Residues and Uptake of Soil-Applied Dinotefuran by Lettuce (Lactuca sativa L.) and Celery (Apium graveolens L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Reagents, and Instruments
2.2. Study Area
2.3. Soil Treatments
2.4. Collection of Plant Samples
2.5. Soil Sampling and Preparation
2.6. Extraction and Cleanup of Dinotefuran, MNG (1-Methyl-2-Nitroguanidine), UF {1-Methyl-3-(Tetrahydro-3-Furylmethyl) Urea}, and DN {1-Methyl-3-(Tetrahydro-3-Furylmethyl) Guanidium Dihydrogen} Residues from Lettuce and Celery
2.7. Extraction and Cleanup of Dinotefuran, MNG, UF, and DN Residues from the Soil
2.8. Method Validation
- A: Limit of detection (ng).
- B: Total extraction volume (mL).
- C: Samples amount (g).
- D: Dilution factor.
- E: Injection volume (µL).
2.9. LC-MS/MS Analysis
2.10. Standard Calibration Curve
2.11. The Calculation of Dinotefuran Total Residues
- MW: Molecular weight.
- MNG: 1-methyl-2-nitroguanidine.
- UF: (1-methyl-3-(tetrahydro-3-furylmethyl) urea).
- DN: (1-methyl-3-(tetrahydro-3-furylmethyl) guanidium dihydrogen).
2.12. Half-Life Calculation
- Ct is the concentration of dinotefuran (at time t).
- C0 is the concentration of dinotefuran (mg/kg) in the soil in the day application (30 or 60 PBI).
- k is the rate constant.
- ½ is half-life.
2.13. Storage Stability
2.14. Bio-Concentration Factor
2.15. Risk Assessment
- Chronic Health Risk Assessment
RQc = EDI/ADI
- Acute Health Risk Assessment
RQa = ESTI/ARD
3. Results
3.1. Soil Characteristics
3.2. Soil Residues and Dissipation of Dinotefuran in the Soils of Lettuce and Celery
3.3. Uptake of Dinotefuran and Its Major Metabolites Detected in Lettuce Leaves and Celery Shoots
3.4. Dinotefuran Metabolites Analysis
3.5. Storage Stability Studies of Dinotefuran and Its Major Metabolites
3.6. Bio-Concentration Factor of Dinotefuran in Lettuce Leaves and Celery Shoots
3.7. Risk Assessment
3.7.1. Chronic Health Risk Assessment
3.7.2. Acute Health Risk Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary of Terms
PBI-30 | Plant back intervals of 30 days |
PBI-60 | Plant back intervals of 60 days |
MRL | Maximum residue limit |
KMFDS | Korean Ministry of Food and Drug Safety |
PLS | Positive List System |
QuEChERS | quick, easy, cheap, effective, rugged, and safe |
CEC | Cation exchange capacity |
OECD | Organization for Economic Co-operation and Development |
RDA | Rural Development Administration |
MLOQ | Method limits of quantification |
R2 | Regression coefficient |
ESI | Electrospray ionization |
BCF | Bio-concentration factor |
EDI | Estimated daily intake |
RQc | Chronic exposure risk |
ADI | Acceptable daily intake |
ESTI | Estimated short-term dietary intake |
HR | Highest residue |
LP | Large portion |
RQa | Acute risk quotient |
ARD | Acute reference dose |
RSD | Relative standard deviation |
FAO | Food and Agriculture Organization of the United Nations |
LC-MS/MS | Liquid chromatography–tandem mass spectrometry |
References
- World Health Organization of the United Nations (WHO). Pesticides Residues in Food. Available online: https://www.who.int/news-room/fact-sheets/detail/pesticide-residues-in-food (accessed on 16 July 2022).
