Farm Biosecurity Measures and Interventions with an Impact on Bacterial Biofilms
Abstract
:1. Introduction
2. Mechanisms of Biofilm Formation and Intervention Strategies
2.1. Poultry
2.2. Dairy
2.3. Pig Farms
3. Management and Prevention Strategies
3.1. Mixed Farms
3.2. The Potential of Human as a Vector for Disease Transmission
3.3. Basic Hand Washing
3.4. Cleaning and Disinfection
3.5. Relevance of the Veterinarian
3.6. Vaccination—A Sustainable Biosecurity Approach
3.7. Waste Management
3.8. The Importance of the Water Management
3.9. The Environment
4. Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kirtonia, K.; Salauddin, M.; Bharadwaj, K.K.; Pati, S.; Dey, A.; Shariati, M.A.; Tilak, V.K.; Kuznetsova, E.; Sarkar, T. Bacteriocin: A new strategic antibiofilm agent in food industries. Biocatal. Agric. Biotechnol. 2021, 36, 102141. [Google Scholar] [CrossRef]
- Lahiri, D.; Nag, M.; Sheikh, H.I.; Sarkar, T.; Edinur, H.A.; Pati, S.; Ray, R.R. Microbiologically-Synthesized Nanoparticles and Their Role in Silencing the Biofilm Signaling Cascade. Front. Microbiol. 2021, 12, 636588. [Google Scholar] [CrossRef] [PubMed]
- Magouras, I.; Carmo, L.P.; Stärk, K.D.; Schüpbach-Regula, G. Antimicrobial usage and-resistance in livestock: Where should we focus? Front. Vet. Sci. 2017, 4, 148. [Google Scholar] [CrossRef] [PubMed]
- Nhung, N.T.; Chansiripornchai, N.; Carrique-Mas, J.J. Antimicrobial resistance in bacterial poultry pathogens: A review. Front. Vet. Sci. 2017, 4, 126. [Google Scholar] [CrossRef] [PubMed]
- Brennan, M.L.; Christley, R.M. Biosecurity on cattle farms: A study in north-west England. PLoS ONE 2012, 7, e28139. [Google Scholar] [CrossRef]
- Oliveira, V.H.; Sørensen, J.T.; Thomsen, P.T. Associations between biosecurity practices and bovine digital dermatitis in Danish dairy herds. J. Dairy Sci. 2017, 100, 8398–8408. [Google Scholar] [CrossRef]
- Shortall, O.; Green, M.; Brennan, M.; Wapenaar, W.; Kaler, J. Exploring expert opinion on the practicality and effectiveness of biosecurity measures on dairy farms in the United Kingdom using choice modeling. J. Dairy Sci. 2017, 100, 2225–2239. [Google Scholar] [CrossRef] [PubMed]
- Emanuelson, U.; Sjöström, K.; Fall, N. Biosecurity and animal disease management in organic and conventional Swedish dairy herds: A questionnaire study. Acta Vet. Scand. 2018, 60, 23. [Google Scholar] [CrossRef] [PubMed]
- De Kievit, T.R.; Parkins, M.D.; Gillis, R.J.; Srikumar, R.; Ceri, H.; Poole, K.; Iglewski, B.H.; Storey, D.G. Multidrug efflux pumps: Expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 2001, 45, 1761–1770. [Google Scholar] [CrossRef] [PubMed]
- Theuretzbacher, U. Global antimicrobial resistance in Gram-negative pathogens and clinical need. Curr. Opin. Microbiol. 2017, 39, 106–112. [Google Scholar] [CrossRef]
- Lebeaux, D.; Ghigo, J.-M.; Beloin, C. Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev. 2014, 78, 510–543. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Sarkar, S.; Das, B.; Bhattacharjee, S.; Tribedi, P. Biofilm, pathogenesis and prevention—A journey to break the wall: A review. Arch. Microbiol. 2016, 198, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Giaouris, E.E.; Simões, M.V. Chapter 11—Pathogenic Biofilm Formation in the Food Industry and Alternative Control Strategies. In Foodborne Diseases; Holban, A.M., Grumezescu, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 309–377. [Google Scholar] [CrossRef]
- Roy, R.; Tiwari, M.; Donelli, G.; Tiwari, V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018, 9, 522–554. [Google Scholar] [CrossRef]
- Oliveira, V.H.; Anneberg, I.; Voss, H.; Sørensen, J.T.; Thomsen, P.T. Attitudes of Danish dairy farmers towards biosecurity. Livest. Sci. 2018, 214, 153–160. [Google Scholar] [CrossRef]
- Moya, S.; Tirado, F.; Espluga, J.; Ciaravino, G.; Armengol, R.; Diéguez, J.; Yus, E.; Benavides, B.; Casal, J.; Allepuz, A. Dairy farmers’ decision-making to implement biosecurity measures: A study of psychosocial factors. Transbound. Emerg. Dis. 2020, 67, 698–710. [Google Scholar] [CrossRef] [PubMed]
- Denis-Robichaud, J.; Kelton, D.F.; Bauman, C.A.; Barkema, H.W.; Keefe, G.P.; Dubuc, J. Gap between producers and veterinarians regarding biosecurity on Quebec dairy farms. Can. Vet. J. 2020, 61, 757. [Google Scholar] [PubMed]
