Characterizing Agricultural Diversity with Policy-Relevant Farm Typologies in Mexico
Abstract
:1. Introduction
- Construct, classify, and validate a national-level typology of farm characteristics and cropping patterns that better reflects the diversity and complexity of agricultural systems in Mexico.
- Demonstrate how the typology could serve as a tool for targeting agricultural policy interventions.
2. Materials and Methods
2.1. Data Sources
2.2. Typology Construction
2.3. Farm Type Description, Validation, and Classification
2.4. Multiple Correspondence Analysis
3. Results
3.1. National-Level Descriptive Statistics
3.2. A Clusters (n = 3)
3.3. B Clusters (n = 12)
- B1. Southern coffee farms, indigenous labor using hand tools for subsistence (n = 247)
- B2. Southern coffee & sugar farms facing commercial challenges (n = 139)
- B3. Southern, non-descript coffee & grassland farms (n = 254)
- B4. Southern-lowland grassland farms facing financial challenges (n = 151)
- B5. Northern irrigated & mechanized, wheat & alfalfa, financial challenges (n = 101)
- B6. Northern lowland & mechanized, irrigated forage crops (n = 141)
- B7. Central highland & mechanized, beans, forage oats & alfalfa, & wheat (n = 280)
- B8. Southern midland, sugar & sorghum, high inputs & commercial challenges (n = 243)
- B9. Highland maize/beans subsistence, draft animals, climate ch. & chem.fertz. (n = 198)
- B10. Southern highland, maize/beans subsistence (n = 341)
- B11. Southern highland, maize, chemical fertz. & climate challenges (n = 138)
- B12. Southern highland, indigenous, subsistence maize/beans (n = 179)
3.4. Multiple Correspondence Analysis (MCA)
4. Discussion
4.1. Farm Typology A: Higher-Order Distinctions for General Applications
4.2. Farm Typology B: Lower-Order Distinctions for Precision Targeting
4.3. Typology-Based Targeting of Agricultural Interventions
4.4. Limitations and Future Study
5. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Partial Contributions to Inertia | ||||
---|---|---|---|---|
Position | Variable | Category | Dimension 1 | Dimension 2 |
row (X) | cluster (A) | 1 | 0.36 | 0.31 |
2 | 0.61 | 0.07 | ||
3 | 0.03 | 0.62 | ||
column (Y) | marginalization | very low | 0.14 | 0.03 |
low | 0.22 | 0.01 | ||
medium | 0.04 | 0.00 | ||
high | 0.15 | 0.06 | ||
very high | 0.20 | 0.03 | ||
soil erosion risk | very low | 0.06 | 0.39 | |
low | 0.00 | 0.35 | ||
moderate | 0.10 | 0.09 | ||
high | 0.09 | 0.02 | ||
very high | 0.00 | 0.02 |
References
- Sinha, A.; Basu, D.; Priyadarshi, P.; Ghosh, A.; Sohane, R.K. Farm Typology for Targeting Extension Interventions Among Smallholders in Tribal Villages in Jharkhand State of India. Front. Environ. Sci. 2022, 10, 823338. [Google Scholar] [CrossRef]
- Cervantes-Jiménez, M.; Mastachi-Loza, C.A.; Díaz-Delgado, C.; Gómez-Albores, M.Á.; González-Sosa, E. Socio-Ecological Regionalization of the Urban Sub-Basins in Mexico. Water 2017, 9, 14. [Google Scholar] [CrossRef]
- OECD. Evaluation of Agricultural Policy Reforms in the United States; OECD: Paris, France, 2011; ISBN 978-92-64-09671-4. [Google Scholar]
- Abler, D. Multifunctionality, Agricultural Policy, and Environmental Policy. Agric. Resour. Econ. Rev. 2004, 33, 8–17. [Google Scholar] [CrossRef]
- Arovuori, K.; Kola, J. Multifunctional Policy Measures for Multifunctional Agriculture. Available online: https://ageconsearch.umn.edu/record/24771 (accessed on 5 July 2020).