- Vryzas, Z. Pesticide fate in soil-sediment-water environment in relation to contamination preventing actions. Curr. Opin. Environ. Sci. Health 2018, 4, 5–9. [Google Scholar] [CrossRef]
- Hwang, K.W.; Moon, J.K. Translocation of chlorpyrifos residue from soil to Korean cabbage. Appl. Biol. Chem. 2018, 61, 145–152. [Google Scholar] [CrossRef]
- Olatunji, O.S. Evaluation of selected polychlorinated biphenyls (PCBs) congeners and dichlorodiphenyltrichloroethane (DDT) in fresh root and leafy vegetables using GC-MS. Sci. Rep. 2019, 9, 538. [Google Scholar] [CrossRef]
- Hwang, E.-J.; Hwang, K.-W.; Kim, M.-G.; Jeon, C.-H.; Moon, J.-K. Translocation of residual tricyclazole from soil to Korean cabbage. J. Appl. Biol. Chem. 2017, 60, 301–306. [Google Scholar] [CrossRef]
- Pullagurala, V.L.R.; Rawat, S.; Adisa, I.O.; Hernandez-Viezcas, J.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Plant uptake and translocation of contaminants of emerging concern in soil. Sci. Total Environ. 2018, 636, 1585–1596. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.A. The Pesticide Manual, 19th ed.; British Crop Protection Council, Alton: Hampshire, UK, 2021; p. 1357. [Google Scholar]
- United States Environmental Protection Agency (EPA). Proposed Interim Registration Review Decision Case Number 7441. January 2020. Available online: https://www.epa.gov/sites/default/files/2020-01/documents/dinotefuran_pid_signed_1.22.2020.pdf (accessed on 29 July 2022).
- Kegley, S.; Hill, B.; Orme, S.; Choi, A. PAN Pesticide Database, Pesticide Action Network, North America (San Francisco, CA, 2010). Available online: http://www.pesticideinfo.org (accessed on 29 July 2022).
- Berger, C.; Laurent, F. Trunk injection of plant protection products to protect trees from pests and diseases. Crop Prot. 2019, 124, 104831. [Google Scholar] [CrossRef]
- Mach, M.B.; Bondarenko, S.; Pottera, D.A. Uptake and Dissipation of Neonicotinoid Residues in Nectar and Foliage of Systemically Treated Woody Landscape Plants. Environ. Toxicol. 2018, 37, 860–870. [Google Scholar] [CrossRef]
- Bonmatin, J.M.; Giorio, C.; Girolami, V.; Goulson, D.; Kreutzweiser, D.P.; Krupke, C.; Liess, M.; Long, E.; Marzaro, M.; Mitchell, A.D.; et al. Environmental fate and exposure; neonicotinoids and fipronil. Environ. Sci. Pollut. Res. 2015, 22, 35–67. [Google Scholar] [CrossRef]
- Nix, K.; Lambdin, P.; Grant, J.; Coots, C.; Merten, P. Concentration Levels of Imidacloprid and Dinotefuran in Five Tissue Types of Black Walnut. Juglans Nigra. For. 2013, 4, 887–897. [Google Scholar] [CrossRef]
- Pink, D.A.C.; Keane, M.E. 40-Lettuce: Lactuca sativa L.; KALLOO, G., BERGH, B.O., Eds.; Genetic Improvement of Vegetable Crops; Pergamon Press: Oxford, UK, 1993; pp. 543–571. [Google Scholar] [CrossRef]
- Finch, H.J.S.; Samuel, A.M.; Lane, G.P.F. 17-Fresh Produce Crops. In Lockhart & Wiseman’s Crop Husbandry Including Grassland, 9th ed.; Finch, H.J.S., Samuel, A.M., Lane, G.P.F., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2014; pp. 396–430. [Google Scholar]
- Das, R.; Bhattacharjee, C. Chapter 9-Lettuce. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Jaiswal, A.K., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 143–157. [Google Scholar] [CrossRef]
