Application of Machine Learning to Study the Agricultural Mechanization of Wheat Farms in Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Sampling
2.3. K-Means Clustering
3. Results and Discussion
3.1. Survey and Mapping of Farm Size Distribution in the Egyptian Delta Governorates
3.2. Survey and Mapping of Land Cultivated with Wheat in the Egyptian Delta Governorates
3.3. Survey and Mapping of the Number of Different Tractor Sizes in the Egyptian Delta Governorates
3.4. K-Means Cluster Analysis
3.5. Evaluation of Recommended Index Features
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Erhard, A.L.; Águas Silva, M.; Damsbo-Svendsen, M.; Menadeva Karpantschof, B.E.; Sørensen, H.; Bom Frøst, M. Acceptance of Insect Foods among Danish Children: Effects of Information Provision, Food Neophobia, Disgust Sensitivity, and Species on Willingness to Try. Food Qual. Prefer. 2023, 104, 104713. [Google Scholar] [CrossRef]
- Hori, K.; Saito, O.; Hashimoto, S.; Matsui, T.; Akter, R.; Takeuchi, K. Projecting Population Distribution under Depopulation Conditions in Japan: Scenario Analysis for Future Socio-Ecological Systems. Sustain. Sci. 2020, 16, 295–311. [Google Scholar] [CrossRef] [PubMed]
- Rakhra, M.; Sanober, S.; Quadri, N.N.; Verma, N.; Ray, S.; Asenso, E. Implementing Machine Learning for Smart Farming to Forecast Farmers’ Interest in Hiring Equipment. J. Food Qual. 2022, 2022, 4721547. [Google Scholar] [CrossRef]
- Emami, M.; Almassi, M.; Bakhoda, H.; Kalantari, I. Agricultural Mechanization, a Key to Food Security in Developing Countries: Strategy Formulating for Iran. Agric. Food Secur. 2018, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Abdelaal, H.S.A.; Thilmany, D. Grains Production Prospects and Long Run Food Security in Egypt. Sustainability 2019, 11, 4457. [Google Scholar] [CrossRef] [Green Version]
- Radwan, T.M.; Blackburn, G.A.; Whyatt, J.D.; Atkinson, P.M. Dramatic Loss of Agricultural Land Due to Urban Expansion Threatens Food Security in the Nile Delta, Egypt. Remote Sens. 2019, 11, 332. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. Food and Agriculture Organization of the United Nations Statistics. Available online: https://www.fao.org/faostat/en/#country/59 (accessed on 15 March 2022).
- FAO GIEWS Country Brief on Egypt. Available online: https://www.fao.org/giews/countrybrief/country.jsp?code=EGY&lang=ar (accessed on 18 November 2022).
- Ali, R.R.; Gad, A. The Impact of COVID-19 Pandemic on Wheat Yield in El Sharkia Governorate, Egypt. Egypt. J. Remote Sens. Sp. Sci. 2022, 25, 249–256. [Google Scholar] [CrossRef]
- Abdelmageed, K.; Chang, X.; Wang, D.; Wang, Y.; Yang, Y.; Zhao, G.; Tao, Z. Evolution of Varieties and Development of Production Technology in Egypt Wheat: A Review. J. Integr. Agric. 2019, 18, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Cupiał, M.; Kowalczyk, Z. Optimization of Selection of the Machinery Park in Sustainable Agriculture. Sustainability 2020, 12, 1380. [Google Scholar] [CrossRef] [Green Version]
- Anka, L.M. Agricultural Research Management in Nigeria: Historical Antecedents and Contemporary Issues. SSRN Electron. J. September 2014, 1–35. [Google Scholar] [CrossRef]
- Li, W.; Wei, X.; Zhu, R.; Guo, K. Study on Factors Affecting the Agricultural Mechanization Level in China Based on Structural Equation Modeling. Sustainability 2019, 11, 51. [Google Scholar] [CrossRef] [Green Version]
- Thomas, G.; De Tavernier, J. Farmer-Suicide in India: Debating the Role of Biotechnology. Life Sci. Soc. Policy 2017, 13, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bank, W. World Development Indicators 2019: Employment in Agriculture (% of Total Employment). Available online: https://data.worldbank.org/indicator/SL.AGR.EMPL.ZS?end=2019&locations=EG&name_desc=false&start=1991&view=chart (accessed on 20 June 2022).