- Dibden, J.; Cocklin, C. ‘Multifunctionality’: Trade Protectionism or a New Way Forward? Environ. Plan. A 2009, 41, 163–182. [Google Scholar] [CrossRef]
- Bernués, A.; Alfnes, F.; Clemetsen, M.; Eik, L.O.; Faccioni, G.; Ramanzin, M.; Ripoll-Bosch, R.; Rodríguez-Ortega, T.; Sturaro, E. Exploring Social Preferences for Ecosystem Services of Multifunctional Agriculture across Policy Scenarios. Ecosyst. Serv. 2019, 39, 101002. [Google Scholar] [CrossRef]
- Kuivanen, K.S.; Alvarez, S.; Michalscheck, M.; Adjei-Nsiah, S.; Descheemaeker, K.; Mellon-Bedi, S.; Groot, J.C.J. Characterising the Diversity of Smallholder Farming Systems and Their Constraints and Opportunities for Innovation: A Case Study from the Northern Region, Ghana. NJAS Wagening. J. Life Sci. 2016, 78, 153–166. [Google Scholar] [CrossRef]
- Bartkowski, B.; Schüßler, C.; Müller, B. Typologies of European Farmers: Approaches, Methods and Research Gaps. Reg. Environ. Chang. 2022, 22, 43. [Google Scholar] [CrossRef]
- Tittonell, P.; Bruzzone, O.; Solano-Hernández, A.; López-Ridaura, S.; Easdale, M.H. Functional Farm Household Typologies through Archetypal Responses to Disturbances. Agric. Syst. 2020, 178, 102714. [Google Scholar] [CrossRef]
- Graskemper, V.; Yu, X.; Feil, J.-H. Farmer Typology and Implications for Policy Design—An Unsupervised Machine Learning Approach. Land Use Policy 2021, 103, 105328. [Google Scholar] [CrossRef]
- Nyambo, D.G.; Luhanga, E.T.; Yonah, Z.Q. A Review of Characterization Approaches for Smallholder Farmers: Towards Predictive Farm Typologies. Sci. World J. 2019, 2019, e6121467. [Google Scholar] [CrossRef] [Green Version]
- Hammond, J.; Rosenblum, N.; Breseman, D.; Gorman, L.; Manners, R.; van Wijk, M.T.; Sibomana, M.; Remans, R.; Vanlauwe, B.; Schut, M. Towards Actionable Farm Typologies: Scaling Adoption of Agricultural Inputs in Rwanda. Agric. Syst. 2020, 183, 102857. [Google Scholar] [CrossRef]
- Alvarez, S.; Timler, C.J.; Michalscheck, M.; Paas, W.; Descheemaeker, K.; Tittonell, P.; Andersson, J.A.; Groot, J.C.J. Capturing Farm Diversity with Hypothesis-Based Typologies: An Innovative Methodological Framework for Farming System Typology Development. PLoS ONE 2018, 13, e0194757. [Google Scholar] [CrossRef] [PubMed]
- LaFevor, M.C.; Frake, A.N.; Couturier, S. Targeting Irrigation Expansion to Address Sustainable Development Objectives: A Regional Farm Typology Approach. Water 2021, 13, 2393. [Google Scholar] [CrossRef]
- Musafiri, C.M.; Macharia, J.M.; Ng’etich, O.K.; Kiboi, M.N.; Okeyo, J.; Shisanya, C.A.; Okwuosa, E.A.; Mugendi, D.N.; Ngetich, F.K. Farming Systems’ Typologies Analysis to Inform Agricultural Greenhouse Gas Emissions Potential from Smallholder Rain-Fed Farms in Kenya. Sci. Afr. 2020, 8, e00458. [Google Scholar] [CrossRef]
- Teixeira, H.M.; Van den Berg, L.; Cardoso, I.M.; Vermue, A.J.; Bianchi, F.J.J.A.; Peña-Claros, M.; Tittonell, P. Understanding Farm Diversity to Promote Agroecological Transitions. Sustainability 2018, 10, 4337. [Google Scholar] [CrossRef]
- Kuivanen, K.S.; Michalscheck, M.; Descheemaeker, K.; Adjei-Nsiah, S.; Mellon-Bedi, S.; Groot, J.C.J.; Alvarez, S. A Comparison of Statistical and Participatory Clustering of Smallholder Farming Systems—A Case Study in Northern Ghana. J. Rural. Stud. 2016, 45, 184–198. [Google Scholar] [CrossRef]
- Righi, E.; Dogliotti, S.; Stefanini, F.M.; Pacini, G.C. Capturing Farm Diversity at Regional Level to Up-Scale Farm Level Impact Assessment of Sustainable Development Options. Agric. Ecosyst. Environ. 2011, 142, 63–74. [Google Scholar] [CrossRef]
- Carletto, C.; Jolliffe, D.; Banerjee, R. From Tragedy to Renaissance: Improving Agricultural Data for Better Policies. J. Dev. Stud. 2015, 51, 133–148. [Google Scholar] [CrossRef]