- Capinera, L.J. Order Homoptera—Aphids, Leaf- and Plant hoppers, Psyllids and Whiteflies. In Capinera, Handbook of Vegetable Pests; John, L., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 279–346. [Google Scholar] [CrossRef]
- Rubatzky, V.E.; Yamaguchi, M. World Vegetables; Chapman & Hall: New York, NY, USA, 1997; pp. 432–443. [Google Scholar]
- Malhotra, S.K. Handbook of Herbs and Spices; Peter, K.V., Ed.; Woodhead Publisher: Sawston, UK, 2012; Volume 2, pp. 249–267. [Google Scholar]
- Swaider, J.M.; Ware, G.W.; Mccollum, J.P. Producing Vegetable Crops; Interstate Publisher Inc.: Danville, IL, USA, 2001; pp. 309–322. [Google Scholar]
- Mebdoua, S. Pesticide Residues in Fruits and Vegetables. In Bioactive Molecules in Food; Reference Series in Phytochemistry; Mérillon, J.M., Ramawat, K., Eds.; Springer: Cham, Germany, 2018. [Google Scholar] [CrossRef]
- Park, D.W.; Kim, K.G.; Choi, E.A.; Kang, G.R.; Kim, T.S.; Yang, Y.S.; Moon, S.J.; Ha, D.R.; Kim, E.S.; Cho, B.S. Pesticide residues in leafy vegetables, stalk and stem vegetables from South Korea: A long-term study on safety and health risk assessment. Food Addit. Contam. Part A 2015, 33, 1–14. [Google Scholar] [CrossRef]
- Park, D.W.; Yang, Y.S.; Lee, Y.-U.; Han, S.J.; Kim, H.J.; Kim, S.-H.; Kim, J.P.; Cho, S.J.; Lee, D.; Song, N.; et al. Pesticide Residues and Risk Assessment from Monitoring Programs in the Largest Production Area of Leafy Vegetables in South Korea: A 15-Year Study. Foods 2021, 10, 425. [Google Scholar] [CrossRef] [PubMed]
- The Organization for Economic Co-operation and Development, OECD. Guidance Document on Residues in Rotational Crops; OECD: Paris, France, 2018. [Google Scholar]
- RDA (Rural Developments Administration). Pesticides Registration and Test Coordinator Education; Korea Crop Protection Association, RDA: Jeonju, Korea, 2021; p. 516. [Google Scholar]
- RDA (Rural Development Administration). Method of Soil Chemical Analysis; RDA, National Academy of Agricultural Science: Suwon, Korea, 2010. [Google Scholar]
- Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.J. Residues and trace elements fast and easy multiresidue method employing acetonitrile extraction partitioning and “dispersive solid-phase extraction”. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [PubMed]
- Lehotay, S.J.; M´sstovská, K.; Lightfield, A.R. Use of buffering and other means to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables. J. AOAC Int. 2005, 88, 615–629. [Google Scholar] [CrossRef]
- Yuan, X.; Lee, J.; Han, H.; Ju, B.; Park, E.; Shin, Y.; Lee, J.; Kim, J.-H. Translocation of residual ethoprophos and tricyclazole from soil to spinach. Appl. Biol. Chem. 2021, 64, 47. [Google Scholar] [CrossRef]
- McKone, E.T.; Maddalena, R.L. Plant uptake of organic pollutants from soil: Bioconcentration estimates based on models and experiments. Environ. Toxicol. Chem. 2009, 26, 2494–2504. [Google Scholar] [CrossRef]
- Xiao, J.; Xu, X.; Wang, F.; Ma, J.; Liao, M.; Shi, Y.; Fang, Q.; Cao, H. Analysis of exposure to pesticide residues from Traditional Chinese Medicine. J. Hazard. Mater. 2018, 365, 857–867. [Google Scholar] [CrossRef] [PubMed]
- Korean Health Industry Development Institute. Available online: https://www.khidi.or.kr. (accessed on 30 August 2022).
