Anatomical Assessment of Skin Separation in Date Palm (Phoenix dactylifera L. var. Mejhoul) Fruit during Maturation and Ripening Stages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Selection
2.2. Fruit Anatomy and Skin Separation
2.3. Weather Data and Soil Moisture Content
2.4. Data Analysis
3. Results
4. Discussion
4.1. Date Palm Industry and Skin Separation
4.2. Fruit Anatomy
4.3. Weather Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Shahib, W.; Marshall, R. The fruit of the date palm: Its possible use as the best food for the future? Int. J. Food Sci. Nutr. 2003, 54, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Lobo, M.; Yahia, E.; Kader, A. Biology and Postharvest Physiology of Date Fruit. In Dates: Postharvest Science, Processing Technology and Health Benefits, 1st ed.; Siddiq, M., Aleid, S., Kader, A., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014. [Google Scholar]
- FAOSTAT. Food and Agriculture Organization of the United Nations. 2021. Available online: https://www.fao.org/faostat/en/#home (accessed on 27 November 2022).
- Ghnimi, S.; Umer, S.; Karim, A.; Kamal-Eldin, A. Date fruit (Phoenix dactylifera L.): An underutilized food seeking industrial valorization. NFS J. 2017, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- El-Juhany, L. Degradation of date palm trees and date production in Arab countries: Causes and potential rehabilitation. Aust. J. Basic Appl. Sci. 2010, 4, 3998–4010. [Google Scholar]
- Al-Hajjaj, H.; Ayad, J.; Othman, Y.; Abu-Rayyan, A. Foliar potassium application improves fruits yield and quality of ‘medjool’ date palm. Fresenius Environ. Bull. 2020, 29, 1436–1442. [Google Scholar]
- Alsmairat, N.; Al-Qudah, T.; El-Assi, N.; Mehyar, G.; Gammoh, I.; Othman, Y.; Araj, S.; Al-Antary, T. Effect of drying process on physical and chemical properties of ‘Medjool’ date palm fruits. Fresenius Environ. Bull. 2019, 28, 1552–1559. [Google Scholar]
- Sarraf, M.; Jemni, M.; Kahramanoğlu, I.; Artés, F.; Shahkoomahally, S.; Namsi, A.; Ihtisham, M.; Brestic, M.; Mohammadi, M.; Rastogi, A. Commercial techniques for preserving date palm (Phoenix dactylifera) fruit quality and safety: A review. Saudi J. Biol. Sci. 2021, 28, 4408–4420. [Google Scholar] [CrossRef]
- Li, M.; Verboven, P.; Buchsbaum, A.; Cantre, D.; Nicolaï, B.; Heyes, J.; Mowat, A.; East, A. Characterising kiwifruit (Actinidia sp.) near skin cellular structures using optical coherence tomography. Postharvest Biol. Technol. 2015, 110, 247–256. [Google Scholar] [CrossRef]
- Si, Y.; Khanal, B.; Knoche, M. Factors affecting cuticle synthesis in apple fruit identified under field conditions. Sci. Hortic. 2021, 290, 110512. [Google Scholar] [CrossRef]
- Al-Hajjaj, H.; Ayad, J. Effect of foliar boron applications on yield and quality of Medjool date palm. J. Appl. Hortic. 2018, 20, 182–189. [Google Scholar] [CrossRef]
- JODA. The Jordanian Dates Association. Available online: https://jodates.org/book/ (accessed on 27 November 2022).
- Kader, A.; Hussein, A. Harvesting and Postharvest Handling of Dates; The International Center for Agricultural Research in the Dry Areas (ICARDA): Aleppo, Syria, 2009; Volume IV+, p. 15. [Google Scholar]
- Isaid, H.; Bitar, A.; Abu-Qaoud, H. Effect of water stress at fruit maturity stage on production and skin separation phenomenon of date palm cv. Medjool. Hebron Uni. Res. J. 2021, 10, 1–17. Available online: https://digitalcommons.aaru.edu.jo/hujr_a/vol10/iss1/1 (accessed on 27 November 2022).
