The Effect of Tillage Systems and Weed Control Methods on the Yield and Quality of Spelt Grain (Triticum aestivum ssp. spelta L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Experiment and Soil/Climatic Conditions
2.2. Experimental Design and Agronomic Practices
2.3. Methods of Plant Analyses
2.4. Statistical Analysis
3. Results
3.1. Grain Yield and Yield Components of Spelt Wheat
3.2. Quality Parameters of Spelt Wheat Grain
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stankowski, S.; Pużyński, S.; Sobolewska, M.; Biel, W. Effect of weed control and swing rate on the baking quality of spelt in comparison with common wheat. Bulg. J. Agric. Sci. 2016, 22, 604–610. [Google Scholar]
- Kohajdová, Z.; Karovicová, J. Nutritional value and banking applications of pelt wheat. Acta Sci. Pol. Technol. Aliment. 2008, 7, 5–14. [Google Scholar]
- Andruszczak, S. Spelt wheat grain yield and nutritional value response to sowing rate and nitrogen fertilization. J. Anim. Plant Sci. 2018, 28, 1476–1484. [Google Scholar]
- Biel, W.; Jaroszewska, A.; Stankowski, S.; Sadkiewicz, J.; Bośko, P. Effects of genotype and weed control on the nutrient composition of Winter spelt (Triticum aestivum ssp. spelta) and common wheat (Triticum aestivum ssp. vulgare). Acta Agric. Scand. P. 2016, 66, 27–35. [Google Scholar]
- Moudrý, J.; Konvalina, P.; Stehno, Z.; Capouchová, I.; Moudrý, J., Jr. Ancient wheat species can extend biodiversity of cultivated crops. Sci. Res. Essays 2011, 6, 4273–4280. [Google Scholar]
- Gomez-Becerra, H.F.; Erdem, H.; Yazici, A.; Tutus, Y.; Torun, B.; Ozturk, L.; Cakmak, I. Grain concentrations of protein and mineral nutrients in large collection of spelt wheat grown under different environments. J. Cereal Sci. 2010, 52, 342–349. [Google Scholar] [CrossRef]
- Escarnot, E.; Jacquemin, J.M.; Agneessens, R.; Paquot, M. Comparative study of the content and profiles of macronutrients in spelt and wheat, a review. Biotechnol. Agron. Soc. Environ. 2012, 16, 243–256. [Google Scholar]
- Gawlik-Dziki, U.; Świeca, M.; Dziki, D. Comparison of phenolic acids profile and antioxidant potential of six varieties of spelt (Triticum spelta L.). J. Agric. Food Chem. 2012, 60, 4603–4612. [Google Scholar] [CrossRef]
- Geisslitz, L.; Koehler, S. Comparative study on gluten protein composition of ancient (einkorn, emmer and spelt) and modern wheat species (durum and common wheat). Foods 2019, 8, 409. [Google Scholar] [CrossRef]
- Jablonskytė-Raščė, D.; Maikštėnienė, S.; Mankevičienė, A. Evaluation of productivity and quality of common wheat (Triticum aestivum L.) and spelt (Triticum spelta L.) in relation to nutrition conditions. Zemdirbyste 2013, 100, 45–56. [Google Scholar] [CrossRef]
- Kraska, P.; Andruszczak, S.; Dziki, D.; Stocki, M.; Stocka, N.; Kwicińska-Poppe, E.; Różyło, K.; Gierasimiuk, P. Green grain of spelt (Triticum aestivum ssp. spelta) harvested at the stage of milk-dough as a rich source of valuable nutrients. Emir. J. Food Agric. 2019, 31, 263–270. [Google Scholar]