- Svensson, C.; Alvåsen, K.; Eldh, A.C.; Frössling, J.; Lomander, H. Veterinary herd health management–Experience among farmers and farm managers in Swedish dairy production. Prev. Vet. Med. 2018, 155, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Svensson, C.; Lind, N.; Reyher, K.; Bard, A.; Emanuelson, U. Trust, feasibility, and priorities influence Swedish dairy farmers’ adherence and nonadherence to veterinary advice. J. Dairy Sci. 2019, 102, 10360–10368. [Google Scholar] [CrossRef] [PubMed]
- Haley, R. The scientific basis for using surveillance and risk factor data to reduce nosocomial infection rates. J. Hosp. Infect. 1995, 30, 3–14. [Google Scholar] [CrossRef]
- Sibanda, N.; McKenna, A.; Richmond, A.; Ricke, S.C.; Callaway, T.; Stratakos, A.C.; Gundogdu, O.; Corcionivoschi, N. A Review of the Effect of Management Practices on Campylobacter Prevalence in Poultry Farms. Front. Microbiol. 2018, 9, 2002. [Google Scholar] [CrossRef]
- Renault, V.; Humblet, M.F.; Pham, P.N.; Saegerman, C. Biosecurity at Cattle Farms: Strengths, Weaknesses, Opportunities and Threats. Pathogens 2021, 10, 1315. [Google Scholar] [CrossRef]
- Stoodley, P.; Sauer, K.; Davies, D.G.; Costerton, J.W. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 2002, 56, 187–209. [Google Scholar] [CrossRef]
- Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004, 2, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Goller, C.C.; Romeo, T. Environmental influences on biofilm development. Curr. Top. Microbiol. Immunol. 2008, 322, 37–66. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W. Introduction to biofilm. Int. J. Antimicrob. Agents 1999, 11, 217–221; discussion 237–219. [Google Scholar] [CrossRef]
- Flemming, H.C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.L.S.D.; Galdino, A.C.M.; Mello, T.P.d.; Ramos, L.d.S.; Branquinha, M.H.; Bolognese, A.M.; Columbano Neto, J.; Roudbary, M. What are the advantages of living in a community? A microbial biofilm perspective! Mem. Inst. Oswaldo Cruz 2018, 113, e180212. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Larrota, J.S.; Eckhard, U. An Introduction to Bacterial Biofilms and Their Proteases, and Their Roles in Host Infection and Immune Evasion. Biomolecules 2022, 12, 306. [Google Scholar] [CrossRef]
- Rather, M.A.; Gupta, K.; Bardhan, P.; Borah, M.; Sarkar, A.; Eldiehy, K.S.H.; Bhuyan, S.; Mandal, M. Microbial biofilm: A matter of grave concern for human health and food industry. J. Basic Microbiol. 2021, 61, 380–395. [Google Scholar] [CrossRef]
- Merino, L.; Procura, F.; Trejo, F.M.; Bueno, D.J.; Golowczyc, M.A. Biofilm formation by Salmonella sp. in the poultry industry: Detection, control and eradication strategies. Food Res. Int. 2019, 119, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, M.M.; Elgohary, F.A.; Zakaria, A.I.; Elkenany, R.M.; El-Khateeb, A.Y. Novel eradication methods for Staphylococcus aureus biofilm in poultry farms and abattoirs using disinfectants loaded onto silver and copper nanoparticles. Environ. Sci. Pollut. Res. 2020, 27, 30716–30728. [Google Scholar] [CrossRef] [PubMed]
- Gharieb, R.; Saad, M.; Abdallah, K.; Khedr, M.; Farag, E.; Abd El-Fattah, A. Insights on toxin genotyping, virulence, antibiogram profiling, biofilm formation and efficacy of disinfectants on biofilms of Clostridium perfringens isolated from poultry, animals and humans. J. Appl. Microbiol. 2021, 130, 819–831. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Lin, C.; Xu, Y.; Hu, M.; Xu, Z.; Geng, S.; Jiao, X.a.; Chen, X. A phage for the controlling of Salmonella in poultry and reducing biofilms. Vet. Microbiol. 2022, 269, 109432. [Google Scholar] [CrossRef] [PubMed]
- Aboelseoud, H.; Ismael, E.; Moustafa, G.; Badawy, E. Hygienic studies on biofilms in drinking water systems in poultry farms: Isolation, molecular identification, and antibiotic sensitivity. J. Anim. Health Prod. 2021, 9, 443–454. [Google Scholar] [CrossRef]
- Mohammed, A.N.; Attia, A.S. Control of biofilm-producing Aeromonas bacteria in the water tanks and drinkers of broiler poultry farms using chitosan nanoparticle-based coating thyme oil. Iraqi J. Vet. Sci. 2022, 36, 659–669. [Google Scholar] [CrossRef]
- Agostinho Davanzo, E.F.; dos Santos, R.L.; Castro, V.H.D.L.; Palma, J.M.; Pribul, B.R.; Dallago, B.S.L.; Fuga, B.; Medeiros, M.; Titze de Almeida, S.S.; da Costa, H.M.B.; et al. Molecular characterization of Salmonella spp. and Listeria monocytogenes strains from biofilms in cattle and poultry slaughterhouses located in the federal District and State of Goiás, Brazil. PLoS ONE 2021, 16, e0259687. [Google Scholar] [CrossRef]