- Farnworth, C.R.; San, A.M.; Kundu, N.D.; Islam, M.M.; Jahan, R.; Depenbusch, L.; Nair, R.M.; Myint, T.; Schreinemachers, P. How Will Mechanizing Mung Bean Harvesting AffectWomen Hired Laborers in Myanmar and Bangladesh. Sustainability 2020, 12, 7870. [Google Scholar] [CrossRef]
- Abdel Hamid, Z.; Refai, M.; El-kilani, R.M.; Nasr, G.E.M. Use of a Ni-TiO2 Nanocomposite Film to Enhance Agricultural Cutting Knife Surfaces by Electrodeposition Technology. J. Mater. Sci. 2021, 56, 14096–14113. [Google Scholar] [CrossRef]
- Mottaleb, K.A.; Rahut, D.B.; Ali, A.; Gérard, B.; Erenstein, O. Enhancing Smallholder Access to Agricultural Machinery Services: Lessons from Bangladesh. J. Dev. Stud. 2016, 53, 1502–1517. [Google Scholar] [CrossRef] [Green Version]
- Sayed, H.A.A.; Ding, Q.; Odero, A.J.; Korohou, T. Selection of Appropriate Mechanization to Achieve Sustainability for Smallholder Farms: A Review. Al-Azhar J. Agric. Eng. 2022, 2, 52–60. [Google Scholar] [CrossRef]
- Paudel, G.P.; KC, D.B.; Rahut, D.B.; Justice, S.E.; McDonald, A.J. Scale-Appropriate Mechanization Impacts on Productivity among Smallholders: Evidence from Rice Systems in the Mid-Hills of Nepal. Land Use Policy 2019, 85, 104–113. [Google Scholar] [CrossRef]
- Kienzle, J.; Ashburner, J.E.; Sims, B.G. Mechanization for Rural Development: A Review of Patterns and Progress from around the World; FAO: Rome, Italy, 2013; Volume 20, ISBN 9789251076057. [Google Scholar]
- Devkota, R.; Pant, L.P.; Gartaula, H.N.; Patel, K.; Gauchan, D.; Hambly-Odame, H.; Thapa, B.; Raizada, M.N. Responsible Agricultural Mechanization Innovation for the Sustainable Development of Nepal’s Hillside Farming System. Sustainability 2020, 12, 374. [Google Scholar] [CrossRef] [Green Version]
- Paudel, G.P.; KC, D.B.; Rahut, D.B.; Khanal, N.P.; Justice, S.E.; McDonald, A.J. Smallholder Farmers’ Willingness to Pay for Scale-Appropriate Farm Mechanization: Evidence from the Mid-Hills of Nepal. Technol. Soc. 2019, 59, 101196. [Google Scholar] [CrossRef]
- Sims, B.; Kienzle, J. Making Mechanization Accessible to Smallholder Farmers in Sub-Saharan Africa. Environ.-MDPI 2016, 3, 11. [Google Scholar] [CrossRef]
- Van Loon, J.; Woltering, L.; Krupnik, T.J.; Baudron, F.; Boa, M.; Govaerts, B. Scaling Agricultural Mechanization Services in Smallholder Farming Systems: Case Studies from Sub-Saharan Africa, South Asia, and Latin America. Agric. Syst. 2020, 180, 102792. [Google Scholar] [CrossRef] [PubMed]
- Lowder, S.K.; Skoet, J.; Raney, T. The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide. World Dev. 2016, 87, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Samberg, L.H.; Gerber, J.S.; Ramankutty, N.; Herrero, M.; West, P.C. Subnational Distribution of Average Farm Size and Smallholder Contributions to Global Food Production. Environ. Res. Lett. 2016, 11, 124010. [Google Scholar] [CrossRef]
- Sims, B.; Kienzle, J. Sustainable Agricultural Mechanization for Smallholders: What Is It and How Can We Implement It? Agriculture 2017, 7, 50. [Google Scholar] [CrossRef] [Green Version]