- Kwiatkowski, C.; Haliniarz, M.; Tomczyńska-Mleko, M.; Mleko, S.; Kawecka-Radomska, M. The content of dietary fiber, amino acids, dihydroxyphenols and some macro- and micronutrients in grain of conventionally and organically grown common wheat, spelt wheat and proso millet. Agr. Food Sci. 2015, 24, 195–205. [Google Scholar] [CrossRef]
- Lacko-Bartošová, M.; Konvalina, P.; Lacko-Bartošová, L. Baking quality prediction of spelt wheat based on rheological and mixolab parameters. Acta Alimentaria 2019, 48, 213–220. [Google Scholar] [CrossRef]
- Mankevičienė, A.; Jablonskytė-Raščė, D.; Maikštėnienė, S. Occurrence of mycotoxins in spelt and common wheat grain and their products. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2014, 31, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Vučković, J.; Bodroža-Solarov, M.; Vujić, D.; Bočarov-Stančić, A.; Bagi, F. The protective effect of hulls on the occurrence of Alternaria mycotoxins in spelt wheat. J. Sci. Food Agric. 2013, 93, 1996–2001. [Google Scholar] [CrossRef]
- Feledyn-Szewczyk, B. Porównanie zdolności konkurencyjnych w stosunku do chwastów oraz plonów ziarna pszenicy orkisz (Triticum aestivum ssp. spelta) z odmianami pszenicy zwyczajnej (Triticum aestivum ssp. vulgare) w ekologicznym systemie produkcji. Folia Pomer. Univ. Technol. Stetin. Agric. Aliment. Pisc. Zootech. 2012, 293, 13–26. (In Polish) [Google Scholar]
- Haliniarz, M.; Chojnacka, S. Reakcja roślin pszenicy orkisz (Triticum aestivum ssp. spelta L.) na zróżnicowane dawki herbicydu/The reaction of spelt wheat plants (Triticum aestivum ssp. spelta L.) to different doses of herbicide. Agron. Sci. 2020, 75, 51–62. (In Polish) [Google Scholar] [CrossRef]
- Kraska, P.; Andruszczak, S.; Kwiecińska-Poppe, E.; Pałys, E. Effect of chemical crop protection on the content of some elements in grain of spelt wheat (Triticum aestivum ssp. spelta). J. Elem. 2013, 18, 79–90. [Google Scholar] [CrossRef]
- Jankowiak, J.; Bieńkowski, J.; Holka, M.; Dąbrowicz, R. Zużycie środków ochrony roślin na tle zmian w produkcji rolniczej/The consumption of plant protection products in the background of changes in agricultural production. Prog. Plant Prot./Post. Ochr. Roślin 2012, 52, 1177–1183. (In Polish) [Google Scholar]
- Glamočlija, D.; Žarković, B.; Dražić, S.; Radovanović, V.; Popović, V.; Urgenović, V. Morphological and productive characteristics spelt wheat on the chernozem and degraded soil. In Proceedings of the XXVII Conference of Agronomists, Veterinarians, Technologists and Agricultural Economists, Belgrade, Serbia, 20–21 February 2013; pp. 23–31. [Google Scholar]
- Ugrenović, V.; Bodroža Solarov, M.; Pezo, L.; Disalov, J.; Popović, V.; Marić, B.; Filipović, V. Analysis of spelt variability (Triticum spelta L.) grown in different conditions of Serbia by organic conditions. Genetika 2018, 50, 635–646. [Google Scholar] [CrossRef]
- Zorovski, P.; Popov, V.; Georgieva, T. Growth and development of Triticum monococcum L., Triticum dicoccum Sch. and Triticum spelta L. in organic farming conditions. Contemp. Agric. Serb. J. Agric. Sci. 2018, 67, 45–50. [Google Scholar] [CrossRef]
