, M.; Kostecka-Gugała, A. Polifenole, hydroksykwasy karboksylowe ikarotenoidy w owocachsuchodrzewujadalnego (Lonicera coelurea var. kamtschatica). Przemysł Chem. 2014, 93, 948–953. [Google Scholar]
- Mikiciuk, G.; Mikiciuk, M.; Hawrot-Paw, M. Influence of superabsorbent polymers on the chemical composition of strawberry (Fragaria × ananassa Duch.) and biological activity in the soil. Folia Hortic. 2015, 27, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Simeone, A.M.; Nota, P.; Ceccarelli, D.; Del Toro, A.; Piazza, G.; De Salvador, F.R.; Caboni, E.; Krupa, T. Anthocyanins in blueberry cultivars: Effect of the growing area. Acta Hortic. 2012, 926, 713–716. [Google Scholar] [CrossRef]
- Soural, I.; Šnurkovič, P.; Bieniasz, M. l-Ascorbic acid content and antioxidant capacity in less-known fruit juices. Czech J. Food Sci. 2019, 37, 359–365. [Google Scholar] [CrossRef]
- Szot, I.; Szot, P.; Lipa, T.; Sosnowska, B.; Dobrzański, B. Determination of physical and chemical properties of cornelian cherry (Cornus mas l.) fruits depending on degree of ripening and ecotypes. Acta Sci. Pol. Hortorum Cultus 2019, 18, 251–262. [Google Scholar] [CrossRef]
- Bagnara, D.; Vincent, C. The role of insect pollination and plant genotype in strawberry fruit set and fertility. J. Hortic. Sci. 1988, 63, 69–75. [Google Scholar] [CrossRef]
- Bieniasz, M. The Differentiation of Highbush Blueberry Flower Buds. Acta Hortic. 2012, 932, 117–122. [Google Scholar] [CrossRef]
- Rutkowski, K.; Łysiak, G. Thinning Methods to Regulate Sweet Cherry Crops—A Review. Appl. Sci. 2022, 12, 1280. [Google Scholar] [CrossRef]
- Bieniasz, M.; Małodobry, M.; Dziedzic, E. The effect of foliar fertilization with calcium on quality of strawberry cultivars ‘Luna’ and ‘Zanta’. Acta Hortic. 2012, 926, 457–461. [Google Scholar] [CrossRef]
- Domagała-Świątkiewicz, I.; Błaszczyk, J. The effect of late spraying with calcium nitrate on mineral contents in ‘Elise’ apples. Folia Hortic. 2007, 19, 47–56. [Google Scholar]
- Domagała-Świątkiewicz, I.; Błaszczyk, J. Effect of calcium nitrate spraying on mineral contents and storability of ‘Elise’ apples. Pol. J. Environ. Stud. 2009, 18, 971–976. [Google Scholar]
- Przybyłko, S.; Kowalczyk, W.; Wrona, D. The effect of mycorrhizal fungi and PGPR on tree nutritional status and growth in organic apple production. Agronomy 2021, 11, 1402. [Google Scholar] [CrossRef]
- Rutkowski, K.P.; Kruczynska, D.E.; Żurawicz, E. Quality and shelf life of strawberry cultivars in Poland. Acta Hortic. 2006, 708, 329–332. [Google Scholar] [CrossRef]
- Sosna, I.; Kortylewska, D. Evaluation of several less knownpear (Pyruscommunis, L.) cultivars in the climatic conditions of Lower Silesia. Acta Agrobot. 2012, 65, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Tomala, K.; Araucz, M.; Żaczek, B. Growth dynamics and calcium content in McIntosh and Spartan apples. Commun. Soil Sci. Plant Anal. 1989, 20, 529–537. [Google Scholar] [CrossRef]