- Masahiro, F.; Tomonari, Y.; Naruto, T.; Kazuaki, I.; Kiyoshi, S. Comparison of pesticide residue levels in headed lettuce growing in open fields and greenhouses. J. Pestic. Sci. 2014, 39, 69–75. [Google Scholar] [CrossRef]
- Fantke, P.; Juraske, R. Variability of Pesticide Dissipation Half-Lives in Plants. Environ. Sci. Technol. 2013, 47, 3548–3562. [Google Scholar] [CrossRef]
- Kwak, S.Y.; Hwang, J.-I.; Lee, S.-H.; Kang, M.-S.; Ryu, J.-S.; Kang, J.-G.; Hong, S.-H.; You, O.-J.; Kim, J.-E. Plant Uptake and Residual Patterns of Insecticide Dinotefuran by Radish. Korean J. Pestic. Sci. 2017, 21, 233–240. [Google Scholar] [CrossRef]
- Zhang, P.; Ren, C.; Sun, H.; Min, L. Sorption, desorption and degradation of neonicotinoids in four agricultural soils and their effects on soil microorganisms. Sci. Total Environ. 2018, 615, 59–69. [Google Scholar] [CrossRef]
- Matsumura, F. Toxicology of Insecticides; Plenum Press: New York, NY, USA, 1985; p. 406. [Google Scholar]
- Ishag, A.; Abdelbagi, A.; Hammad, A.; Elsheikh, A.; Elsaid, O.; Hur, J.; Laing, M. Biodegradation of Chlorpyrifos, Malathion, and Dimethoate by Three Strains of Bacteria Isolated from Pesticide-Polluted Soils in Sudan. J. Agric. Food Chem. 2016, 64, 8491–8498. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.L. Soil pH and the Availability of Plant Nutrients. IPNI Plant Nutrition TODAY, Fall 2010, No. 2, Type of the Paper.docx. Available online: https://nutrientstewardship.org/implementation/soil-ph-and-the-availability-of-plant-nutrients/ (accessed on 15 January 2022).
- Sudarshan, T.K.; Dustan, D.; Remington, W.; Donald, G.M.; Forrest, L.M. Time dependent sorption behavior of dinotefuran, imidacloprid and thiamethoxam. J. Environ. Sci. Health Part B 2013, 48, 237–242. [Google Scholar] [CrossRef]
- Kinney, C.A.; Furlong, E.T.; Werner, S.L.; Cahill, J.D. Presence and distribution of wastewater-derived pharmaceuticals in soil irrigated with reclaimed water. Environ. Toxicol. Chem. 2009, 25, 317–326. [Google Scholar] [CrossRef]
- Barriuso, E.; Benoit, P.; Dubus, I.G. Formation of pesticide nonextractable (bound) residues in soil: Magnitude, controlling factors and reversibility. Environ. Sci. Technol. 2008, 42, 1845–1854. [Google Scholar] [CrossRef]
- Jianqiao, W.; Yusuke, T.; Haruka, O.; Jianbo, J.; Toshio, M.; Tangfu, X.; Bing, Y.; Hirokazu, K.; Hirofumi, H. Biotransformation and detoxification of the neonicotinoid insecticides nitenpyram and dinotefuran by Phanerochaete sordida YK-624. Environ. Pollut. 2019, 252, 856–862. [Google Scholar] [CrossRef]
- Yu, B.; Chen, Z.; Lu, X.; Huang, Y.; Zhou, Y.; Zhang, Q.; Wang, D.; Li, J. Effects on soil microbial community after exposure to neonicotinoid insecticides thiamethoxam and dinotefuran. Sci. Total Environ. 2020, 725, 138328. [Google Scholar] [CrossRef] [PubMed]
- Goulding, K.W.T. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag. 2016, 32, 390–399. [Google Scholar] [CrossRef]