- Daskalopoulou, I.; Petrou, A. Utilising a Farm Typology to Identify Potential Adopters of Alternative Farming Activities in Greek Agriculture. J. Rural. Stud. 2002, 18, 95–103. [Google Scholar] [CrossRef]
- Jerven, M. Poor Numbers: How We Are Misled by African Development Statistics and What to Do about It; Cornell University Press: Ithaca, NY, USA, 2013; ISBN 978-0-8014-6761-5. [Google Scholar]
- Randall, A. Monitoring Sustainability and Targeting Interventions: Indicators, Planetary Boundaries, Benefits and Costs. Sustainability 2021, 13, 3181. [Google Scholar] [CrossRef]
- LaFevor, M.C.; Ponette-González, A.G.; Larson, R.; Mungai, L.M. Spatial Targeting of Agricultural Support Measures: Indicator-Based Assessment of Coverages and Leakages. Land 2021, 10, 740. [Google Scholar] [CrossRef]
- Kansiime, M.K.; van Asten, P.; Sneyers, K. Farm Diversity and Resource Use Efficiency: Targeting Agricultural Policy Interventions in East Africa Farming Systems. NJAS Wagening. J. Life Sci. 2018, 85, 32–41. [Google Scholar] [CrossRef]
- Hoppe, R.A.; MacDonald, J.M. Updating the ERS Farm Typology; U.S. Department of Agriculture, Economic Research Service: Washginton, DC, USA, 2013; p. 40.
- Johnson, J. A Typology for U.S. Farms from National Survey Data. In Proceedings of the Workshop on the Farm Household-Firm Unit: Its Importance in Agriculture and Implications for Statistics (No. 15725); International Agricultural Policy Reform and Adjustment Project (IAPRAP), London, UK, 12 April 2002; p. 18. [Google Scholar]
- Sommer, J.E.; Hines, F.K. Diversity in US Agriculture: A New Delineation by Farming Characteristics; U.S. Department of Agriculture, Economic Research Service, Agriculture and Rural Economy Division: Washington, DC, USA, 1991; p. 23.
- Hammond Wagner, C.R.; Niles, M.T.; Roy, E.D. US County-Level Agricultural Crop Production Typology. BMC Res. Notes 2019, 12, 552. [Google Scholar] [CrossRef]
- Wade, T.; Claassen, R.; Wallander, S. Conservation-Practice Adoption Rates Vary Widely by Crop and Region; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2015; p. 40.
- Ehlers, M.-H.; Huber, R.; Finger, R. Agricultural Policy in the Era of Digitalisation. Food Policy 2021, 100, 102019. [Google Scholar] [CrossRef]
- Song, B.; Robinson, G.M. Multifunctional Agriculture: Policies and Implementation in China. Geogr. Compass 2020, 14, e12538. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering and Medicine. Improving Data Collection and Measurement of Complex Farms; Kling, C., Mackie, C., Eds.; National Academies Press: Washington, DC, USA, 2019; ISBN 0-309-48460-X. [Google Scholar]
- Aguilar, J.; Gramig, G.G.; Hendrickson, J.R.; Archer, D.W.; Forcella, F.; Liebig, M.A. Crop Species Diversity Changes in the United States: 1978–2012. PLoS ONE 2015, 10, e0136580. [Google Scholar] [CrossRef]
- Contreras Servin, C.; Galindo Mendoza, M.G.; Ibarra Zapata, E. Las Regiones Agroecológicas de México. In Proceedings of the XIX Reunión Nacional SELPER-México Memorias; Centro de Investigaciones en Geografía Ambiental (CIGA): Morelia, Michoacån, Mexico, 18 February 2012; Volume Memorias SELPER. pp. 122–126. [Google Scholar]
- Arroyo, G. Regiones Agrícolas de México: Modernización Agrícola, Heterogeneidad Estructural y Autosuficiencia Alimentaria. In Balance y Perspectivas de los Estudios Regionales en México; CIIH-UNAM; M.A. Porrúa Grupo Editorial: Mexico City, Mexico, 1990; pp. 147–222. [Google Scholar]
- SIAP Anuario Estadístico de La Producción Agrícola. Available online: https://nube.siap.gob.mx/cierreagricola/ (accessed on 8 May 2022).