- Wysocki, K.; Kopytowski, J.; Bieniek, A.; Bojarska, J. The effect of substrates on yield and quality of strawberry fruits cultivated in heated foil tunnel. Zemdirb.-Agric. 2017, 104, 283–286. [Google Scholar] [CrossRef] [Green Version]
- Abu-Zahra, T.R. Effect of Cold Storage and Modified Atmosphere Packaging on Strawberry (Fragaria × Ananassa Duch.) cv. ‘Arben’ Fruit Keeping Quality. Biosci. Biotechnol. Res. Asia 2017, 14, 1251–1258. [Google Scholar] [CrossRef]
- Forney, F.C.; Kalt, W.; Jordan, M.A. The Composition of Strawberry Aroma is Influenced by Cultivar, Maturity, and Storage. HortScience 2000, 35, 1022–1026. [Google Scholar] [CrossRef] [Green Version]
- Mishra, R.; Kar, A. Effect of Storage on the Physicochemical and Flavour Attributes of Two Cultivars of Strawberry Cultivated in Northern India. Sci. World J. 2014, 2014, 794926. [Google Scholar] [CrossRef]
- Battino, M.; Beekwilder, J.; Denoyes-Rothan, B.; Laimer, M.; McDougall, G.J.; Mezzetti, B. Bioactive compounds in berries relevant to human health. Nutr. Rev. 2009, 67, 145–150. [Google Scholar] [CrossRef]
- Yang, D.; Xie, H.; Jiang, Y.; Wei, X. Phenolics from strawberry cv. Falandi and their antioxidant and α-glucosidase inhibitory activities. Food Chem. 2016, 194, 857–863. [Google Scholar] [CrossRef]
- Mazur, S.P.; Nes, A.; Wold, A.B.; Remberg, S.F.; Martinsen, B.K.; Aaby, K. Effects of ripeness and cultivar on chemical composition of strawberry (Fragaria × ananassa Duch.) fruits and their suitability for jam production as a stable product at different storage temperatures. Food Chem. 2014, 146, 412–422. [Google Scholar] [CrossRef]
- Domínguez, P.; Medina, J.J.; Miranda, L.; López-Aranda, J.M.; Ariza, M.T.; Soria, C.; Bielinski, M.S.; Torres-Quezadac, E.A.; Hernández-Ochoa, I. Effect of Planting and Harvesting Dates on Strawberry Fruit Quality under High Tunnels. Int. J. Fruit Sci. 2016, 16, 228–238. [Google Scholar] [CrossRef]
- Błaszczyk, J. Influence of harvest date and storage conditions on the content of chlorophyll pigments in pear peels. Folia Hortic. 2012, 24, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Łysiak, G. The determination of harvest index of ‘Sampion’ apples intended for long storage. Acta Sci. Pol. Hortorum Cultus. 2011, 10, 3. [Google Scholar]
- Peano, C.; Giuggioli, N.R.; Girgenti, V. Effect of different packaging materials on postharvest quality of cv. Envie2 strawberry. Int. Food Res. J. 2014, 21, 1165–1170. [Google Scholar]
- Mirahmadi, F.; Hanafi, Q.M.; Alizadeh, M.; Mohamadi, H.; Sarsaifee, M. Effect of low temperature on physico-chemical properties of different strawberry cultivars. Afr. J. Food Sci. Technol. 2011, 2, 109–115. [Google Scholar]