- Mulligan, R.A.; Tomco, P.L.; Howard, M.W.; Schempp, T.T.; Stewart, D.J.; Stacey, P.M.; Ball, D.B.; Tjeerdema, R.S. Aerobic versus anaerobic microbial degradation of clothianidin under simulated california rice field conditions. J. Agric. Food Chem. 2016, 64, 7059–7067. [Google Scholar] [CrossRef]
- Yen, J.H.; Liao, C.S.; Kuo, Y.W.; Chen, W.C.; Huang, W.T. Effect of Growing Groundcover Plants in a Vineyard on Dissipation of Two Neonicotinoid Insecticides. Sustainability 2019, 11, 798. [Google Scholar] [CrossRef]
- Ishag, A.; Abdelbagi, A.; Hammad, A.; Elsheikh, A.; Elsaid, O.; Hur, J. Biodegradation of endosulfan and pendimethalin by three strains of bacteria isolated from pesticides-polluted soils in the Sudan. Appl. Biol. Chem. 2017, 60, 287–297. [Google Scholar] [CrossRef]
- Amin, M.; Gurmani, A.R.; Rafique, M.; Khan, S.U.; Mehmood, A.; Muhammad, D.; Syed, J.H. Investigating the degradation behavior of Cypermethrin (CYP) and Chlorpyrifos (CPP) in peach orchard soils using organic/inorganic amendments. Saudi J. Biol. Sci. 2021, 28, 5890–5896. [Google Scholar] [CrossRef] [PubMed]
- Ishag, A.; Abdelbagi, A.; Hammad, A.; Elsheikh, E.; Elsaid, O.; Hur, J.-H. Photodegradation of chlorpyrifos, malathion, and dimethoate by sunlight in the Sudan. Environ. Earth Sci. 2019, 78, 89. [Google Scholar] [CrossRef]
- Ishag, A.; Abdelbagi, A.; Hammad, A.; Elsheikh, E.; Elsaid, O.; Hur, J.-H. Photodegradation of Endosulfan and Pendimethalin by Sunlight in the Sudan. Pestic. Res. J. 2020, 32, 56–68. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization) of the United Nations. Submission and Evaluation of Pesticide Residues Data for the Estimation of Maximum Residue Levels in Food and Feed, Pesticide Residues 3rd ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016. [Google Scholar]
- Wang, W.; Wan, Q.; Li, Y.; Xu, W.; Yu, X. Uptake, translocation and subcellular distribution of pesticides in Chinese cabbage (Brassica rapa var. chinensis). Ecotoxicol. Environ. Saf. 2019, 183, 109488. [Google Scholar] [CrossRef]
- Kumar, S.V.; Subhashchandran, K.P.; George, T.; Paul, A.; Xavier, G.; Vijayasree, V.; Suryamol, S. Dinotefuran Residues and their Dissipation in Chilli Pepper (Capsicum annuum L.) and Soil and their Risk Assessment. Pestic. Res. J. 2019, 31, 211–219. [Google Scholar] [CrossRef]
- Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 2013, 50, 977–987. [Google Scholar] [CrossRef]
- Sardar, S.W.; Byeon, G.D.; Choi, J.Y.; Ham, H.; Ishag, A.S.A.; Hur, J.-H. Residual characteristics and safety assessment of the insecticides spiromesifen and chromafenozide in lettuce and perilla. Sci. Rep. 2022, 12, 4675. [Google Scholar] [CrossRef]
- Ministry of Food and Drug Safety, MFDS. Available online: http://www.foodsafetykorea.go.kr/residue/prd/mrls/list.do?currentPageNo=70&searchCode=&searchFoodCode=&menuKey=1&subMenuKey=161&subChildMenuKey=&searchConsonantFlag=all&searchConsonantFlag2=all&searchValue2=&searchFlag=prd&searchClassLCode=&searchClassMCode=&searchClassScode=&searchValue= (accessed on 30 July 2022).