- De Cárcer, P.S.; Sinaj, S.; Santonja, M.; Fossati, D.; Jeangros, B. Long-term effects of crop succession, soil tillage and climate on wheat yield and soil properties. Soil Tillage Res. 2019, 190, 209–219. [Google Scholar] [CrossRef]
- Pittelkow, M.C.; Linquist, A.B.; Lundy, E.M.; Liang, X.; Groenigen, J.; Lee, J.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. When does no-till yield more? A global meta-analysis. Field Crops Res. 2015, 183, 156–168. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Li, T.; Zhao, D.; Liao, Y. Tillage practices with different soil disturbance shape the rhizosphere bacterial community throughout crop growth. Soil Tillage Res. 2020, 197, 104501. [Google Scholar] [CrossRef]
- Gawęda, D.; Nowak, A.; Haliniarz, M.; Woźniak, A. Yield and economic effectiveness of soybean grown under different cropping systems. J. Plant Prod. 2020, 14, 475–485. [Google Scholar] [CrossRef]
- Giller, K.E.; Andersson, J.A.; Corbeels, M.; Kirkegaard, J.; Mortensen, D.; Erenstein, O.; Vanlauwe, B. Beyond conservation agriculture. Front. Plant Sci. 2015, 6, 870. [Google Scholar] [CrossRef] [PubMed]
- Kusek, G.; Ozturk, H.H.; Akdemir, S. An assessment of energy use of different cultivation methods for sustainable rapeseed production. J. Clean. Prod. 2016, 112, 2772–2783. [Google Scholar] [CrossRef]
- Andruszczak, S. Reaction of winter spelt cultivars to reduced tillage system and chemical plant protection. Zemdirbyste 2017, 104, 15–22. [Google Scholar] [CrossRef]
- Jaskulska, I.; Jaskulski, D.; Gałęzewski, L.; Knapowski, T.; Kozera, W.; Wacławowicz, R. Mineral composition and baking value of the winter wheat grain under varied environmental and agronomic conditions. J. Chem. 2018, 1, 5013825. [Google Scholar] [CrossRef] [Green Version]
- Hellemans, T.; Landschoot, S.; Dewitte, K.; Van Bockstaele, F.; Vermeir, P.; Eeckhout, M.; Haesaert, G. Impact of crop hus-bandry practices and environmental conditions on wheat composition and quality: A Review. J. Agric. Food Chem. 2018, 66, 2491–2509. [Google Scholar] [CrossRef]
- Williams, R.M.; O’Brien, L.; Eagles, H.A.; Solah, V.A.; Jayasena, V. The influences of genotype, environment, and genotype x environment interaction on wheat quality. Aust. J. Agric. Res. 2008, 59, 95–111. [Google Scholar] [CrossRef]
- Chețan, F.; Chetan, C.; Rusu, T.; Moraru, P.I.; Ignea, M.; Șimon, A. Influence of fertilization and soil tillage system on water conservation in soil, production and economic efficiency in the winter wheat crop. Sci. Papers. Ser. A. Agron. 2017, 60, 42–48. [Google Scholar]
- De Vita, P.; Di Paolo, E.; Fecondo, G.; Di Fonzo, N.; Pisante, M. No-tillage and conventional tillage effects on durum wheat yield. grain quality. and soil moisture content in Southern Italy. Soil Tillage Res. 2007, 92, 69–78. [Google Scholar] [CrossRef]