- Cordenunsi, B.R.; Genovese, M.I.; Nascimento, J.R.O.; Hassimotto, N.M.A.; Santos, R.J.; Lajolo, F.M. Effects of temperature on the chemical composition and antioxidant activity of three strawberry cultivars. Food Chem. 2005, 91, 113–121. [Google Scholar] [CrossRef]
- Sallato, B.V.; Torres, R.; Zoffoli, J.P.; Latorre, B.A. Effect of boscalid on postharvest decay of strawberry caused by Botrityscinerea and Rhizopus stolonifer. Span. J. Agric. Res. 2007, 5, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Tournas, V.H.; Katsoudas, E. Mould and yeast flora in fresh berries, grapes and citrus fruits. Int. J. Food Microbiol. 2005, 23, 684–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunes, M.C.N.; Brecht, J.C.; Morais, A.M.; Sargent, S.A. Physiochemical changes during strawberry development in the field compared with those that occur in harvested fruits during storage. J. Sci. Food and Agric. 2006, 1, 180–190. [Google Scholar] [CrossRef]
- Ceredi, G.; Mari, M.; Antoniacci, L.; Montuschi, C.; De Paoli, E.; Gengotti, S. Ten years of field trials on grey mold control on strawberries. Acta Hortic. 2009, 842, 327–330. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opra, U.L.; Vigneault, C.; Delele, M.A.; Al-Said, F.A. Design of packaging vents for cooling fresh horticultural produce. Food Bioprocess Technol. 2012, 5, 2031–2045. [Google Scholar] [CrossRef]
- Pelletier, W.; Brech, J.K.; Nunes, M.C.N.; Mond, J.P.E. Quality of strawberries shipped by truck from California to Florida as influenced by postharvest temperature management practices. Hortic. Technol. 2011, 21, 482–493. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Luo, Z.; Huang, X.; Zhang, L.; Zhao, P.; Ma, H. Label-free quantitative proteomics to investigate strawberry fruit proteome changes under controlled atmosphere and low temperature storage. J. Proteom. 2015, 120, 44–57. [Google Scholar] [CrossRef]
- Krivorot, A.M.; Daris, R. Shelf life and quality changes of strawberry cultivars. Acta Hortic. 2002, 567, 755–758. [Google Scholar] [CrossRef]
- Sandhya, S. Modified atmosphere packaging of fresh produce: Current status and future needs. LWT-Food Sci. Technol. 2010, 43, 381–392. [Google Scholar] [CrossRef]
- Ikegaya, A.; Ohba, S.; Nakajima, T.; Toyoizumi, T.; Ito, S.; Arai, E. Practical long-term storage of strawberries in refrigerated containers at ice temperature. Food Sci. Nutr. 2020, 8, 5138–5148. [Google Scholar] [CrossRef]
- Terry, L.A. Soft fruit. In Crop Post-Harvest: Science and Technology, 1st ed.; Rees, D., Farrell, G., Orchard, J., Eds.; Blackwell Publishing Ltd.: Boston, MA, USA, 2012; pp. 226–246. [Google Scholar]
- Ertan, U.; Ozelkok, S.; Celikel, F.; Kepenek, K. The effects of pre-cooling and increased atmospheric concentrations of CO2 on fruit quality and postharvest life of strawberries. Bahçe 1990, 19, 59–76. [Google Scholar]
- Bishop, D. Controlled atmosphere storage. In Cold and Chilled Storage Technology; Dellino, C.V.J., Ed.; Springer: Boston, MA, USA, 1997. [Google Scholar]