- Han, S.; Byun, K.-H.; Mizan, M.F.R.; Kang, I.; Ha, S.-D. Bacteriophage and their lysins: A new era of biocontrol for inactivation of pathogenic bacteria in poultry processing and production—A review. Food Control 2022, 137, 108976. [Google Scholar] [CrossRef]
- Maes, S.; Vackier, T.; Nguyen Huu, S.; Heyndrickx, M.; Steenackers, H.; Sampers, I.; Raes, K.; Verplaetse, A.; De Reu, K. Occurrence and characterisation of biofilms in drinking water systems of broiler houses. BMC Microbiol. 2019, 19, 77. [Google Scholar] [CrossRef]
- Brasão, S.C.; Melo, R.T.d.; Prado, R.R.; Monteiro, G.P.; Santos, F.A.L.d.; Braz, R.F.; Rossi, D.A. Characterization and control of biofilms of Salmonella Minnesota of poultry origin. Food Biosci. 2021, 39, 100811. [Google Scholar] [CrossRef]
- Obe, T.; Richards, A.K.; Shariat, N.W. Differences in biofilm formation of Salmonella serovars on two surfaces under two temperature conditions. J. Appl. Microbiol. 2022, 132, 2410–2420. [Google Scholar] [CrossRef]
- Pande, V.; McWhorter, A.R.; Chousalkar, K.K. Anti-bacterial and anti-biofilm activity of commercial organic acid products against Salmonella enterica isolates recovered from an egg farm environment. Avian Pathol. 2018, 47, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Liao, X.; Li, C.; Abdel-Samie, M.A.; Cui, H. Inhibitory effect of cold nitrogen plasma on Salmonella Typhimurium biofilm and its application on poultry egg preservation. LWT 2020, 126, 109340. [Google Scholar] [CrossRef]
- Fathy, M.; Nasr, S.; Ismail, T.; Laban, S.; Gamal, A.; Bashandy, E.; Nasef, S.; Zahran, O. Efficiency of Some Sanitizers and Disinfectants against Biofilms and Planktonic Cells Buildup on Cages (Galvanized wire) and Plastic Material (PVC) in Poultry Farms. Int. J. Vet. Sci. 2019, 8, 120–126. [Google Scholar]
- Merino, L.; Trejo, F.M.; De Antoni, G.; Golowczyc, M.A. Lactobacillus strains inhibit biofilm formation of Salmonella sp. isolates from poultry. Food Res. Int. 2019, 123, 258–265. [Google Scholar] [CrossRef]
- Evran, S.; Tayyarcan, E.K.; Acar-Soykut, E.; Boyaci, I.H. Applications of Bacteriophage Cocktails to Reduce Salmonella Contamination in Poultry Farms. Food Environ. Virol. 2022, 14, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Laban, S.; Hamoud, M. Biofilmicidal efficacy of five disinfectants against campylobacter jejuni on different poultry farm surfaces. Adv. Anim. Vet. Sci. 2019, 7, 634–640. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Bampidis, V.; Azimonti, G.; Bastos, M.D.L.; Christensen, H.; Dusemund, B.; Kos Durjava, M.; López-Alonso, M.; López Puente, S.; Marcon, F.; et al. Safety and efficacy of TYFER™ (ferric tyrosine chelate) as a zootechnical feed additive for chickens, turkeys and minor poultry species for fattening or reared for laying/breeding. EFSA J. 2019, 17, e05608. [Google Scholar] [CrossRef]
- Cadena, M.; Kelman, T.; Marco, M.L.; Pitesky, M. Understanding Antimicrobial Resistance (AMR) Profiles of Salmonella Biofilm and Planktonic Bacteria Challenged with Disinfectants Commonly Used During Poultry Processing. Foods 2019, 8, 275. [Google Scholar] [CrossRef]
- Araújo, P.M.; Batista, E.; Fernandes, M.H.; Fernandes, M.J.; Gama, L.T.; Fraqueza, M.J. Assessment of biofilm formation by Campylobacter spp. isolates mimicking poultry slaughterhouse conditions. Poult. Sci. 2022, 101, 101586. [Google Scholar] [CrossRef]
- Balta, I.; Linton, M.; Pinkerton, L.; Kelly, C.; Stef, L.; Pet, I.; Stef, D.; Criste, A.; Gundogdu, O.; Corcionivoschi, N. The effect of natural antimicrobials against Campylobacter spp. and its similarities to Salmonella spp., Listeria spp., Escherichia coli, Vibrio spp., Clostridium spp. and Staphylococcus spp. Food Control 2021, 121, 107745. [Google Scholar] [CrossRef]
- Torras, M.A.C.; Angulo, E.L.A.; Orúe, S.M.; Bombardó, X.T. Determination of the Anti-Adhesive and Anti-Biofilm Capacity of a Wheat Extract on Staphylococcus aureus in Farms. J. Mater. Sci. Chem. Eng. 2021, 9, 11–21. [Google Scholar] [CrossRef]
- Srey, S.; Jahid, I.K.; Ha, S.-D. Biofilm formation in food industries: A food safety concern. Food Control 2013, 31, 572–585. [Google Scholar] [CrossRef]