- INEGI, I.N. de E. y Mapas. Uso de Suelo y Vegetación. Available online: https://www.inegi.org.mx/temas/usosuelo/ (accessed on 10 July 2022).
- CAP. Censo Agrícola, Ganadero y Forestal 2007 (Censo Agropecuario); Instituto Nacional de Estadística y Geografía (INEGI): Mexico City, Mexico, 2008.
- INEGI (Instituto Nacional de Estadística y Geografía). El VIII Censo Agrícola, Ganadero y Forestal 2007: Aspectors Metodológicos y Principales Resultados. Available online: https://www.inegi.org.mx/programas/cagf/2007/ (accessed on 27 March 2020).
- Murtagh, F.; Contreras, P. Algorithms for Hierarchical Clustering: An Overview. WIREs Data Min. Knowl. Discov. 2012, 2, 86–97. [Google Scholar] [CrossRef]
- SAS. SAS Help Center: Cubic Clustering Criterion. Available online: https://documentation.sas.com/doc/en/emref/14.3/n1dm4owbc3ka5jn11yjkod7ov1va.htm (accessed on 11 July 2022).
- Rodriguez-Sabate, C.; Morales, I.; Sanchez, A.; Rodriguez, M. The Multiple Correspondence Analysis Method and Brain Functional Connectivity: Its Application to the Study of the Non-Linear Relationships of Motor Cortex and Basal Ganglia. Front Neurosci. 2017, 11, 345. [Google Scholar] [CrossRef]
- CONAPO. Indice de Marginación Por Município 2005; Comisión Nacional de Población: Mexico City, Mexico, 2020.
- UACh, S.-C. SEMARNAT Evaluación de La Degradación Del Suelo Causada Por El Hombre En La República Mexicana, Escala 1: 250,000. SEMARNAT. In Memoria Nacional SEMARNAT-Colegio de Posgraduados; SEMARNAT: Mexico City, Mexico, 2002. [Google Scholar]
- CONABIO. Ecorregiones Terrestres de México. Available online: https://www.biodiversidad.gob.mx/region/ecorregiones (accessed on 26 July 2022).
- LaFevor, M.C.; Pitts, A.K. Irrigation Increases Crop Species Diversity in Low-Diversity Farm Regions of Mexico. Agriculture 2022, 12, 911. [Google Scholar] [CrossRef]
- Zahniser, S.; López, N.F.L.; Motamed, M.; Vargas, Z.Y.S.; Capehart, T. The Growing Corn Economies of Mexico and the United States. In US Department of Agriculture, Economic Research Service, FDS-19f-01; USDA: Washington, DC, USA, 2019. [Google Scholar]
- Lerner, A.M.; Appendini, K. Dimensions of Peri-Urban Maize Production in the Toluca-Atlacomulco Valley, Mexico. J. Lat. Am. Geogr. 2011, 10, 87–106. [Google Scholar] [CrossRef]
- García-Ochoa, R.; Avila-Ortega, D.I.; Cravioto, J. Energy Services’ Access Deprivation in Mexico: A Geographic, Climatic and Social Perspective. Energy Policy 2022, 164, 112822. [Google Scholar] [CrossRef]
- Johs, H. Multiple Correspondence Analysis for The Social Sciences, 1st ed.; Routledge: Abingdon, UK; New York, NY, USA, 2018; ISBN 978-1-315-51625-7. [Google Scholar]
- Fernandez, M.; Méndez, V.E. Subsistence under the Canopy: Agrobiodiversity’s Contributions to Food and Nutrition Security amongst Coffee Communities in Chiapas, Mexico. Agroecol. Sustain. Food Syst. 2019, 43, 579–601. [Google Scholar] [CrossRef]