- Giannitsopoulos, M.L.; Burgess, P.J.; Rickson, R.J. Effects of conservation tillage systems on soil physical changes and crop yields in a wheat-oilseed rape rotation. J. Soil Water Conserv. 2019, 74, 247–258. [Google Scholar] [CrossRef]
- Woźniak, A.; Wesołowski, M.; Soroka, M. Effect of long-term reduced tillage on grain yield, grain quality and weed infestation of spring wheat. J. Agr. Sci. Tech. 2015, 17, 899–908. [Google Scholar]
- Kraska, P.; Andruszczak, S.; Kwiecińska-Poppe, E. Reaction of spelt wheat cultivars (Triticum aestivum ssp. spelta) to foliar applications of fertilizers. Agron. Sci. 2019, 74, 37–47. [Google Scholar] [CrossRef]
- Romaneckas, K.; Romaneckienė, R.; Šarauskis, E.; Pilipavičius, V.; Sakalauskas, A. The effect of conservation primary and zero tillage on soil bulk density, water content, sugar beet growth and weed infestation. Agron. Res. 2009, 7, 73–86. [Google Scholar]
- Rieger, S.; Richner, W.; Streit, B.; Frossard, E.; Liedgens, M. Growth, yield, and yield components of winter wheat and the effects of tillage intensity, preceding crops, and N fertilisation. Eur. J. Agron. 2008, 28, 405–411. [Google Scholar] [CrossRef]
- Jug, I.; Jug, D.; Sabo, M.; Stipeševic, B.; Stošic, M. Winter wheat and yield components as affected by soil tillage systems. Turk. J. Agric. For. 2011, 35, 1–7. [Google Scholar] [CrossRef]
- Grigoras, M.A.; Popescu, A.; Pamfil, D.C.; Has, I.; Gidea, M. Influence of no-tillage agriculture system and fertilization on wheat yield and grain protein and gluten contents. J. Food Agric. Environ. 2012, 10, 532–539. [Google Scholar]
- Gawęda, D.; Haliniarz, M. Grain Yield and Quality of Winter Wheat Depending on Previous Crop and Tillage System. Agriculture 2021, 11, 133. [Google Scholar] [CrossRef]
- Berner, A.; Hildermann, I.; Fließbach, A.; Pfiffner, L.; Niggli, U.; Mäder, P. Crop yield and soil fertility response to reduced tillage under organic management. Soil Tillage Res. 2008, 101, 89–96. [Google Scholar] [CrossRef]
- Ali, S.A.; Tedone, L.; Verdini, L.; Cazzato, E.; De Mastro, G. Wheat response to no-tillage and nitrogen fertilization in a long-term faba bean-based rotation. Agronomy 2019, 9, 50. [Google Scholar] [CrossRef] [Green Version]
- Schlegel, A.J.; Assefa, Y.; Haag, L.A.; Thompson, C.R.; Stone, L.R. Long-Term Tillage on Yield and Water Use of Grain Sorghum and Winter Wheat. Agron. J. 2018, 110, 269–280. [Google Scholar] [CrossRef]
- Singh, A.; Phogat, V.K.; Dahiya, R.; Batra, S.D. Impact of long-term zero till wheat on soil physical properties and wheat productivity under rice–wheat cropping system. Soil Tillage Res. 2014, 140, 98–105. [Google Scholar] [CrossRef]
- Amato, G.; Ruisi, P.; Frenda, A.S.; Di Miceli, G.; Saia, S.; Plaia, A.; Giambalvo, D. Long-term tillage and crop sequence effects on wheat grain yield and quality. Agron. J. 2013, 105, 1317–1327. [Google Scholar] [CrossRef]
- Woźniak, A. Quality of grain of spring wheat cv. Koksa in different tillage systems. Acta Agrophysica 2009, 14, 233–241. (In Polish) [Google Scholar]