- Anand, S.; Singh, D.; Avadhanula, M.; Marka, S. Development and control of bacterial biofilms on dairy processing membranes. Compr. Rev. Food Sci. Food Saf. 2014, 13, 18–33. [Google Scholar] [CrossRef] [PubMed]
- Marchand, S.; De Block, J.; De Jonghe, V.; Coorevits, A.; Heyndrickx, M.; Herman, L. Biofilm formation in milk production and processing environments; influence on milk quality and safety. Compr. Rev. Food Sci. Food Saf. 2012, 11, 133–147. [Google Scholar] [CrossRef]
- Fysun, O.; Anzmann, T.; Gschwind, P.; Rauschnabel, J.; Kohlus, R.; Langowski, H.-C. Biofilm and dairy fouling detection in flexible tubing using low-field NMR. Eur. Food Res. Technol. 2019, 245, 2579–2590. [Google Scholar] [CrossRef]
- Di Ciccio, P.; Rubiola, S.; Panebianco, F.; Lomonaco, S.; Allard, M.; Bianchi, D.M.; Civera, T.; Chiesa, F. Biofilm formation and genomic features of Listeria monocytogenes strains isolated from meat and dairy industries located in Piedmont (Italy). Int. J. Food Microbiol. 2022, 378, 109784. [Google Scholar] [CrossRef]
- Pasquali, F.; Palma, F.; Guillier, L.; Lucchi, A.; De Cesare, A.; Manfreda, G. Listeria monocytogenes sequence types 121 and 14 repeatedly isolated within one year of sampling in a rabbit meat processing plant: Persistence and ecophysiology. Front. Microbiol. 2018, 9, 596. [Google Scholar] [CrossRef]
- Muhterem-Uyar, M.; Ciolacu, L.; Wagner, K.-H.; Wagner, M.; Schmitz-Esser, S.; Stessl, B. New aspects on Listeria monocytogenes ST5-ECVI predominance in a heavily contaminated cheese processing environment. Front. Microbiol. 2018, 9, 64. [Google Scholar] [CrossRef]
- Veh, K.; Klein, R.; Ster, C.; Keefe, G.; Lacasse, P.; Scholl, D.; Roy, J.-P.; Haine, D.; Dufour, S.; Talbot, B. Genotypic and phenotypic characterization of Staphylococcus aureus causing persistent and nonpersistent subclinical bovine intramammary infections during lactation or the dry period. J. Dairy Sci. 2015, 98, 155–168. [Google Scholar] [CrossRef]
- Gomes, F.; Saavedra, M.J.; Henriques, M. Bovine mastitis disease/pathogenicity: Evidence of the potential role of microbial biofilms. FEMS Pathog. Dis. 2016, 74, ftw006. [Google Scholar] [CrossRef]
- Almeida, R.A.; Oliver, S.P. Interaction of coagulase-negative Staphylococcus species with bovine mammary epithelial cells. Microb. Pathog. 2001, 31, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Mangolin, B.; Gonçalves, J.; Neeff, D.; Silva, M.; Cruz, A.; Oliveira, C. Biofilm-producing ability of Staphylococcus aureus isolates from Brazilian dairy farms. J. Dairy Sci. 2014, 97, 1812–1816. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.; Belo, N.; Costa, E.; Andrade, G.; Pereira, L.; Carvalho, I.; Santos, R. Frequency of enterotoxins, toxic shock syndrome toxin-1, and biofilm formation genes in Staphylococcus aureus isolates from cows with mastitis in the Northeast of Brazil. Trop. Anim. Health Prod. 2018, 50, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Schiavone, B.I.; Rosato, A.; Marilena, M.; Gibbons, S.; Bombardelli, E.; Verotta, L.; Franchini, C.; Corbo, F. Biological evaluation of hyperforin and its hydrogenated analogue on bacterial growth and biofilm production. J. Nat. Prod. 2013, 76, 1819–1823. [Google Scholar] [CrossRef]
- Reyes, S.; Huigens Iii, R.W.; Su, Z.; Simon, M.L.; Melander, C. Synthesis and biological activity of 2-aminoimidazole triazoles accessed by Suzuki–Miyaura cross-coupling. Org. Biomol. Chem. 2011, 9, 3041–3049. [Google Scholar] [CrossRef]
- Payne, D.E.; Martin, N.R.; Parzych, K.R.; Rickard, A.H.; Underwood, A.; Boles, B.R. Tannic acid inhibits Staphylococcus aureus surface colonization in an IsaA-dependent manner. Infect. Immun. 2013, 81, 496–504. [Google Scholar] [CrossRef]
- Nostro, A.; Roccaro, A.S.; Bisignano, G.; Marino, A.; Cannatelli, M.A.; Pizzimenti, F.C.; Cioni, P.L.; Procopio, F.; Blanco, A.R. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J. Med. Microbiol. 2007, 56, 519–523. [Google Scholar] [CrossRef]
- Stenz, L.; François, P.; Fischer, A.; Huyghe, A.; Tangomo, M.; Hernandez, D.; Cassat, J.; Linder, P.; Schrenzel, J. Impact of oleic acid (cis-9-octadecenoic acid) on bacterial viability and biofilm production in Staphylococcus aureus. FEMS Microbiol. Lett. 2008, 287, 149–155. [Google Scholar] [CrossRef]
- Friedlander, A.; Nir, S.; Reches, M.; Shemesh, M. Preventing Biofilm Formation by Dairy-Associated Bacteria Using Peptide-Coated Surfaces. Front. Microbiol. 2019, 10, 1405. [Google Scholar] [CrossRef]