- Codex. 2013. Available online: http://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/commodities-detail/ru/?lang=ru&c_id=354 (accessed on 30 July 2022).
- Australian Pesticides and Veterinary Medicines Authority, Registration and Permits, Data Guidelines. 2015. Available online: apvma.gov.au/registrations-and-permits/data-guidelines (accessed on 3 August 2022).
- Kurwadkar, S.; Evans, A.; DeWinne, D.; White, P.; Mitchell, F. Modeling photodegradation kinetics of three systemic neonicotinoids—dinotefuran, imidacloprid, and thiamethoxam—in aqueous and soil environment. Environ. Toxicol. Chem. 2015, 35, 1718–1726. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization) of the United Nations. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues; FAO: Rome, Italy, 2012. [Google Scholar]
A | |||||||||
---|---|---|---|---|---|---|---|---|---|
Location | Plant Growth Stage | PBI (Days) | |||||||
30 | 60 | ||||||||
Dinotefuran | MNG | UF | DN | Dinotefuran | MNG | UF | DN | ||
Pyeongtaek | Control | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Pre-planting a | 0.68 ± 0.12 | <0.01 | <0.01 | <0.01 | 0.60 ± 0.06 | <0.01 | <0.01 | <0.01 | |
Planting | 0.27 ± 0.01 | <0.01 | <0.01 | <0.01 | 0.30 ± 0.02 | <0.01 | <0.01 | <0.01 | |
50% maturity | 0.25 ± 0.00 | <0.01 | <0.01 | <0.01 | 0.28 ± 0.00 | <0.01 | <0.01 | <0.01 | |
100% maturity | 0.24 ± 0.01 | <0.01 | <0.01 | <0.01 | 0.18 ± 0.04 | <0.01 | <0.01 | <0.01 | |
Chuncheon | Control | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Pre-planting a | 0.90 ± 0.03 | <0.01 | <0.01 | <0.01 | 0.89 ± 0.02 | <0.01 | <0.01 | <0.01 | |
Planting | 0.30 ± 0.01 | <0.01 | <0.01 | <0.01 | 0.30 ± 0.01 | <0.01 | <0.01 | <0.01 | |
50% maturity | 0.16 ± 0.02 | <0.01 | <0.01 | <0.01 | 0.14 ± 0.00 | <0.01 | <0.01 | <0.01 | |
100% maturity | 0.14 ± 0.01 | <0.01 | <0.01 | <0.01 | 0.09 ± 0.00 | <0.01 | <0.01 | <0.01 | |
B | |||||||||
Pyeongtaek | Control | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Pre-planting a | 3.18 ± 0.75 | <0.01 | <0.01 | <0.01 | 2.14 ± 0.60 | <0.01 | <0.01 | <0.01 | |
Planting | 0.40 ± 0.01 | <0.01 | <0.01 | <0.01 | 0.58 ± 0.00 | <0.01 | <0.01 | <0.01 | |
50% maturity | 0.24 ± 0.00 | <0.01 | <0.01 | <0.01 | 0.25 ± 0.01 | <0.01 | <0.01 | <0.01 | |
100% maturity | 0.17 ± 0.01 | 0.02 ± 0.00 | <0.01 | <0.01 | 0.14 ± 0.00 | <0.01 | <0.01 | <0.01 | |
Chuncheon | Control | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Pre-planting a | 0.48 ± 0.04 | <0.01 | <0.01 | <0.01 | 0.61 ± 0.05 | <0.01 | <0.01 | <0.01 | |
Planting | 0.32 ± 0.02 | <0.01 | <0.01 | <0.01 | 0.58 ± 0.02 | <0.01 | <0.01 | <0.01 | |