- Huang, W.; Zhu, N.; Zhu, C.; Wu, D.; Chen, K. Morphology and cell wall composition changes in lignified cells from loquat fruit during postharvest storage. Postharvest Biol. Technol. 2019, 157, 110975. [Google Scholar] [CrossRef]
- Shafiei, M.; Karimi, K.; Taherzadeh, M. Palm date fibers: Analysis and enzymatic hydrolysis. Int. J. Mol. Sci. 2010, 11, 4285–4296. [Google Scholar] [CrossRef] [Green Version]
- Khanal, B.; Knoche, M. Mechanical properties of apple skin are determined by epidermis and hypodermis. J. Am. Soc. Hortic. Sci. 2014, 139, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Gophen, M. Skin separation in Date fruit. Int. J. Plant Res. 2014, 4, 11–16. [Google Scholar]
- Lustig, I.; Bernstein, Z.; Gophen, M. Skin separation in Majhul. Int. J. Plant Res. 2014, 4, 29–35. [Google Scholar]
- Khanal, B.; Imoro, Y.; Chen, Y.; Straube, J.; Knoche, M. Surface moisture increases microcracking and water vapor permeance of apple fruit skin. Plant Biol. 2021, 23, 74–82. [Google Scholar] [CrossRef]
- Choi, J.; Lee, S. Distribution of stone cell in Asian, Chinese, and European pear fruit and its morphological changes. J. Appl. Bot. Food Qual. 2013, 86, 185–189. [Google Scholar]
- Lin, S.; Lin, D.; Wu, B.; Ma, S.; Sun, S.; Zhang, T.; Zhang, W.; Bai, Y.; Wang, Q.; Wu, J. Morphological and developmental features of stone cells in Eriobotrya Fruits. Front. Plant Sci. 2022, 13, 823993. [Google Scholar] [CrossRef]
- Mamat, A.; Tusong, K.; Xu, J.; Yan, P.; Mei, C.; Wang, J. Integrated transcriptomic and proteomic analysis reveals the complex molecular mechanisms underlying stone cell formation in Korla pear. Sci. Rep. 2021, 11, 7688. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, J.; Xue, C.; Wang, R.; Zhang, M.; Qi, K.; Fan, J.; Hu, H.; Zhang, S.; Wu, J. The variation of stone cell content in 236 germplasms of sand pear (Pyrus pyrifolia) and identification of related candidate genes. Hortic. Plant J. 2021, 7, 108–116. [Google Scholar] [CrossRef]
- George, N.; Antony, A.; Ramachandran, T.; Hamed, F.; Kamal-Eldin, A. Microscopic investigations of silicification and lignification suggest their coexistence in Tracheary phytoliths in date fruits (Phoenix dactylifera L.). Front. Plant Sci. 2020, 11, 977. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Yan, C.; Qiu, J.; Zhang, N.; Lin, Y.; Cai, Y. Structural characterization and deposition of stone cell lignin in Dangshan Su pear. Sci. Hortic. 2013, 155, 123–130. [Google Scholar] [CrossRef]
- Nii, N.; Kawahara, T.; Nakao, Y. The development of stone cells in Japanese pear fruit. J. Hortic. Sci. Biotechnol. 2008, 83, 148–153. [Google Scholar] [CrossRef]
- Bauer, P.; Elbaum, R.; Weiss, I. Calcium and silicon mineralization in land plants: Transport, structure and function. Plant Sci. 2011, 180, 746–756. [Google Scholar] [CrossRef]
- Peleg, Z.; Saranga, Y.; Fahima, T.; Aharoni, A.; Elbaum, R. Genetic control over silica deposition in wheat awns. Physiol. Plant 2010, 140, 10–20. [Google Scholar] [CrossRef]