- Maity, S.; Nir, S.; Zada, T.; Reches, M. Self-assembly of a tripeptide into a functional coating that resists fouling. Chem. Commun. 2014, 50, 11154–11157. [Google Scholar] [CrossRef]
- Böger, R.; Rohn, K.; Kemper, N.; Schulz, J. Sodium Hypochlorite Treatment: The Impact on Bacteria and Endotoxin Concentrations in Drinking Water Pipes of a Pig Nursery. Agriculture 2020, 10, 86. [Google Scholar] [CrossRef]
- Barilli, E.; Vismarra, A.; Villa, Z.; Bonilauri, P.; Bacci, C. ESβL E. coli isolated in pig’s chain: Genetic analysis associated to the phenotype and biofilm synthesis evaluation. Int. J. Food Microbiol. 2019, 289, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Sivasankar, C.; Jha, N.K.; Singh, S.R.; Murali, A.; Shetty, P.H. Molecular evaluation of quorum quenching potential of vanillic acid against Yersinia enterocolitica through transcriptomic and in silico analysis. J. Med. Microbiol. 2020, 69, 1319–1331. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-R.; Han, M.-S.; Eom, Y.-B. Anti-bacterial and Anti-biofilm Effects of Equol on Yersinia enterocolitica. Indian J. Microbiol. 2022, 62, 401–410. [Google Scholar] [CrossRef]
- Ramírez-Castillo, F.Y.; Loera-Muro, A.; Vargas-Padilla, N.D.; Moreno-Flores, A.C.; Avelar-González, F.J.; Harel, J.; Jacques, M.; Oropeza, R.; Barajas-García, C.C.; Guerrero-Barrera, A.L. Incorporation of Actinobacillus pleuropneumoniae in Preformed Biofilms by Escherichia coli Isolated from Drinking Water of Swine Farms. Front. Vet. Sci. 2018, 5, 184. [Google Scholar] [CrossRef]
- Capita, R.; Vicente-Velasco, M.; Rodríguez-Melcón, C.; García-Fernández, C.; Carballo, J.; Alonso-Calleja, C. Effect of low doses of biocides on the antimicrobial resistance and the biofilms of Cronobacter sakazakii and Yersinia enterocolitica. Sci. Rep. 2019, 9, 15905. [Google Scholar] [CrossRef] [PubMed]
- Aiyedun, J.; Olatoye, O.; Oludairo, O.; Adesope, A.; Ogundijo, O. Occurrence, Antimicrobial Susceptibility and Biofilm Production in Listeria monocytogenes Isolated from Pork and other Meat Processing Items at Oko- Oba Abattoir, Lagos State, Nigeria. Sahel J. Vet. Sci. 2020, 17, 24–30. [Google Scholar] [CrossRef]
- Zhu, H.; Han, L.; Ni, Y.; Yu, Z.; Wang, D.; Zhou, J.; Li, B.; Zhang, W.; He, K. In vitro and In vivo Antibacterial Effects of Nisin Against Streptococcus suis. Probiotics Antimicrob. Proteins 2021, 13, 598–610. [Google Scholar] [CrossRef]
- Li, J.; Fan, Q.; Jin, M.; Mao, C.; Zhang, H.; Zhang, X.; Sun, L.; Grenier, D.; Yi, L.; Hou, X.; et al. Paeoniflorin reduce luxS/AI-2 system-controlled biofilm formation and virulence in Streptococcus suis. Virulence 2021, 12, 3062–3073. [Google Scholar] [CrossRef]
- Tang, Y.; Bai, J.; Yang, Y.; Bai, X.; Bello-Onaghise, G.; Xu, Y.; Li, Y. Effect of Syringopicroside Extracted from Syringa oblata Lindl on the Biofilm Formation of Streptococcus suis. Molecules 2021, 26, 1295. [Google Scholar] [CrossRef]
- LeBel, G.; Vaillancourt, K.; Bercier, P.; Grenier, D. Antibacterial activity against porcine respiratory bacterial pathogens and in vitro biocompatibility of essential oils. Arch. Microbiol. 2019, 201, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Wang, L.; Liu, T.; Liu, Y.; Wu, X.; Liu, L. Mandarin (Citrus reticulata L.) essential oil incorporated into chitosan nanoparticles: Characterization, anti-biofilm properties and application in pork preservation. Int. J. Biol. Macromol. 2021, 185, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Sun, E.; Song, J.; Tong, Y.; Wu, B. Three Salmonella enterica serovar Enteritidis bacteriophages from the Siphoviridae family are promising candidates for phage therapy. Can. J. Microbiol. 2018, 64, 865–875. [Google Scholar] [CrossRef] [PubMed]
- Di Vito, M.; Cacaci, M.; Barbanti, L.; Martini, C.; Sanguinetti, M.; Benvenuti, S.; Tosi, G.; Fiorentini, L.; Scozzoli, M.; Bugli, F.; et al. Origanum vulgare Essential Oil vs. a Commercial Mixture of Essential Oils: In Vitro Effectiveness on Salmonella spp. from Poultry and Swine Intensive Livestock. Antibiotics 2020, 9, 763. [Google Scholar] [CrossRef]
- Lang, M.; Montjarret, A.; Duteil, E.; Bedoux, G. Cinnamomum cassia and Syzygium aromaticum Essential Oils Reduce the Colonization of Salmonella Typhimurium in an In Vivo Infection Model Using Caenorhabditis elegans. Molecules 2021, 26, 5598. [Google Scholar] [CrossRef]