- Nunes, M.C.N.; Morais, A.M.M.B.; Brecht, J.K.; Sargent, S.A. Fruit maturity and storage temperature influence response of strawberries to controlled atmospheres. J. Am. Soc. Hortic. Sci. 2002, 127, 836–842. [Google Scholar] [CrossRef] [Green Version]
- Nunes, M.C.N.; Morais, A.M.M.B.; Brecht, J.K.; Sargent, S.A. Quality of strawberries after storage in controlled atmosphere at above optimum storage temperatures. Proc. Fla. State Hortic. Soc. 1995, 108, 273–278. [Google Scholar]
- Zhang, Y.; Yang, M.; Hou, G.; Zhang, Y.; Chen, Q.; Lin, Y.; Li, M.; Wang, Y.; He, W.; Wang, X. Effect of Genotype and Harvest Date on Fruit Quality, Bioactive Compounds, and Antioxidant Capacity of Strawberry. Horticulturae 2022, 8, 348. [Google Scholar] [CrossRef]
- Kader, A.A. Fruit maturity, ripening, and quality relationships. Acta Hortic. 1999, 485, 203–208. [Google Scholar] [CrossRef]
- Ariza, M.T.; Martiınez-Ferria, E.; Domiınguez, P.; Medina, J.J.; Miranda, L.; Soria, C. Effects of harvest time on functional compounds and fruit antioxidant capacity in ten strawberry cultivars. J. Berry Res. 2015, 5, 71–80. [Google Scholar] [CrossRef]
- Wang, S.Y.; Camp, M.J. Temperatures after bloom affect plant growth and fruit quality of strawberry. Sci. Hortic. 2000, 85, 183–199. [Google Scholar] [CrossRef]
- MacKenzie, S.J.; Chandler, C.K.; Hasing, T.; Whitaker, V.M. The role of temperature in the late-season decline in soluble solids content of strawberry fruit in a subtropical production system. HortScience 2011, 46, 1562–1566. [Google Scholar] [CrossRef]
- Chandra, D.; Choi, A.J.; Lee, J.S.; Lee, J.; Kim, J.G. Changes in Physicochemical and Sensory Qualities of “Goha” Strawberries Treated with Different Conditions of Carbon Dioxide. Agric. Sci. 2015, 6, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Alamar, M.C.; Collings, E.; Cools, K.; Terry, L.A. Impact of controlled atmosphere scheduling on strawberry and imported avocado fruit. Postharvest Biol. Technol. 2017, 134, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Ebtsam, H.A.; Ragab, M.E.; Abd El-Gawad, H.G.; Emam, M.S. Effect of active and passive modified atmosphere packaging on quality attributes of strawberry fruits during cold storage. Arab Univ. J. Agric. Sci. 2016, 24, 157–168. [Google Scholar]
- Ozkaya, O.; Dündar, O.; Camerata Scovazzo, G.; Volpe, G. Evaluation of quality parameters of strawberry fruits in modified atmosphere packaging during storage. Afr. J. Biotechnol. 2009, 8, 789–793. [Google Scholar]
- Holcroft, D.M.; Kader, A.A. Controlled atmosphere-induced changes in pH and organic acid metabolism may affect color of stored strawberry fruit. Postharvest Biol. Technol. 1999, 17, 19–32. [Google Scholar] [CrossRef]
- Almenar, E.; Hernández-Muñoz, P.; Laragón, J.M.; Catalá, R.; Gavara, R. Controlled atmosphere storage of wild strawberry fruit (Fragaria vesca L.). J. Agric. Food Chem. 2006, 54, 86–91. [Google Scholar] [CrossRef]