- Aguilar-Støen, M.; Angelsen, A.; Stølen, K.-A.; Moe, S.R. The Emergence, Persistence, and Current Challenges of Coffee Forest Gardens: A Case Study From Candelaria Loxicha, Oaxaca, Mexico. Soc. Nat. Resour. 2011, 24, 1235–1251. [Google Scholar] [CrossRef]
- Bellon, M.R.; Hodson, D.; Bergvinson, D.; Beck, D.; Martinez-Romero, E.; Montoya, Y. Targeting Agricultural Research to Benefit Poor Farmers: Relating Poverty Mapping to Maize Environments in Mexico. Food Policy 2005, 30, 476–492. [Google Scholar] [CrossRef]
- Arreguín-Cortes, F.I.A.; Villanueva, N.H.G.; Casillas, A.G.; Gonzalez, J.A.G. Reforms in the Administration of Irrigation Systems: Mexican Experiences. Irrig. Drain. 2019, 68, 6–19. [Google Scholar] [CrossRef]
- Cerutti, M. The Agriculturization of the Desert. State, Irrigation, and Agriculture in Northern Mexico (1925–1970). Apuntes 2015, 42, 91. [Google Scholar] [CrossRef]
- Moreno, T.A.; Huber-Sannwald, E. Impacts of Drought on Agriculture in Northern Mexico. In Coping with Global Environmental Change, Disasters and Security; Brauch, H.G., Oswald Spring, Ú., Mesjasz, C., Grin, J., Kameri-Mbote, P., Chourou, B., Dunay, P., Birkmann, J., Eds.; Hexagon Series on Human and Environmental Security and Peace; Springer: Berlin/Heidelberg, Germany, 2011; Volume 5, pp. 875–891. ISBN 978-3-642-17775-0. [Google Scholar]
- LaFevor, M.C. Spatial and Temporal Changes in Crop Species Production Diversity in Mexico (1980–2020). Agriculture 2022, 12, 985. [Google Scholar] [CrossRef]
- Hartman, S.; Chiarelli, D.D.; Rulli, M.C.; D’Odorico, P. A Growing Produce Bubble: United States Produce Tied to Mexico’s Unsustainable Agricultural Water Use. Environ. Res. Lett. 2021, 16, 105008. [Google Scholar] [CrossRef]
- Rogé, P.; Astier, M. Changes in Climate, Crops, and Tradition: Cajete Maize and the Rainfed Farming Systems of Oaxaca, Mexico. Hum. Ecol. 2015, 43, 639–653. [Google Scholar] [CrossRef]
- Arnés, E.; Antonio, J.; del Val, E.; Astier, M. Sustainability and Climate Variability in Low-Input Peasant Maize Systems in the Central Mexican Highlands. Agric. Ecosyst. Environ. 2013, 181, 195–205. [Google Scholar] [CrossRef]
- González-Amaro, R.M.; Martínez-Bernal, A.; Basurto-Peña, F.; Vibrans, H. Crop and Non-Crop Productivity in a Traditional Maize Agroecosystem of the Highland of Mexico. J. Ethnobiol. Ethnomedicine 2009, 5, 38. [Google Scholar] [CrossRef]
- Novotny, I.P.; Tittonell, P.; Fuentes-Ponce, M.H.; López-Ridaura, S.; Rossing, W.A.H. The Importance of the Traditional Milpa in Food Security and Nutritional Self-Sufficiency in the Highlands of Oaxaca, Mexico. PLoS ONE 2021, 16, e0246281. [Google Scholar] [CrossRef]
- Moreno-Espíndola, I.P.; Ferrara-Guerrero, M.J.; Luna-Guido, M.L.; Ramírez-Villanueva, D.A.; De León-Lorenzana, A.S.; Gómez-Acata, S.; González-Terreros, E.; Ramírez-Barajas, B.; Navarro-Noya, Y.E.; Sánchez-Rodríguez, L.M.; et al. The Bacterial Community Structure and Microbial Activity in a Traditional Organic Milpa Farming System under Different Soil Moisture Conditions. Front. Microbiol. 2018, 9, 2737. [Google Scholar] [CrossRef]