- Di Marco, N.I.; Páez, P.L.; Lucero-Estrada, C.S.M.; Pungitore, C.R. Naphthoquinones inhibit formation and viability of Yersinia enterocolitica biofilm. World J. Microbiol. Biotechnol. 2021, 37, 30. [Google Scholar] [CrossRef]
- Mat Jalil, M.; Ibrahim, D. Antibacterial and Antibiofilm Activities of Crude Extract of Lasiodiplodia pseudotheobromae IBRL OS-64 against Foodborne Bacterium, Yersinia enterocolitica. J. Pharm. Res. Int. 2020, 32, 87–102. [Google Scholar] [CrossRef]
- Wu, K.-C.; Hua, K.-F.; Yu, Y.-H.; Cheng, Y.-H.; Cheng, T.-T.; Huang, Y.-K.; Chang, H.-W.; Chen, W.-J. Antibacterial and Antibiofilm Activities of Novel Antimicrobial Peptides against Multidrug-Resistant Enterotoxigenic Escherichia coli. Int. J. Mol. Sci. 2021, 22, 3926. [Google Scholar] [CrossRef]
- Apiwatsiri, P.; Pupa, P.; Yindee, J.; Niyomtham, W.; Sirichokchatchawan, W.; Lugsomya, K.; Shah, A.A.; Prapasarakul, N. Anticonjugation and Antibiofilm Evaluation of Probiotic Strains Lactobacillus plantarum 22F, 25F, and Pediococcus acidilactici 72N against Escherichia coli Harboring mcr-1 Gene. Front. Vet. Sci. 2021, 8, 614439. [Google Scholar] [CrossRef]
- Fernández-Gómez, P.; Muro-Fraguas, I.; Múgica-Vidal, R.; Sainz-García, A.; Sainz-García, E.; González-Raurich, M.; Álvarez-Ordóñez, A.; Prieto, M.; López, M.; López, M.; et al. Development and characterization of anti-biofilm coatings applied by Non-Equilibrium Atmospheric Plasma on stainless steel. Food Res. Int. 2022, 152, 109891. [Google Scholar] [CrossRef]
- Cusimano, M.G.; Di Stefano, V.; La Giglia, M.; Di Marco Lo Presti, V.; Schillaci, D.; Pomilio, F.; Vitale, M. Control of Growth and Persistence of Listeria monocytogenes and β-Lactam-Resistant Escherichia coli by Thymol in Food Processing Settings. Molecules 2020, 25, 383. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri, T.; Ripolles-Avila, C.; Hascoët, A.S.; Rodríguez-Jerez, J.J. Effect of an enzymatic treatment on the removal of mature Listeria monocytogenes biofilms: A quantitative and qualitative study. Food Control 2020, 114, 107266. [Google Scholar] [CrossRef]
- Amass, S. Biosecurity: Stopping the bugs from getting in. Pig J. 2005, 55, 104. [Google Scholar]
- Karl, C.-A.; Andres, D.; Carlos, M.; Peña, M.; Juan, H.-O.; Jorge, O. Farm Biosecurity and Influenza A virus detection in Swine Farms: A Comprehensive Study in Colombia. Res. Sq. 2022, 1–43. [Google Scholar] [CrossRef]
- Ritter, C.; Jansen, J.; Roche, S.; Kelton, D.F.; Adams, C.L.; Orsel, K.; Erskine, R.J.; Benedictus, G.; Lam, T.J.; Barkema, H.W. Invited review: Determinants of farmers’ adoption of management-based strategies for infectious disease prevention and control. J. Dairy Sci. 2017, 100, 3329–3347. [Google Scholar] [CrossRef] [PubMed]
- Paton, N.; Schaefer, K.A.; Armitage-Chan, E.A.; Cooper, H.; Buggiotti, L. Disease prevention efforts on Welsh cattle farms are influenced by farm demographics. Vet. Rec. 2022, 190, e1389. [Google Scholar] [CrossRef]
- Baskerville, A. Mechanisms of infection in the respiratory tract. N. Z. Vet. J. 1981, 29, 235–238. [Google Scholar] [CrossRef]
- Cano-Terriza, D.; Risalde, M.; Jiménez-Ruiz, S.; Vicente, J.; Isla, J.; Paniagua, J.; Moreno, I.; Gortázar, C.; Infantes-Lorenzo, J.A.; García-Bocanegra, I. Management of hunting waste as control measure for tuberculosis in wild ungulates in south-central Spain. Transbound. Emerg. Dis. 2018, 65, 1190–1196. [Google Scholar] [CrossRef]
- Rossi, G.; Smith, R.L.; Pongolini, S.; Bolzoni, L. Modelling farm-to-farm disease transmission through personnel movements: From visits to contacts, and back. Sci. Rep. 2017, 7, 2375. [Google Scholar] [CrossRef]
- Bates, T.W.; Thurmond, M.C.; Carpenter, T.E. Direct and indirect contact rates among beef, dairy, goat, sheep, and swine herds in three California counties, with reference to control of potential foot-and-mouth disease transmission. Am. J. Vet. Res. 2001, 62, 1121–1129. [Google Scholar] [CrossRef]
- Brennan, M.L.; Kemp, R.; Christley, R.M. Direct and indirect contacts between cattle farms in north-west England. Prev. Vet. Med. 2008, 84, 242–260. [Google Scholar] [CrossRef] [PubMed]
- Mee, J.F.; Geraghty, T.; O’Neill, R.; More, S.J. Bioexclusion of diseases from dairy and beef farms: Risks of introducing infectious agents and risk reduction strategies. Vet. J. 2012, 194, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Sarrazin, S.; Damiaans, B.; Renault, V.; Saegerman, C. Transmission of cattle diseases and biosecurity in cattle farms. In Biosecurity in Animal Production and Veterinary Medicine: From Principles to Practice; CABI: Wallingford, UK, 2019; pp. 357–408. [Google Scholar]
