Quality Profile of Several Monofloral Romanian Honeys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Honey Samples
2.2. Pfund Value and Color
2.3. Refractive Index, Moisture, Solid Substances, and Specific Gravity
2.4. pH and Free Acidity
2.5. Ash and Electrical Conductivity
2.6. Total Phenols Content and Total Flavonoids Content
2.7. Mineral Elements (K, Ca, Mg, Na, and P)
2.8. FTIR Analysis
2.9. Statistical Analyses
3. Results
3.1. Physicochemical Analyses
3.2. FTIR Spectra
3.3. Correlation and Multivariate Statistical Analysis
4. Discussion
4.1. Color
mm Pfund | Country | Literature Source | ||||||
---|---|---|---|---|---|---|---|---|
Linden | Acacia | Rapeseed | Sunflower | Mint | Raspberry | Chestnut | ||
23.1–41.8 | 0.1–2.0 | 45.2–73.7 | 15.5–53.9 | 18.8–65.2 | 28.5–43.7 | 98.3–100.2 | Romania | This study |
- | - | - | 61.3; 70.5; 88.7 | - | - | - | Romania | [46] |
36.00–54.00 | 11.00–45.00 | - | 79.00–83.00 | - | - | - | Romania | [47] |
- | - | - | 32.87–47.52 | - | - | - | Romania | [2] |
- | - | 29.40 | 37.60 | 74.30 | 61.4 | - | Romania | [8] |
35.64 | 12.87 | 36.14 | 33.66 | 63.86 | 63.36 | - | Romania | [15] |
- | - | - | 97.60 | - | - | - | Portugal | [36] |
22.00–38.00 | - | - | 39.00–41.00 | - | - | - | R. Moldova | [48] |
10.00–29.00 | 1.00–8.00 | - | - | - | - | - | Croatia | [45] |
68.01; 76.80 | - | 34.34–114.07 | 62.07; 114.00 | - | 87.45; 91.29 | - | Poland | [17] |
68.1 | 10.2; 21.47 | 85.47–114.07 | - | - | 101.56; 87.45 | - | Czech Republic/Poland | [17] |
- | 26.51 | - | - | - | - | - | Germany | [49] |
70.00 | 20.00 | - | - | - | - | - | Serbia | [43] |
- | - | - | - | - | 39–74.5 | - | Romania | [50] |
- | - | - | - | - | 118 | - | Spain | [16] |
38.27–139.48 | −7.26–20.92 | 2.08–138.56 | 96.3–198.91 | - | - | 71.3–149.42 | Hungary | [42] |
- | - | - | - | - | - | 123–150 | Spain | [5] |
- | - | - | - | - | - | 69.63–108.7 | Portugal | [51] |
33.3 | 12.9 | 26.2 | 52.4 | - | - | 87.9 | Europe | [52] |
4.2. Refractive Index, Moisture, and Solid Substances, and Specific Gravity
Country | Moisture (%) | pH | Free Acidity (meq kg−1) | Ash (%) | EC (mS cm−1) | TPC mg GAE/100 g | TFC mg QE/100 g | Literature Source |
---|---|---|---|---|---|---|---|---|
Linden | ||||||||
Romania | 17.0–20.4 | 3.81–5.08 | 23.4–38.6 | 0.199–0.471 | 0.358–0.692 | 22.0–27.5 | 1.48–2.56 | This study |
Romania | 5.4–6.0 | 3.6–4.7 | - | - | 0.410–0.730 | - | - | [53] |
Romania | 16.70–19.10 | - | - | 0.19–0.30 | - | 16–38 | 4.7–6.98 | [47] |
Romania | 16.75 | 4.05 | 14.55 | - | 0.33 | - | - | [15] |
Romania | 17.2–18.8 | 3.84–4.35 | - | - | 0.202–0.346 | - | - | [54] |
Bulgaria | 17.1 | 4.04 | - | - | 0.689 | - | - | [55] |
Croatia | 15.9–20.0 | - | - | - | 0.497–0.628 | 6.62–12.10 | - | [45] |
Czech Republic | 16 | 4.06 | 14.9 | - | 0.39 | 45.04 | 1.88 | [13] |
Italy | - | - | - | - | - | 26 | 5.5 | [56] |
Poland | 20.30 | 4.13 | 25.50 | - | 0.640 | 43.69 | - | [14] |
Poland | 17.76 | 3.81 | 34.2 | - | 0.53 | 38 | 0.5 | [20] |
Serbia | 15.8; 17.1 | 4.62; 4.72 | 14.5; 16.1 | - | 0.488; 0.608 | 53.7; 67.3 | - | [57] |