- LaFevor, M.C.; Magliocca, N.R. Farmland Size, Chemical Fertilizers, and Irrigation Management Effects on Maize and Wheat Yield in Mexico. J. Land Use Sci. 2020, 15, 532–546. [Google Scholar] [CrossRef]
- Osuna-Ceja, E.S.; Pimentel-López, J.; Padilla-Ramírez, J.S.; Martínez-Gamiño, M.Á.; Figueroa-Sandoval, B.; Osuna-Ceja, E.S.; Pimentel-López, J.; Padilla-Ramírez, J.S.; Martínez-Gamiño, M.Á.; Figueroa-Sandoval, B. The Sustainability and Resilience of a Rainfed Agroforestry System for the Semi-Arid Highlands of Mexico. Rev. Mex. De Cienc. Agrícolas 2019, 10, 63–75. [Google Scholar] [CrossRef]
- Peralta-Hernández, A.R.; Barba-Martínez, L.R. The Risk of Early and Late Frost Behavior in Central México under El Niño Conditions. Atmósfera 2009, 22, 111–123. [Google Scholar]
- Eakin, H. Institutional Change, Climate Risk, and Rural Vulnerability: Cases from Central Mexico. World Dev. 2005, 33, 1923–1938. [Google Scholar] [CrossRef]
- Heindorf, C.; Reyes–Agüero, J.A.; van’t Hooft, A.; Fortanelli–Martínez, J. Inter- and Intraspecific Edible Plant Diversity of the Tének Milpa Fields in Mexico. Econ. Bot. 2019, 73, 489–504. [Google Scholar] [CrossRef]
- Birol, E.; Villalba, E.R.; Smale, M. Farmer Preferences for Milpa Diversity and Genetically Modified Maize in Mexico: A Latent Class Approach. Environ. Dev. Econ. 2009, 14, 521–540. [Google Scholar] [CrossRef]
- de Anda Sánchez, J. Precipitation in Mexico. In Water Resources of Mexico; Raynal-Villasenor, J.A., Ed.; World Water Resources; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–14. ISBN 978-3-030-40686-8. [Google Scholar]
- Díaz, S.R.; Cadena, E.; Adame, S.; Dávila, N. Landslides in Mexico: Their Occurrence and Social Impact since 1935. Landslides 2020, 17, 379–394. [Google Scholar] [CrossRef]
- Zúñiga, E.; Magaña, V. Vulnerability and Risk to Intense Rainfall in Mexico: The Effect of Land Use Cover Change. Investig. Geográficas 2018, 95, 1–18. [Google Scholar] [CrossRef]
- DOF. Programa Nacional Hidrico, 2020-2024; Diario Oficial de la Federación (DOF): Cuauhtémoc, Mexico, 2020.
- FAO-SAGARPA. Informe de Evaluación de Consistencia y Resultados 2007: Programa Integral de Agricultural Sostenible y Reconversión Productiva En Zonas de Siniestralidad Recurrente (PIASRE); SAGARPA-CONZA: Mexico City, Mexico, 2008; p. 155.
- SAGARPA. DOF—Diario Oficial de La Federación: CRITERIOS de Distribución de Recursos a Las Entidades Federativas Para El Programa Integral de Agricultura Sostenible y Reconversión Productiva En Zonas de Siniestralidad Recurrente en El Marco del PIASRE 2006. SAGARPA. México, Distrito Federal, MX. 2006. Available online: http://diariooficial.gob.mx/nota_detalle.php?codigo=2119832&fecha=02/03/2006#gsc.tab=0 (accessed on 11 July 2022).