- Longtin, Y.; Sax, H.; Allegranzi, B.; Schneider, F.; Pittet, D. Hand hygiene. N. Engl. J. Med. 2011, 364, e24. [Google Scholar] [CrossRef]
- Scheftel, J.M.; Elchos, B.L.; Cherry, B.; DeBess, E.E.; Hopkins, S.G.; Levine, J.F.; Williams, C.J.; Bell, M.R.; Dvorak, G.D.; Funk, R.H. Compendium of veterinary standard precautions for zoonotic disease prevention in veterinary personnel: National Association of State Public Health Veterinarians Veterinary Infection Control Committee 2010. J. Am. Vet. Med. Assoc. 2010, 237, 1403–1422. [Google Scholar] [CrossRef] [PubMed]
- Sahlström, L.; Virtanen, T.; Kyyrö, J.; Lyytikäinen, T. Biosecurity on Finnish cattle, pig and sheep farms–results from a questionnaire. Prev. Vet. Med. 2014, 117, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Boyce, J.M.; Pittet, D. Guideline for hand hygiene in health-care settings: Recommendations of the Healthcare Infection Control Practices Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force. Infect. Control Hosp. Epidemiol. 2002, 23, S3–S40. [Google Scholar] [CrossRef]
- Traub-Dargatz, J.L.; Weese, J.S.; Rousseau, J.D.; Dunowska, M.; Morley, P.S.; Dargatz, D.A. Pilot study to evaluate 3 hygiene protocols on the reduction of bacterial load on the hands of veterinary staff performing routine equine physical examinations. Can. Vet. J. 2006, 47, 671. [Google Scholar]
- Dwyer, R.M. Environmental disinfection to control equine infectious diseases. Vet. Clin. Equine Pract. 2004, 20, 531–542. [Google Scholar] [CrossRef]
- Benavides, B.; Casal, J.; Diéguez, J.; Yus, E.; Moya, S.J.; Armengol, R.; Allepuz, A. Development of a quantitative risk assessment of bovine viral diarrhea virus and bovine herpesvirus-1 introduction in dairy cattle herds to improve biosecurity. J. Dairy Sci. 2020, 103, 6454–6472. [Google Scholar] [CrossRef]
- Gilbert, M.; Mitchell, A.; Bourn, D.; Mawdsley, J.; Clifton-Hadley, R.; Wint, W. Cattle movements and bovine tuberculosis in Great Britain. Nature 2005, 435, 491–496. [Google Scholar] [CrossRef]
- Maes, D.; Van Soom, A.; Appeltant, R.; Arsenakis, I.; Nauwynck, H. Porcine semen as a vector for transmission of viral pathogens. Theriogenology 2016, 85, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Firestone, S.M.; Schemann, K.A.; Toribio, J.-A.L.; Ward, M.P.; Dhand, N.K. A case-control study of risk factors for equine influenza spread onto horse premises during the 2007 epidemic in Australia. Prev. Vet. Med. 2011, 100, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Richeson, J.T.; Hughes, H.D.; Broadway, P.R.; Carroll, J.A. Vaccination management of beef cattle: Delayed vaccination and endotoxin stacking. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 575–592. [Google Scholar] [CrossRef] [PubMed]
- Roth, F.; Zinsstag, J.; Orkhon, D.; Chimed-Ochir, G.; Hutton, G.; Cosivi, O.; Carrin, G.; Otte, J. Human health benefits from livestock vaccination for brucellosis: Case study. Bull. World Health Organ. 2003, 81, 867–876. [Google Scholar]
- Mostaan, S.; Ghasemzadeh, A.; Sardari, S.; Shokrgozar, M.A.; Brujeni, G.N.; Abolhassani, M.; Ehsani, P.; Karam, M.R.A. Pasteurella multocida vaccine candidates: A systematic review. Avicenna J. Med. Biotechnol. 2020, 12, 140. [Google Scholar]
- Robertson, I.D. Disease control, prevention and on-farm biosecurity: The role of veterinary epidemiology. Engineering 2020, 6, 20–25. [Google Scholar] [CrossRef]
- Martínez-Guijosa, J.; Lima-Barbero, J.F.; Acevedo, P.; Cano-Terriza, D.; Jiménez-Ruiz, S.; Barasona, J.Á.; Boadella, M.; García-Bocanegra, I.; Gortázar, C.; Vicente, J. Description and implementation of an On-farm Wildlife Risk Mitigation Protocol at the wildlife-livestock interface: Tuberculosis in Mediterranean environments. Prev. Vet. Med. 2021, 191, 105346. [Google Scholar] [CrossRef]
- Triguero-Ocaña, R.; Martínez-López, B.; Vicente, J.; Barasona, J.A.; Martínez-Guijosa, J.; Acevedo, P. Dynamic Network of Interactions in the Wildlife-Livestock Interface in Mediterranean Spain: An Epidemiological Point of View. Pathogens 2020, 9, 120. [Google Scholar] [CrossRef]