- Mottaleb, K.A.; Krupnik, T.J.; Erenstein, O. Factors Associated with Small-Scale Agricultural Machinery Adoption in Bangladesh: Census Findings. J. Rural Stud. 2016, 46, 155–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mezan, S.O.; Absi, S.M.; Jabbar, A.H.; Roslan, M.S.; Agam, M.A. Synthesis and Characterization of Enhanced Silica Nanoparticle (SiO2) Prepared from Rice Husk Ash Immobilized of 3-(Chloropropyl) Triethoxysilanea. Mater. Today Proc. 2021, 42, 2464–2468. [Google Scholar] [CrossRef]
- Rakhra, M.; Singh, R.; Lohani, T.K.; Shabaz, M. Metaheuristic and Machine Learning-Based Smart Engine for Renting and Sharing of Agriculture Equipment. Math. Probl. Eng. 2021, 2021, 5561065. [Google Scholar] [CrossRef]
- Khan, R.; Kumar, S.; Dhingra, N.; Bhati, N. The Use of Different Image Recognition Techniques in Food Safety: A Study. J. Food Qual. 2021, 2021, 7223164. [Google Scholar] [CrossRef]
- Waleed, M.; Um, T.W.; Kamal, T.; Usman, S.M. Classification of Agriculture Farm Machinery Using Machine Learning and Internet of Things. Symmetry 2021 2021, 13, 403. [Google Scholar] [CrossRef]
- Sakthipriya, D.; Chandrakumar, T. A Study on Agriculture Engineering Implements Using Machine Learning. Mater. Today Proc. 2022, 62, 4996–5002. [Google Scholar] [CrossRef]
- Elagouz, M.H.; Abou-Shleel, S.M.; Belal, A.A.; El-Mohandes, M.A.O. Detection of Land Use/Cover Change in Egyptian Nile Delta Using Remote Sensing. Egypt. J. Remote Sens. Sp. Sci. 2020, 23, 57–62. [Google Scholar] [CrossRef]
- CAPMAS. Annual Bulletin of Statical Crop Area and Plant Production. Central Agency for Public Mobilization and Statistics, Egypt. 2020. Available online: Https://Www.Capmas.Gov.Eg/Pages/Publications.Aspx?Page_id=5104&Year=23541 (accessed on 12 December 2020).
- Verme, P.; Milanovic, B.; Al-Shawarby, S.; El-Tawila, S.; Gadallah, M.; A.El-Majeed, E. Inside Inequality in the Arab Republic of Egypt (Facts and Perceptions across People, Time, and Space); International Bank for Reconstruction and Development; The World Bank: Washington, DC, USA, 2014; ISBN 9781464801983. [Google Scholar]
- CAPMAS. Bulletin of Agricultural Boundaries and Properties. Central Agency for Public Mobilization and Statistics, Egypt. 2020. Available online: Https://Www.Capmas.Gov.Eg/Pages/Publications.Aspx?Page_id=5109&YearID=23555&Year=23583 (accessed on 12 December 2020).
- CAPMAS. Bulletin of Mechanical Farm Machinery. Central Agency for Public Mobilization and Statistics, Egypt. 2020. Available online: Https://Www.Capmas.Gov.Eg/Pages/Publications.Aspx?Page_id=5109&YearID=23555 (accessed on 12 December 2020).
- Aryal, J.P.; Rahut, D.B.; Maharjan, S.; Erenstein, O. Understanding Factors Associated with Agricultural Mechanization: A Bangladesh Case. World Dev. Perspect. 2019, 13, 1–9. [Google Scholar] [CrossRef]
- Ghosh, S.; Dubey, S.K. Comparative Analysis of K-Means and Fuzzy C-Means Algorithms. Int. J. Adv. Comput. Sci. Appl. 2013, 4, 35–39. [Google Scholar] [CrossRef]
Index * (Small Farm) | Wheat Agricultural Operations | ||||||
---|---|---|---|---|---|---|---|
Organic Fertilization | Tillage | Sowing | Chemical Fertilization | Spraying | Harvesting | Threshing | |
1 | ◊ | √ | ◊ | ◊ | ■ | ◊ | √ |