- Hammond, J.; van Wijk, M.T.; Smajgl, A.; Ward, J.; Pagella, T.; Xu, J.; Su, Y.; Yi, Z.; Harrison, R.D. Farm Types and Farmer Motivations to Adapt: Implications for Design of Sustainable Agricultural Interventions in the Rubber Plantations of South West China. Agric. Syst. 2017, 154, 1–12. [Google Scholar] [CrossRef] [Green Version]
Municipalities (N = 2455) | |||||||||
---|---|---|---|---|---|---|---|---|---|
25th | 75th | ||||||||
Category | Type | Variable | Code | Unit | Pctile | Median | Pctile | Mean | SD |
farm | land use | irrigation | irrg | % cropland | 0.01 | 0.07 | 0.28 | 0.19 | 0.25 |
characteristics | chemical fertz. | chem | 0.04 | 0.21 | 0.50 | 0.29 | 0.27 | ||
labor | hand tools | hdtl | % farms | 0.01 | 0.10 | 0.60 | 0.29 | 0.35 | |
draft animals | drft | 0.01 | 0.09 | 0.28 | 0.19 | 0.23 | |||
mechanization | mecn | 0.02 | 0.22 | 0.58 | 0.32 | 0.31 | |||
challenges | financial chall. | finch | 0.06 | 0.16 | 0.32 | 0.22 | 0.20 | ||
climate chall. | clich | 0.62 | 0.82 | 0.93 | 0.75 | 0.23 | |||
commercial chall. | comch | 0.36 | 0.55 | 0.74 | 0.54 | 0.25 | |||
socioeconomic | subsistence | subs | 0.57 | 0.80 | 0.93 | 0.72 | 0.25 | ||
indigenous | indig | 0.00 | 0.01 | 0.22 | 0.17 | 0.28 | |||
crops | alfalfa (forage) | alfa(f) | % cropland | 0.00 | 0.00 | 0.00 | 0.02 | 0.07 | |
beans | beans | 0.00 | 0.01 | 0.07 | 0.06 | 0.10 | |||
coffee | coffe | 0.00 | 0.00 | 0.00 | 0.05 | 0.16 | |||
grasses (forage) | gras(f) | 0.00 | 0.00 | 0.03 | 0.08 | 0.19 | |||
maize | maiz | 0.25 | 0.53 | 0.78 | 0.51 | 0.30 | |||
oats (forage) | oat(f) | 0.00 | 0.00 | 0.01 | 0.03 | 0.08 | |||
sorghum | sorg | 0.00 | 0.00 | 0.00 | 0.03 | 0.11 | |||
sorghum (forage) | sorg(f) | 0.00 | 0.00 | 0.00 | 0.02 | 0.08 | |||
sugar | sugr | 0.00 | 0.00 | 0.00 | 0.03 | 0.12 | |||
wheat | whet | 0.00 | 0.00 | 0.00 | 0.02 | 0.08 |
Clusters | Mun | Farm Characteristics (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A | No. | Irrg | Chem | Hdtl | Drft | Mecn | Finch | Clich | Comch | Subs | Indig |
A1 | 791 | 0.08 | 0.06 | 0.73 | 0.05 | 0.08 | 0.27 | 0.71 | 0.64 | 0.81 | 0.31 |
A2 | 765 | 0.36 | 0.35 | 0.07 | 0.09 | 0.68 | 0.24 | 0.68 | 0.63 | 0.47 | 0.01 |
A3 | 856 | 0.15 | 0.45 | 0.09 | 0.39 | 0.22 | 0.14 | 0.84 | 0.38 | 0.87 | 0.18 |
Crops (% Cultivated Area) | |||||||||||
alfa(f) | beans | coffe | gras(f) | maiz | oat(f) | sorg | sorg(f) | sugr | whet | ||
A1 | 791 | 0.00 | 0.04 | 0.16 | 0.14 | 0.47 | 0.00 | 0.01 | 0.00 | 0.03 | 0.00 |
A2 | 765 | 0.06 | 0.06 | 0.00 | 0.09 | 0.28 | 0.05 | 0.08 | 0.05 | 0.06 | 0.04 |
A3 | 856 | 0.01 | 0.07 | 0.01 | 0.01 | 0.75 | 0.02 | 0.01 | 0.00 | 0.00 | 0.02 |
Clusters | Mun. | Farm Characteristics (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | No. | Irrg | Chem | Hdtl | Drft | Mecn | Finch | Clich | Comch | Subs | Indig |
A1 | B1 | 247 | 0.02 | 0.02 | 0.85 | 0.05 | 0.01 | 0.17 | 0.85 | 0.62 | 0.92 | 0.70 |