50% maturity | 0.22 ± 0.01 | <0.01 | <0.01 | <0.01 | 0.30 ± 0.00 | 0.02 ± 0.00 | <0.01 | <0.01 | |
100% maturity | 0.10 ± 0.00 | 0.02 ± 0.00 | <0.01 | <0.01 | 0.10 ± 0.01 | 0.01 ± 0.00 | <0.01 | <0.01 |
A | |||
---|---|---|---|
Location | Plant Growth Stage | PBI (Days) | |
30 | 60 | ||
Pyeongtaek | Control | <0.01 F | <0.01 F |
Pre-planting a | 0.68 ± 0.12 B | 0.60 ± 0.06 B | |
Planting | 0.27 ± 0.01 DC | 0.30 ± 0.02 C | |
50% maturity | 0.25 ± 0.00 DC | 0.28 ± 0.00 C | |
100% maturity | 0.24 ± 0.01 D | 0.18 ± 0.04 D | |
Chuncheon | Control | <0.01 F | <0.01 F |
Pre-planting a | 0.90 ± 0.03 A | 0.89 ± 0.02 A | |
Planting | 0.30 ± 0.01 C | 0.30 ± 0.01 C | |
50% maturity | 0.16 ± 0.02 E | 0.14 ± 0.00 ED | |
100% maturity | 0.14 ± 0.01 E | 0.09 ± 0.00 E | |
B | |||
Pyeongtaek | Control | <0.01 I | <0.01 H |
Pre-planting a | 3.18 ± 0.75 A | 2.14 ± 0.60 A | |
Planting | 0.40 ± 0.01 C | 0.58 ± 0.00 C | |
50% maturity | 0.24 ± 0.00 E | 0.25 ± 0.01 E | |
100% maturity | 0.20 ± 0.01 G | 0.14 ± 0.00 F | |
Chuncheon | Control | <0.01 I | <0.01 H |
Pre-planting a | 0.48 ± 0.04 B | 0.61 ± 0.05 B | |
Planting | 0.32 ± 0.02 D | 0.58 ± 0.02 C | |
50% maturity | 0.22 ± 0.01 F | 0.33 ± 0.00 D | |
100% maturity | 0.13 ± 0.00 H | 0.12 ± 0.01 G |
A | |||||||||
---|---|---|---|---|---|---|---|---|---|
Location | Plant Growth Stage | PBI (Days) | |||||||
30 | 60 | ||||||||
Dinotefuran | MNG | UF | DN | Dinotefuran | MNG | UF | DN | ||
Pyeongtaek | Control (50% and 100% mature leaves) | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 |
Treated 50% mature leaves | 0.030 ± 0.00 | 0.023 ± 0.006 | <0.010 | <0.010 | 0.037 ± 0.006 | 0.037 ± 0.006 | <0.010 | <0.010 | |
Treated 100% mature leaves | 0.030 ± 0.00 | 0.020 ± 0.00 | <0.010 | <0.010 | 0.040 ± 0.00 | 0.030 ± 0.00 | <0.010 | <0.010 | |
Chuncheon | Control (50% and 100% mature leaves) | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 |
Treated 50% mature leaves | 0.020 ± 0.00 | 0.023 ± 0.006 | <0.010 | <0.010 | 0.020 ± 0.00 | 0.027 ± 0.006 | <0.010 | <0.010 | |
Treated 100% mature leaves | 0.020 ± 0.00 | 0.023 ± 0.006 | <0.010 | <0.010 | 0.010 ± 0.00 | 0.020 ± 0.00 | <0.010 | <0.010 | |
B | |||||||||
Pyeongtaek | Control (50% and 100% mature leaves) | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 |
Treated 50% mature leaves | 0.296 ± 0.025 | 0.046 ± 0.01 | 0.030 ± 0.00 | 0.060 ± 0.01 | 0.280 ± 0.006 | 0.030 ± 0.00 | 0.020 ± 0.00 | 0.060 ± 0.00 | |
Treated 100% mature leaves | 0.080 ± 0.01 | 0.016 ± 0.01 | 0.010 ± 0.00 | 0.020 ± 0.00 | 0.120 ± 0.04 | 0.013 ± 0.01 | 0.013 ± 0.00 | 0.036 ± 0.02 | |