- Fonseca, S.C.; Oliveira, F.A.R.; Brecht, J.K. Modeling respiration rate of fresh fruits and vegetables for modified atmosphere packages. A Review. J. Food Eng. 2002, 52, 99–119. [Google Scholar] [CrossRef]
- Panda, A.K.; Goyal, R.K.; Godara, A.K.; Sharma, V.K. Effect of packaging materials on the shelf-life of strawberry cv. Sweet Charlie under room temperature storage. J. Appl. Nat. Sci. 2016, 8, 1290–1294. [Google Scholar] [CrossRef]
- Choi, H.J.; Bae, Y.S.; Lee, J.S.; Park, M.H.; Kim, J.G. Effects of Carbon Dioxide Treatment and Modified Atmosphere Packaging on the Quality of Long Distance Transporting ‘Maehyang’ Strawberry. Agric. Sci. 2016, 7, 813–821. [Google Scholar]
- Robinson, J.E.; Browne, K.M.; Burton, W.G. Storage characteristics of some vegetables and soft fruits. Ann. Appl. Biol. 1975, 81, 399–408. [Google Scholar] [CrossRef]
- Shiina, T. Food aging and deterioration of freshness. In Syokuhin-to Rekka (Food and Its Deterioration); Tsushida, T., Ed.; Korin: Tokyo, Japan, 2003; pp. 205–257. [Google Scholar]
Year | Harvest | Fruit Firmness [N] | Soluble Solids Content [%] | Total acidity [% Citric Acid] | Ratio SSC/TA | Respiration rate [mg CO2kg−1h−1] |
---|---|---|---|---|---|---|
2018 | 1 | 3.2 ± 0.24 a * | 7.5 ± 0.34 a | 0.96 ± 0.07 b | 7.9 ± 0.64 a | 67.9 ± 11.46 ab |
2 | 3.3 ± 0.18 a | 7.6 ± 0.28 a | 0.76 ± 0.03 a | 10.0 ± 0.56 b | 73.9 ± 12.08 b | |
3 | 5.7 ± 0.38 b | 9.4 ± 0.38 b | 0.77 ± 0.04 a | 12.2 ± 0.75 c | 61.6 ± 11.44 a | |
2019 | 1 | 3.1 ± 0.32 a | 8.7 ± 0.57 c | 1.12 ± 0.06 c | 7.8 ± 0.25 a | 106.4 ± 24.66 c |
2 | 3.2 ± 0.22 a | 8.0 ± 0.27 b | 0.93 ± 0.06 b | 8.6 ± 0.48 b | 56.7 ± 16.87 b | |
3 | 3.8 ± 0.23 b | 7.6 ± 0.27 a | 0.84 ± 0.09 a | 9.1 ± 1.06 b | 51.7 ± 13.39 b | |
4 | 4.9 ± 0.54 c | 10.5 ± 0.61 d | 0.82 ± 0.03 a | 12.8 ± 0.56 c | 36.1 ± 7.70 a | |
2020 | 1 | 3.2 ± 0.11 a | 8.7 ± 0.76 b | 1.03 ± 0.09 c | 8.5 ± 0.85 a | 55.5 ± 9.40 b |
2 | 3.4 ± 0.17 b | 7.9 ± 0.56 a | 0.89 ± 0.03 b | 8.9 ± 0.79 b | 61.8 ± 10.85 b | |
3 | 4.3 ± 0.35 c | 8.3 ± 0.40 ab | 0.78 ± 0.05 a | 10.7 ± 0.61 c | 47.1 ± 31.35 a |
Year | Harvest | Fruit Firmness [N] | Soluble Solids Content [%] | Total Acidity [% Citric Acid] | Ratio SSC/TA | Respiration Rate [mg CO2kg−1h−1] |
---|---|---|---|---|---|---|
2018 | 1 | 3.0 ± 0.14 a * | 9.7 ± 0.26 a | 1.19 ± 0.08 b | 8.2 ± 0.78 a | 77.5 ± 17.70 c |
2 | 3.0 ± 0.20 a | 8.7 ± 0.51 a | 0.77 ± 0.03 a | 11.4 ± 0.62 b | 65.0 ± 13.45 b | |
3 | 4.7 ± 0.36 b | 10.3 ± 0.44 c | 0.72 ± 0.05 a | 14.3 ± 0.94 c | 29.0 ± 8.27 a | |
2019 | 1 | 3.5 ± 0.11 a | 11.0 ± 0.67 b | 1.21 ± 0.05 c | 9.1 ± 0.78 a | 112.0 ± 26.11 d |
2 | 3.6 ± 0.21 a | 8.3 ± 0.22 a | 0.93 ± 0.07 b | 8.7 ± 0.80 a | 64.0 ± 20.55 c | |
3 | 3.4 ± 0.18 a | 8.4 ± 0.20 a | 0.74 ± 0.04 a | 11.5 ± 0.42 b | 40.1 ± 18.37 b | |