B2 | 139 | 0.02 | 0.09 | 0.72 | 0.04 | 0.08 | 0.32 | 0.71 | 0.81 | 0.71 | 0.10 | |
B3 | 254 | 0.07 | 0.09 | 0.66 | 0.08 | 0.12 | 0.31 | 0.65 | 0.57 | 0.81 | 0.10 | |
B4 | 151 | 0.25 | 0.06 | 0.68 | 0.04 | 0.12 | 0.33 | 0.58 | 0.63 | 0.71 | 0.22 | |
A2 | B5 | 101 | 0.81 | 0.38 | 0.04 | 0.05 | 0.72 | 0.38 | 0.58 | 0.75 | 0.29 | 0.01 |
B6 | 141 | 0.39 | 0.15 | 0.03 | 0.06 | 0.74 | 0.24 | 0.70 | 0.46 | 0.26 | 0.01 | |
B7 | 280 | 0.23 | 0.23 | 0.03 | 0.13 | 0.68 | 0.15 | 0.85 | 0.54 | 0.63 | 0.02 | |
B8 | 243 | 0.30 | 0.59 | 0.13 | 0.09 | 0.62 | 0.30 | 0.50 | 0.78 | 0.50 | 0.01 | |
A3 | B9 | 198 | 0.07 | 0.50 | 0.09 | 0.58 | 0.08 | 0.10 | 0.87 | 0.29 | 0.92 | 0.08 |
B10 | 341 | 0.25 | 0.35 | 0.08 | 0.28 | 0.26 | 0.18 | 0.80 | 0.45 | 0.82 | 0.05 | |
B11 | 138 | 0.09 | 0.73 | 0.02 | 0.18 | 0.46 | 0.14 | 0.88 | 0.44 | 0.85 | 0.02 | |
B12 | 179 | 0.08 | 0.37 | 0.17 | 0.54 | 0.10 | 0.11 | 0.84 | 0.28 | 0.94 | 0.68 | |
Crops (% cultivated area) | ||||||||||||
alfa(f) | beans | coffe | gras(f) | maíz | oat(f) | sorg | sorg(f) | sugr | whet | |||
A1 | B1 | 247 | 0.00 | 0.05 | 0.27 | 0.03 | 0.59 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
B2 | 139 | 0.00 | 0.03 | 0.34 | 0.02 | 0.21 | 0.00 | 0.00 | 0.00 | 0.14 | 0.00 | |
B3 | 254 | 0.00 | 0.05 | 0.04 | 0.07 | 0.65 | 0.01 | 0.02 | 0.00 | 0.00 | 0.00 | |
B4 | 151 | 0.00 | 0.01 | 0.02 | 0.56 | 0.23 | 0.00 | 0.01 | 0.01 | 0.01 | 0.00 | |
A2 | B5 | 101 | 0.16 | 0.02 | 0.00 | 0.05 | 0.08 | 0.03 | 0.02 | 0.08 | 0.00 | 0.10 |
B6 | 141 | 0.05 | 0.02 | 0.00 | 0.28 | 0.08 | 0.05 | 0.17 | 0.18 | 0.00 | 0.02 | |
B7 | 280 | 0.06 | 0.13 | 0.00 | 0.03 | 0.34 | 0.10 | 0.02 | 0.03 | 0.00 | 0.04 | |
B8 | 243 | 0.01 | 0.02 | 0.00 | 0.05 | 0.42 | 0.01 | 0.12 | 0.00 | 0.19 | 0.03 | |
A3 | B9 | 198 | 0.01 | 0.08 | 0.01 | 0.00 | 0.77 | 0.05 | 0.00 | 0.00 | 0.00 | 0.01 |
B10 | 341 | 0.02 | 0.08 | 0.00 | 0.02 | 0.71 | 0.02 | 0.01 | 0.00 | 0.01 | 0.02 | |
B11 | 138 | 0.01 | 0.04 | 0.00 | 0.00 | 0.73 | 0.02 | 0.01 | 0.00 | 0.00 | 0.05 | |
B12 | 179 | 0.01 | 0.09 | 0.02 | 0.00 | 0.82 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
LaFevor, M.C. Characterizing Agricultural Diversity with Policy-Relevant Farm Typologies in Mexico. Agriculture 2022, 12, 1315. https://doi.org/10.3390/agriculture12091315
LaFevor MC. Characterizing Agricultural Diversity with Policy-Relevant Farm Typologies in Mexico. Agriculture. 2022; 12(9):1315. https://doi.org/10.3390/agriculture12091315
Chicago/Turabian StyleLaFevor, Matthew C. 2022. "Characterizing Agricultural Diversity with Policy-Relevant Farm Typologies in Mexico" Agriculture 12, no. 9: 1315. https://doi.org/10.3390/agriculture12091315
APA StyleLaFevor, M. C. (2022). Characterizing Agricultural Diversity with Policy-Relevant Farm Typologies in Mexico. Agriculture, 12(9), 1315. https://doi.org/10.3390/agriculture12091315