- Carrasco-Garcia, R.; Barasona, J.A.; Gortazar, C.; Montoro, V.; Sanchez-Vizcaino, J.M.; Vicente, J. Wildlife and livestock use of extensive farm resources in South Central Spain: Implications for disease transmission. Eur. J. Wildl. Res. 2016, 62, 65–78. [Google Scholar] [CrossRef]
- Gortazar, C.; Diez-Delgado, I.; Barasona, J.A.; Vicente, J.; De La Fuente, J.; Boadella, M. The Wild Side of Disease Control at the Wildlife-Livestock-Human Interface: A Review. Front. Vet. Sci. 2015, 1, 27. [Google Scholar] [CrossRef]
- Barasona, J.A.; Vicente, J.; Díez-Delgado, I.; Aznar, J.; Gortázar, C.; Torres, M.J. Environmental Presence of Mycobacterium tuberculosis Complex in Aggregation Points at the Wildlife/Livestock Interface. Transbound. Emerg. Dis. 2017, 64, 1148–1158. [Google Scholar] [CrossRef] [PubMed]
- Denis-Robichaud, J.; Kelton, D.F.; Bauman, C.A.; Barkema, H.W.; Keefe, G.P.; Dubuc, J. Biosecurity and herd health management practices on Canadian dairy farms. J. Dairy Sci. 2019, 102, 9536–9547. [Google Scholar] [CrossRef] [PubMed]
- Westbury, H. Hendra virus: A highly lethal zoonotic agent. Vet. J. 2000, 160, 165–166. [Google Scholar] [CrossRef] [PubMed]
- Guardabassi, L.; Schwarz, S.; Lloyd, D.H. Pet animals as reservoirs of antimicrobial-resistant bacteria. J. Antimicrob. Chemother. 2004, 54, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Veling, J.; Wilpshaar, H.; Frankena, K.; Bartels, C.; Barkema, H. Risk factors for clinical Salmonella enterica subsp. enterica serovar Typhimurium infection on Dutch dairy farms. Prev. Vet. Med. 2002, 54, 157–168. [Google Scholar] [CrossRef]
- Romi, R.; Pontuale, G.; Ciufolini, M.; Fiorentini, G.; Marchi, A.; Nicoletti, L.; Cocchi, M.; Tamburro, A. Potential vectors of West Nile virus following an equine disease outbreak in Italy. Med. Vet. Entomol. 2004, 18, 14–19. [Google Scholar] [CrossRef]
- Morley, P.S.; Strohmeyer, R.A.; Tankson, J.D.; Hyatt, D.R.; Dargatz, D.A.; Fedorka-Cray, P.J. Evaluation of the association between feeding raw meat and Salmonella enterica infections at a Greyhound breeding facility. J. Am. Vet. Med. Assoc. 2006, 228, 1524–1532. [Google Scholar] [CrossRef]
- Boadella, M.; Vicente, J.; Ruiz-Fons, F.; De la Fuente, J.; Gortázar, C. Effects of culling Eurasian wild boar on the prevalence of Mycobacterium bovis and Aujeszky’s disease virus. Prev. Vet. Med. 2012, 107, 214–221. [Google Scholar] [CrossRef]
- Lavelle, M.J.; Henry, C.I.; LeDoux, K.; Ryan, P.J.; Fischer, J.W.; Pepin, K.M.; Blass, C.R.; Glow, M.P.; Hygnstrom, S.E.; VerCauteren, K.C. Deer response to exclusion from stored cattle feed in Michigan, USA. Prev. Vet. Med. 2015, 121, 159–164. [Google Scholar] [CrossRef]
- Barasona, J.A.; VerCauteren, K.; Saklou, N.; Gortazar, C.; Vicente, J. Effectiveness of cattle operated bump gates and exclusion fences in preventing ungulate multi-host sanitary interaction. Prev. Vet. Med. 2013, 111, 42–50. [Google Scholar] [CrossRef]
- Ward, A.I.; VerCauteren, K.C.; Walter, W.D.; Gilot-Fromont, E.; Rossi, S.; Edwards-Jones, G.; Lambert, M.S.; Hutchings, M.R.; Delahay, R.J. Options for the control of disease 3: Targeting the environment. In Management of Disease in Wild Mammals; Springer: Berlin/Heidelberg, Germany, 2009; pp. 147–168. [Google Scholar]
- Morley, P.S. Surveillance for nosocomial infections in veterinary hospitals. Vet. Clin. Equine Pract. 2004, 20, 561–576. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butucel, E.; Balta, I.; McCleery, D.; Morariu, F.; Pet, I.; Popescu, C.A.; Stef, L.; Corcionivoschi, N. Farm Biosecurity Measures and Interventions with an Impact on Bacterial Biofilms. Agriculture 2022, 12, 1251. https://doi.org/10.3390/agriculture12081251
Butucel E, Balta I, McCleery D, Morariu F, Pet I, Popescu CA, Stef L, Corcionivoschi N. Farm Biosecurity Measures and Interventions with an Impact on Bacterial Biofilms. Agriculture. 2022; 12(8):1251. https://doi.org/10.3390/agriculture12081251
Chicago/Turabian StyleButucel, Eugenia, Igori Balta, David McCleery, Florica Morariu, Ioan Pet, Cosmin Alin Popescu, Lavinia Stef, and Nicolae Corcionivoschi. 2022. "Farm Biosecurity Measures and Interventions with an Impact on Bacterial Biofilms" Agriculture 12, no. 8: 1251. https://doi.org/10.3390/agriculture12081251
APA StyleButucel, E., Balta, I., McCleery, D., Morariu, F., Pet, I., Popescu, C. A., Stef, L., & Corcionivoschi, N. (2022). Farm Biosecurity Measures and Interventions with an Impact on Bacterial Biofilms. Agriculture, 12(8), 1251. https://doi.org/10.3390/agriculture12081251