- Hattori, T.; Inanaga, S.; Tanimoto, E.; Lux, A.; Luxová, M.; Sugimoto, Y. Silicon induced changes in viscoelastic properties of sorghum root cell walls. Plant Cell Physiol. 2003, 44, 743–749. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.; Mori, R.; Soga, K.; Wakabayashi, K.; Kamisaka, S.; Fujii, S.; Yamamoto, R.; Hoson, T. Growth promotion and an increase in cell wall extensibility by silicon in rice and some other Poaceae seedlings. J. Plant Res. 2002, 115, 23–27. [Google Scholar] [CrossRef]
- Fernández-Muñoz, R.; Heredia, A.; Domínguez, E. The role of cuticle in fruit shelf-life. Curr. Opin. Biotechnol. 2022, 78, 102802. [Google Scholar] [CrossRef]
- Khanal, B.; Sangroula, B.; Bhattarai, A.; Almeida, G.; Knoche, M. Pathways of postharvest water loss from banana fruit. Postharvest Biol. Technol. 2022, 191, 111979. [Google Scholar] [CrossRef]
Soil Texture | PH | Electrical Conductivity (ds m−1) | Soil CO2 Respiration (mg kg−1) | Total N (%) | |
---|---|---|---|---|---|
Site 1 | Clay-loam | 8.06 | 3.51 | 39.8 | 1.07 |
Site 2 | Clay-loam | 8.01 | 2.89 | 33.6 | 1.09 |
Fruit Quality (Skin) | Sclereid Cells (no mm−2) | Sclereid Clusters (no mm−2) | Sclereid Cluster Area (µm) | Sclereid Cells Cluster Perimeter (µm) | Distance between Sclereid Cells Clusters and Cuticle (µm) | Cuticle Thickness (µm) | Epidermis Thickness (µm) | Exocarp (Skin) Thickness (µm) |
---|---|---|---|---|---|---|---|---|
2020 | ||||||||
Normal | 78.4 b | 6.66 b | 34.7 b | 680 b | 67.3 a | 3.97 a | 13.2 a | 232 a |
Skin separation > 30% | 105 a | 8.20 a | 47.4 a | 848 a | 44.4 b | 3.60 a | 11.2 b | 213 a |
p-value | 0.007 | 0.02 | 0.013 | 0.02 | <0.0001 | 0.19 | 0.01 | 0.57 |
2021 | ||||||||
Normal | 81.2 b | 6.76 b | 27.3 b | 520 b | 99.8 a | 3.87 a | 10.1 b | 268 b |
Skin separation > 30% | 230 a | 13.0 a | 83.5 a | 851 a | 70.2 a | 4.83 a | 14.4 a | 536 a |
p-value | <0.0001 | 0.003 | 0.001 | 0.008 | 0.13 | 0.14 | 0.001 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsmairat, N.; Othman, Y.; Ayad, J.; Al-Ajlouni, M.; Sawwan, J.; El-Assi, N. Anatomical Assessment of Skin Separation in Date Palm (Phoenix dactylifera L. var. Mejhoul) Fruit during Maturation and Ripening Stages. Agriculture 2023, 13, 38. https://doi.org/10.3390/agriculture13010038
Alsmairat N, Othman Y, Ayad J, Al-Ajlouni M, Sawwan J, El-Assi N. Anatomical Assessment of Skin Separation in Date Palm (Phoenix dactylifera L. var. Mejhoul) Fruit during Maturation and Ripening Stages. Agriculture. 2023; 13(1):38. https://doi.org/10.3390/agriculture13010038
Chicago/Turabian StyleAlsmairat, Nihad, Yahia Othman, Jamal Ayad, Malik Al-Ajlouni, Jamal Sawwan, and Najib El-Assi. 2023. "Anatomical Assessment of Skin Separation in Date Palm (Phoenix dactylifera L. var. Mejhoul) Fruit during Maturation and Ripening Stages" Agriculture 13, no. 1: 38. https://doi.org/10.3390/agriculture13010038