4 | 5.3 ± 0.32 b | 11.0 ± 0.48 b | 0.79 ± 0.03 a | 13.9 ± 0.66 c | 24.0 ± 9.02 a | |
2020 | 1 | 3.1 ± 0.53 a | 9.3 ± 0.33 b | 0.89 ± 0.10 b | 10.9 ± 0.71 a | 44.9 ± 9.85 a |
2 | 4.1 ± 0.30 b | 9.1 ± 0.29 ab | 0.84 ± 0.03 a | 10.8 ± 0.36 a | 47.5 ± 11.83 a | |
3 | 4.9 ± 0.44 c | 8.9 ± 0.58 a | 0.86 ± 0.02 ab | 10.4 ± 0.92 a | 47.1 ± 20.13 a |
Year | Harvest | Fruit Firmness [N] | Soluble Solids Content [%] | Total Acidity [% Citric Acid] | Ratio SSC/TA | Respiration Rate [mg CO2kg−1h−1] |
---|---|---|---|---|---|---|
2018 | 1 | 3.3 ± 0.16 a * | 9.1 ± 0.34 b | 0.79 ± 0.05 b | 11.6 ± 0.74 a | 84.0 ± 16.76 c |
2 | 3.3 ± 0.22 a | 8.4 ± 0.62 a | 0.68 ± 0.04 a | 12.5 ± 1.08 a | 50.5 ± 10.59 b | |
3 | 5.5 ± 0.50 b | 10.9 ± 0.58 c | 0.67 ± 0.02 a | 16.6 ± 0.80 b | 37.4 ± 9.45 a | |
2019 | 1 | 3.0 ± 0.27 a | 11.0 ± 0.46 d | 1.22 ± 0.09 c | 9.5 ± 1.20 a | 128.0 ± 15.08 d |
2 | 3.0 ± 0.19 a | 8.2 ± 0.35 a | 0.94 ± 0.08 b | 8.8 ± 0.90 a | 66.8 ± 10.38 c | |
3 | 3.6 ± 0.67 b | 8.5 ± 0.54 b | 0.73 ± 0.07 a | 11.8 ± 1.68 b | 45.3 ± 5.73 b | |
4 | 4.5 ± 0.80 c | 10.4 ± 0.36 c | 0.74 ± 0.06 a | 14.4 ± 1.29 c | 28.4 ± 9.26 a | |
2020 | 1 | 4.3 ± 0.17 b | 11.3 ± 0.46 c | 0.88 ± 0.12 b | 12.9 ± 1.70 b | 49.2 ± 14.78 c |
2 | 3.9 ± 0.23 a | 8.2 ± 0.70 a | 0.69 ± 0.06 a | 11.8 ± 0.66 a | 39.9 ± 14.15 b | |
3 | 5.1 ± 0.49 c | 10.7 ± 0.72 b | 0.72 ± 0.07 a | 14.8 ± 1.21 c | 34.3 ± 7.10 a |
Year | Storage Conditions | Fruit Firmness [N] | Soluble Solids Content [%] | Total Acidity [% Citric Acid] | Ratio SSC/TA | Respiration Rate [mg CO2kg−1h−1] |
---|---|---|---|---|---|---|
2018 | AA | 3.6 ± 0.40 a * | 8.7 ± 0.72 b | 0.90 ± 0.05 b | 9.7 ± 1.28 a | 63.6 ± 22.86 c |
MAP | 4.0 ± 0.56 b | 8.4 ± 0.68 a | 0.87 ± 0.04 ab | 9.8 ± 1.16 a | 35.0 ± 9.98 a | |
CA | 4.1 ± 0.80 b | 8.4 ± 0.76 a | 0.85 ± 0.06 a | 9.9 ± 1.40 a | 48.4 ± 12.04 b | |
2019 | AA | 3.5 ± 0.69 a | 8.8 ± 1.34 b | 0.89 ± 0.09 a | 9.6 ± 1.70 a | 80.2 ± 24.44 c |
MAP | 3.6 ± 0.79 a | 9.0 ± 1.47 c | 0.90 ± 0.12 ab | 9.9 ± 1.79 b | 64.3 ± 23.46 a | |
CA | 4.0 ± 1.03 b | 8.6 ± 1.31 a | 0.92 ± 0.11 b | 9.7 ± 1.59 ab | 69.9 ± 14.75 b | |
2020 | AA | 3.7 ± 0.41 a | 8.4 ± 0.67 b | 0.86 ± 0.07 b | 9.8 ± 0.98 a | 69.8 ± 26.64 c |
MAP | 3.9 ± 0.52 b | 8.3 ± 0.69 b | 0.83 ± 0.07 a | 10.1 ± 1.13 a | 53.6 ± 23.78 a | |
CA | 4.1 ± 0.42 c | 8.1 ± 0.70 a | 0.82 ± 0.05 a | 10.0 ± 1.22 a | 64.7 ± 25.76 b |
Year | Storage conditions | Fruit Firmness [N] | Soluble Solids Content [%] | Total Acidity [% Citric Acid] | Ratio SSC/TA | Respiration Rate [mg CO2kg−1h−1] |
---|---|---|---|---|---|---|
2018 | AA | 3.6 ± 0.74 a * | 9.9 ± 1.16 a | 0.97 ± 0.12 a | 10.2 ± 1.88 a | 69.5 ± 30.14 b |
MAP | 3.7 ± 0.68 ab | 10.1 ± 1.24 a | 0.94 ± 0.10 a | 10.7 ± 1.64 a | 52.7 ± 21.34 a | |
CA | 4.0 ± 0.70 b | 10.1 ± 1.22 a | 0.95 ± 0.13 a | 10.6 ± 1.79 a | 58.4 ± 20.96 a | |
2019 | AA | 3.2 ± 0.66 a | 9.9 ± 1.91 a | 0.93 ± 0.11 a | 10.9 ± 2.25 a | 82.3 ± 23.54 c |