- Woźniak, A.; Rachoń, L. Effect of tillage systems on the yield and quality of winter wheat grain and soil properties. Agriculture 2020, 10, 405. [Google Scholar] [CrossRef]
- Kraska, P.; Andruszczak, S.; Kwiecińska-Poppe, E.; Pałys, E. The effect of tillage systems and catch crops on the yield, grain quality and health of spring wheat. Acta Sci. Pol. Agric. 2014, 13, 21–38. [Google Scholar]
- Peigné, J.; Messmer, M.; Aveline, A.; Berner, A.; Mäder, P.; Carcea, M.; Narducci, V.; Samson, M.F.; Thomsen, I.K.; Celette, F.; et al. Wheat yield and quality as influenced by reduced tillage in organic farming. Org. Agric. 2014, 4, 1–13. [Google Scholar] [CrossRef]
- Hury, G.; Stankowski, S.; Makarewicz, A.; Sobolewska, M.; Biel, W.; Opatowicz, N. The effect of soil tillage system and nitrogen fertilization on baking quality of winter spelt cultivars. Folia Pomer. Univ. Technol. Stetin. Agric. Aliment. Pisc. Zootech. 2016, 330, 91–100. [Google Scholar] [CrossRef]
- Žuljević, S.O.; Džafić, A.; Akagic, A.; Spaho, N.; Vranac, A. Relationship Between Selected Quality Parameters in Spelt Wheat Grain. Int. J. Agric. Innov. Res. 2016, 5, 2319-1473. [Google Scholar]
- Haliniarz, M.; Gawęda, D.; Nowakowicz-Dębek, B.; Najda, A.; Chojnacka, S.; Łukasz, J.; Wlazło, Ł.; Różańska-Boczula, M. Evaluation of the Weed Infestation, Grain Health, and Productivity Parameters of Two Spelt Wheat Cultivars Depending on Crop Protection Intensification and Seeding Densities. Agriculture 2020, 10, 229. [Google Scholar] [CrossRef]
- Rachoń, L.; Szumiło, G.; Brodowska, M.; Woźniak, A. Nutritional value and mineral composition of grain of selected wheat species depending on the intensity of a production technology. J. Elem. 2015, 20, 705–715. [Google Scholar]
Years | The Humus Content (%) | pH in 1 M KCl | The Content of Ingredients (mg per 100 g Soil) | ||
---|---|---|---|---|---|
P2O5 | K2O | Mg | |||
2012 | 1.56 | 5.46 | 23.3 | 27.7 | 8.8 |
2013 | 1.51 | 5.48 | 28.1 | 22.3 | 9.2 |
2014 | 1.61 | 5.61 | 37.5 | 41.5 | 10.2 |
Months | Years | |||||||
---|---|---|---|---|---|---|---|---|
2012/2013 | 2013/2014 | 2014/2015 | LTA * 1963–2010 | |||||
mm | °C | mm | °C | mm | °C | mm | °C | |
September | 40.4 | 14.6 | 49.5 | 11.3 | 21.8 | 14.0 | 59.5 | 13.1 |
October | 110.7 | 7.7 | 7.3 | 9.5 | 27.5 | 9.7 | 45.6 | 7.9 |
November | 29.0 | 5.0 | 60.6 | 4.9 | 24.1 | 4.6 | 41.0 | 2.9 |
December | 17.4 | −3.4 | 13.7 | 1.7 | 57.8 | −0.1 | 36.9 | −1.3 |
January | 60.3 | −4.4 | 54.5 | −2.9 | 50.9 | 1.0 | 30.3 | −3.0 |
February | 30.0 | −1.3 | 5.8 | 0.3 | 15.8 | −1.1 | 29.2 | −1.7 |
March | 37.6 | −2.6 | 49.1 | 4.9 | 48.6 | 2.8 | 31.3 | 1.8 |
April | 53.2 | 7.4 | 63.9 | 8.9 | 39.1 | 6.5 | 42.4 | 7.7 |
May | 103.3 | 14.9 | 230.2 | 13.0 | 169.6 | 11.5 | 63.5 | 13.6 |
June | 108.3 | 18.1 | 110.2 | 15.2 | 13.5 | 16.1 | 72.7 | 16.5 |
July | 44.3 | 18.7 | 61.4 | 19.6 | 52.6 | 19.0 | 80.0 | 18.3 |
August | 26.6 | 18.7 | 102.0 | 18.3 | 5.9 | 21.9 | 69.5 | 17.7 |
Sum/Mean (September–August) | 661.1 | 7.8 | 808.2 | 8.7 | 527.2 | 8.8 | 601.9 | 7.8 |