2 | ◊ | √ | ◊ | ◊ | ■ | √ | √ |
3 | ◊ | √ | √ | ◊ | ■ | √ | √ |
4 | ◊ | √ | √ | √ | ■ | √ | √ |
5 | ◊ | √ | ◊ | √ | ■ | √ | √ |
6 | ◊ | √ | ■ | ◊ | ■ | √ | √ |
7 | √ | √ | ◊ | ◊ | √ | ◊ | √ |
8 | √ | √ | ◊ | ◊ | ■ | ◊ | √ |
9 | √ | √ | ◊ | ◊ | √ | √ | √ |
10 | √ | √ | √ | ◊ | √ | √ | √ |
11 | √ | √ | √ | ◊ | ■ | ◊ | √ |
12 | √ | √ | ◊ | ◊ | ■ | √ | √ |
13 | √ | √ | √ | ◊ | ■ | √ | √ |
14 | √ | √ | ■ | ◊ | ■ | √ | √ |
Index * (Medium Farm) | Wheat Agricultural Operations | ||||||
---|---|---|---|---|---|---|---|
Organic Fertilization | Tillage | Sowing | Chemical Fertilization | Spraying | Harvesting | Threshing | |
1 | √ | √ | √ | √ | √ | √ | √ |
2 | √ | ■ | √ | √ | ■ | ■ | √ |
3 | √ | ■ | √ | √ | ■ | √ | √ |
4 | √ | ■ | ◊ | ◊ | √ | ■ | √ |
5 | ■ | ■ | ■ | ■ | ■ | √ | √ |
6 | ■ | ■ | ■ | ■ | ■ | ■ | √ |
7 | ■ | ■ | √ | √ | ■ | √ | √ |
8 | ■ | ■ | ◊ | ◊ | ■ | ■ | √ |
9 | ■ | ■ | √ | √ | ■ | ■ | √ |
10 | ■ | ■ | √ | √ | ■ | ■ | ■ |
11 | √ | ■ | ◊ | ◊ | ■ | ■ | ■ |
12 | √ | ■ | √ | √ | √ | ■ | ■ |
13 | √ | ■ | √ | √ | ■ | ■ | ■ |
14 | ■ | ■ | ■ | ■ | ■ | ■ | ■ |
Index * (Large Farm) | Wheat Agricultural Operations | ||||||
---|---|---|---|---|---|---|---|
Organic Fertilization | Tillage | Sowing | Chemical Fertilization | Spraying | Harvesting | Threshing | |
1 | √ | √ | √ | √ | ■ | √ | √ |
2 | √ | √ | √ | √ | √ | √ | √ |
3 | √ | ■ | √ | √ | √ | ■ | √ |
4 | ■ | ■ | √ | √ | ■ | √ | √ |
5 | ■ | ■ | √ | √ | √ | √ | √ |
6 | ■ | ■ | √ | √ | ■ | ■ | √ |
7 | ■ | ■ | ■ | ■ | ■ | ■ | √ |
8 | ■ | ■ | ■ | ■ | √ | √ | √ |
9 | √ | ■ | √ | √ | √ | ■ | ■ |
10 | √ | ■ | √ | √ | ■ | ■ | ■ |
11 | ■ | ■ | √ | √ | ■ | ■ | ■ |
12 | ■ | ■ | ■ | ■ | ■ | ■ | ■ |
S. No. | Cluster | Range |
---|---|---|
1 | Cluster 1 | 900–1000 |
2 | Cluster 2 | 200–500 |
3 | Cluster 3 | 0–200 |
S. No. | Cluster | Range |
---|---|---|
1 | Cluster 1 | 80–90 |
2 | Cluster 2 | 40–70 |
3 | Cluster 3 | 0–40 |
S. No. | Cluster | Range |
---|---|---|
1 | Cluster 1 | 80–100 |
2 | Cluster 2 | 40–60 |
3 | Cluster 3 | 0–40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayed, H.A.A.; Ding, Q.; Abdelhamid, M.A.; Alele, J.O.; Alkhaled, A.Y.; Refai, M. Application of Machine Learning to Study the Agricultural Mechanization of Wheat Farms in Egypt. Agriculture 2023, 13, 70. https://doi.org/10.3390/agriculture13010070
Sayed HAA, Ding Q, Abdelhamid MA, Alele JO, Alkhaled AY, Refai M. Application of Machine Learning to Study the Agricultural Mechanization of Wheat Farms in Egypt. Agriculture. 2023; 13(1):70. https://doi.org/10.3390/agriculture13010070
Chicago/Turabian StyleSayed, Hassan A. A., Qishuo Ding, Mahmoud A. Abdelhamid, Joseph O. Alele, Alfadhl Y. Alkhaled, and Mohamed Refai. 2023. "Application of Machine Learning to Study the Agricultural Mechanization of Wheat Farms in Egypt" Agriculture 13, no. 1: 70. https://doi.org/10.3390/agriculture13010070
APA StyleSayed, H. A. A., Ding, Q., Abdelhamid, M. A., Alele, J. O., Alkhaled, A. Y., & Refai, M. (2023). Application of Machine Learning to Study the Agricultural Mechanization of Wheat Farms in Egypt. Agriculture, 13(1), 70. https://doi.org/10.3390/agriculture13010070