MAP | 3.5 ± 0.77 b | 9.9 ± 1.95 a | 0.94 ± 0.14 a | 10.7 ± 2.36 a | 54.5 ± 18.91 a | |
CA | 3.8 ± 0.87 c | 9.8 ± 1.82 a | 0.93 ± 0.12 a | 10.8 ± 2.11 a | 61.1 ± 34.69 b | |
2020 | AA | 3.5 ± 0.60 a | 9.1 ± 1.18 ab | 0.87 ± 0.10 b | 10.5 ± 1.65 a | 91.5 ± 34.75 c |
MAP | 3.7 ± 0.63 b | 8.9 ± 1.10 a | 0.81 ± 0.10 a | 11.1 ± 1.87 b | 54.8 ± 23.63 a | |
CA | 4.3 ± 0.78 c | 9.2 ± 1.07 b | 0.80 ± 0.09 a | 11.6 ± 1.52 c | 61.1 ± 14.94 b |
Year | Storage Conditions | Fruit Firmness [N] | Soluble Solids Content [%] | Total Acidity [% Citric Acid] | Ratio SSC/TA | Respiration Rate [mg CO2kg−1h−1] |
---|---|---|---|---|---|---|
2018 | AA | 4.1 ± 0.84 a * | 10.5 ± 1.46 b | 0.89 ± 0.10 b | 11.8 ± 1.18 a | 77.3 ± 30.78 c |
MAP | 4.0 ± 0.76 a | 10.3 ± 1.22 ab | 0.80 ± 0.08 a | 12.9 ± 1.48 b | 28.9 ± 18.88 a | |
CA | 4.2 ± 0.92 a | 10.0 ± 1.40 a | 0.80 ± 0.09 a | 12.5 ± 1.42 b | 53.5 ± 24.06 b | |
2019 | AA | 3.0 ± 0.78 a | 7.9 ± 1.27 a | 0.59 ± 0.11 a | 13.4 ± 1.93 c | 56.4 ± 30.82 c |
MAP | 4.0 ± 0.37 c | 8.6 ± 1.20 b | 0.70 ± 0.12 b | 12.4 ± 1.65 b | 32.5 ± 21.69 a | |
CA | 3.8 ± 0.30 b | 8.1 ± 1.20 a | 0.71 ± 0.11 b | 11.4 ± 1.64 a | 39.9 ± 14.14 b | |
2020 | AA | 4.5 ± 0.89 a | 10.2 ± 1.55 b | 0.76 ± 0.08 b | 13.6 ± 1.35 a | 64.2 ± 23.96 c |
MAP | 5.4 ± 0.88 b | 9.8 ± 1.48 a | 0.70 ± 0.07 a | 14.0 ± 1.63 b | 45.0 ± 20.26 a | |
CA | 6.1 ± 1.05 c | 10.0 ± 1.63 ab | 0.71 ± 0.10 a | 14.0 ± 1.59 b | 60.4 ± 20.37 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błaszczyk, J.; Bieniasz, M.; Nawrocki, J.; Kopeć, M.; Mierzwa-Hersztek, M.; Gondek, K.; Zaleski, T.; Knaga, J.; Bogdał, S. The Effect of Harvest Date and Storage Conditions on the Quality of Remontant Strawberry Cultivars Grown in a Gutter System under Covers. Agriculture 2022, 12, 1193. https://doi.org/10.3390/agriculture12081193
Błaszczyk J, Bieniasz M, Nawrocki J, Kopeć M, Mierzwa-Hersztek M, Gondek K, Zaleski T, Knaga J, Bogdał S. The Effect of Harvest Date and Storage Conditions on the Quality of Remontant Strawberry Cultivars Grown in a Gutter System under Covers. Agriculture. 2022; 12(8):1193. https://doi.org/10.3390/agriculture12081193
Chicago/Turabian StyleBłaszczyk, Jan, Monika Bieniasz, Jacek Nawrocki, Michał Kopeć, Monika Mierzwa-Hersztek, Krzysztof Gondek, Tomasz Zaleski, Jarosław Knaga, and Stanisław Bogdał. 2022. "The Effect of Harvest Date and Storage Conditions on the Quality of Remontant Strawberry Cultivars Grown in a Gutter System under Covers" Agriculture 12, no. 8: 1193. https://doi.org/10.3390/agriculture12081193
APA StyleBłaszczyk, J., Bieniasz, M., Nawrocki, J., Kopeć, M., Mierzwa-Hersztek, M., Gondek, K., Zaleski, T., Knaga, J., & Bogdał, S. (2022). The Effect of Harvest Date and Storage Conditions on the Quality of Remontant Strawberry Cultivars Grown in a Gutter System under Covers. Agriculture, 12(8), 1193. https://doi.org/10.3390/agriculture12081193