Specification | Grain Yield (t ha −1) | Number of Ears (no. m−2) | Number of Grains per Ear (no.) | Grain Weight per Ear (g) | Thousand-Kernel Weight (g) | Length of Stem (cm) | Length of Ear (cm) |
---|---|---|---|---|---|---|---|
Tillage system | |||||||
CT | 6.24a | 512.5a | 34.3a | 1.33a | 36.8b | 96.9a | 10.6a |
RT1 | 6.00a | 480.1b | 33.3a | 1.25a | 33.1c | 92.7b | 10.2bc |
RT2 | 6.34a | 495.3ab | 33.2a | 1.25a | 36.9b | 93.8b | 10.4ab |
RT3 | 6.44a | 480.5b | 32.2a | 1.32a | 39.9a | 95.3ab | 10.1c |
Weed control method | |||||||
M | 5.51c | 491.5a | 32.9a | 1.21b | 32.5b | 95.5a | 9.3a |
MC (100%) | 7.14a | 516.3a | 36.3a | 1.37a | 39.1a | 94.1a | 12.0a |
MC (75%) | 6.10b | 468.6a | 30.6a | 1.29ab | 38.5a | 94.5a | 9.7a |
Years of research | |||||||
2013 | 5.68c | 442.3b | 31.2b | 1.27a | 36.6a | 95.2a | 11.9a |
2014 | 6.34b | 520.4a | 34.8a | 1.28a | 37.3a | 96.3a | 9.5b |
2015 | 6.75a | 513.6a | 33.8ab | 1.31a | 36.1a | 92.6b | 9.5b |
Specification | Total Protein Content (%) | Wet Gluten Content (%) | Falling Number (s) | Zeleny Sedimentation Value (mL) | Grain Uniformity (%) | Bulk Grain Density (kg hL−1) |
---|---|---|---|---|---|---|
Tillage system | ||||||
CT | 12.8a | 25.8a | 317.2a | 59.2a | 82.5a | 76.8a |
RT1 | 11.4c | 23.3c | 284.2c | 53.3c | 76.2d | 72.3c |
RT2 | 12.3ab | 25.5a | 307.1ab | 58.0ab | 80.7b | 75.7b |
RT3 | 11.9bc | 24.4b | 299.3b | 56.1b | 79.0c | 74.7b |
Weed control method | ||||||
M | 11.0b | 23.8b | 291.4c | 55.4b | 74.4c | 71.9c |
MC (100%) | 12.7a | 25.6a | 312.6a | 58.9a | 82.7a | 78.4a |
MC (75%) | 12.5a | 24.8ab | 301.9b | 55.6b | 81.7b | 74.4b |
Years of research | ||||||
2013 | 9.8b | 23.5c | 297.1a | 54.0b | 73.4b | 71.2b |
2014 | 13.4a | 24.5b | 302.0a | 58.1a | 81.7a | 75.9a |
2015 | 13.1a | 26.2a | 306.8a | 57.8a | 83.7a | 77.6a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wesołowska, S.; Daniłkiewicz, D.; Gawęda, D.; Haliniarz, M.; Rusecki, H.; Łukasz, J. The Effect of Tillage Systems and Weed Control Methods on the Yield and Quality of Spelt Grain (Triticum aestivum ssp. spelta L.). Agriculture 2022, 12, 1390. https://doi.org/10.3390/agriculture12091390
Wesołowska S, Daniłkiewicz D, Gawęda D, Haliniarz M, Rusecki H, Łukasz J. The Effect of Tillage Systems and Weed Control Methods on the Yield and Quality of Spelt Grain (Triticum aestivum ssp. spelta L.). Agriculture. 2022; 12(9):1390. https://doi.org/10.3390/agriculture12091390
Chicago/Turabian StyleWesołowska, Sylwia, Dariusz Daniłkiewicz, Dorota Gawęda, Małgorzata Haliniarz, Hubert Rusecki, and Justyna Łukasz. 2022. "The Effect of Tillage Systems and Weed Control Methods on the Yield and Quality of Spelt Grain (Triticum aestivum ssp. spelta L.)" Agriculture 12, no. 9: 1390. https://doi.org/10.3390/agriculture12091390
APA StyleWesołowska, S., Daniłkiewicz, D., Gawęda, D., Haliniarz, M., Rusecki, H., & Łukasz, J. (2022). The Effect of Tillage Systems and Weed Control Methods on the Yield and Quality of Spelt Grain (Triticum aestivum ssp. spelta L.). Agriculture, 12(9), 1390. https://doi.org/10.3390/agriculture12091390