Chuncheon | Control (50% and 100% mature leaves) | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 | <0.010 |
Treated 50% mature leaves | 0.150 ± 0.01 | 0.023 ± 0.01 | 0.020 ± 0.00 | 0.050 ± 0.00 | 0.160 ± 0.01 | 0.023 ± 0.01 | 0.020 ± 0.00 | 0.050 ± 0.01 | |
Treated 100% mature leaves | 0.040 ± 0.00 | 0.010 ± 0.00 | <0.010 | 0.020 ± 0.00 | 0.040 ± 0.00 | 0.010 ± 0.00 | <0.010 | <0.010 |
A | |||
---|---|---|---|
Location | Plant Growth Stage | PBI (Days) | |
30 | 60 | ||
Pyeongtaek | Control (50% and 100% mature leaves) | <0.010 D | <0.010 E |
Treated 50% mature leaves | 0.069 ± 0.01 A | 0.100 ± 0.02 A | |
Treated 100% mature leaves | 0.064 ± 0.01 B | 0.091 ± 0.00 B | |
Chuncheon | Control (50% and 100% mature leaves) | <0.010 D | <0.010 E |
Treated 50% mature leaves | 0.059 ± 0.01 C | 0.066 ± 0.01 C | |
Treated 100% mature leaves | 0.059 ± 0.01 C | 0.044 ± 0.00 D | |
B | |||
Pyeongtaek | Control (50% and 100% mature leaves) | <0.010 E | <0.010 E |
Treated 50% mature leaves | 0.490 ± 0.03 A | 0.434 ± 0.001 A | |
Treated 100% mature leaves | 0.146 ± 0.02 C | 0.205 ± 0.06 C | |
Chuncheon | Control (50% and 100% mature leaves) | <0.010 E | <0.010 E |
Treated 50% mature leaves | 0.280 ± 0.01 B | 0.289 ± 0.01 B | |
Treated 100% mature leaves | 0.083 ± 0.00 D | 0.057 ± 0.01 D |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ham, H.J.; Choi, J.Y.; Jo, Y.J.; Sardar, S.W.; Ishag, A.E.S.A.; Abdelbagi, A.O.; Hur, J.H. Residues and Uptake of Soil-Applied Dinotefuran by Lettuce (Lactuca sativa L.) and Celery (Apium graveolens L.). Agriculture 2022, 12, 1443. https://doi.org/10.3390/agriculture12091443
Ham HJ, Choi JY, Jo YJ, Sardar SW, Ishag AESA, Abdelbagi AO, Hur JH. Residues and Uptake of Soil-Applied Dinotefuran by Lettuce (Lactuca sativa L.) and Celery (Apium graveolens L.). Agriculture. 2022; 12(9):1443. https://doi.org/10.3390/agriculture12091443
Chicago/Turabian StyleHam, Hun Ju, Jeong Yoon Choi, Yeong Ju Jo, Syed Wasim Sardar, Abd Elaziz Sulieman Ahmed Ishag, Azhari Omer Abdelbagi, and Jang Hyun Hur. 2022. "Residues and Uptake of Soil-Applied Dinotefuran by Lettuce (Lactuca sativa L.) and Celery (Apium graveolens L.)" Agriculture 12, no. 9: 1443. https://doi.org/10.3390/agriculture12091443
APA StyleHam, H. J., Choi, J. Y., Jo, Y. J., Sardar, S. W., Ishag, A. E. S. A., Abdelbagi, A. O., & Hur, J. H. (2022). Residues and Uptake of Soil-Applied Dinotefuran by Lettuce (Lactuca sativa L.) and Celery (Apium graveolens L.). Agriculture, 12(9), 1443. https://doi.org/10.3390/agriculture12091443