Serbia | - | - | - | - | - | 71.49 | - | [43] |
Slovakia | 18.35 | 3.90 | 21.6 | - | 0.23 | 35 | 0.26 | [20] |
Romania | 18.54 | 4.83 | 5.88 | - | 0.512 | - | - | [58] |
Acacia | ||||||||
Romania | 17.5–19.5 | 3.94–4.65 | 12.8–25.4 | 0.044–0.190 | 0.140–0.320 | 13.7–23.1 | 0.46–1.29 | This study |
Romania | 3.9–6.2 | 3.7–4.3 | - | - | 0.110–0.270 | - | - | [53] |
Romania | 16.60–19.80 | - | - | 0.03–0.28 | - | 2.00–39.00 | 0.91–2.42 | [47] |
Romania | 15.96 | 4.31 | 3.86 | - | 0.12 | - | - | [15] |
Romania | 16.7–22.8 | 3.65–4.63 | - | - | 0.097–0.268 | - | - | [54] |
Bulgaria | 16.9 | 3.23 | - | - | 0.159 | - | - | [55] |
Croatia | 14.6–19.9 | - | - | - | 0.1–0.161 | 2.82–5.20 | - | [45] |
Czech Republic | 17 | 3.82 | 9.6 | - | 0.18 | 23.84 | 0.87 | [13] |
Germany | 17 | 5.4 | - | - | - | 62.75 | - | [59] |
Germany | 18.83 | 4.10 | - | - | - | 21.457 | - | [49] |
Italy | - | - | - | - | - | 18.2 | 7.6 | [60] |
Italy | - | - | - | - | - | 10.72 | 3.31 | [56] |
Poland | 17.17 | 3.77 | 20.85 | - | 0.31 | 14.081 | - | [14] |
Poland | 17.73 | 3.79 | 25.6 | - | 0.42 | 47 | 0.32 | [20] |
Serbia | 14.5–18.5 | - | 6.6–15.5 | 0.04–0.15 | 0.083–0.174 | 58.17–142.61 | - | [61] |
Serbia | 16.4; 17.3 | 3.90; 4.51 | 13.8; 16.3 | - | 0.114; 0.136 | 13.5; 14.4 | - | [57] |
Serbia | - | - | - | - | - | 37.93 | - | [43] |
Slovakia | 17.86 | 3.71 | 16.1 | - | 0.20 | 20 | 0.14 | [20] |
Turkey | 14.45–21.62 | - | 12–21 | - | 0.14–0.27 | 1–3 | - | [62] |
Croatia | 16.78–17.01 | - | 10.45–11.02 | - | 0.15–0.18 | - | - | [63] |
Romania | 18.02 | 4.02 | 2.29 | - | 0.218 | - | - | [58] |
Rapeseed | ||||||||
Romania | 17.8–20.4 | 3.95–4.17 | 24.3–46.6 | 0.061–0.114 | 0.209–0.252 | 22.4–24.1 | 2.29–2.87 | This study |
Romania | 5.1–5.8 | 3.6–3.9 | - | - | 0.150–0.285 | - | - | [53] |
Romania | 18.51 | 4.23 | 15.26 | 0.168 | - | - | [58] | |
Romania | 17.31 | 4.11 | 17.33 | - | 0.15 | - | - | [15] |
Bulgaria | 19.7 | 3.33 | - | - | 0.181 | - | - | [55] |
Poland | 17.86 | 3.88 | 18.6 | - | 0.23 | 25 | 0.32 | [20] |
Serbia | 18.4; 19.4 | 4.01; 4.10 | 16.3; 21.3 | - | 0.191; 0.224 | 11.5; 11.9 | - | [57] |
Slovakia | 17.45 | 3.61 | 13.6 | - | 0.16 | 21 | 0.14 | [20] |
Sunflower | ||||||||
Romania | 17.6–19.3 | 3.91–4.91 | 35.6–50.1 | 0.184–0.501 | 0.469–0.699 | 21.10–23.90 | 1.21–2.56 | This study |
Romania | 18.82 | 4.12 | 11.82 | - | 0.367 | - | - | [58] |
Romania | 4.7–6.6 | 3.3–3.8 | - | - | 0.340–0.475 | - | - | [53] |
Romania | 18.7 | 3.656 | 22.36 | 0.112 | 0.301 | - | - | [64] |
Romania | - | - | - | - | - | 48.6–132.5 | - | [46] |
Romania | 17.80–19.70 | - | - | 0.35–0.40 | - | 20.00–45.00 | 11.53–15.33 | [47] |
Romania | 16.23–20.39 | 3.65–4.34 | 15.94–47.32 | - | 0.315–0.441 | - | - | [2] |
Romania | 18.4 | 3.94 | 31.6 | - | 0.362 | 21.1 | 22.8 | [8] |
Romania | 16.95 | 4.04 | 18.32 | - | 0.31 | - | - | [15] |
Romania | 17 | 3.67 | - | - | 0.188 | - | - | [54] |
Portugal | 19.2 | 3.84 | 25.50 | 0.15 | 0.235 | 36.69 | 1.93 | [36] |
R Moldova | 16.05–17.52 | 3.68–4.05 | - | 0.31–0.49 | - | - | - | [48] |
Serbia | 17.4–19.8 | - | 18.5–39.4 | 0.12–0.30 | 0.189–0.359 | 25.45–61.09 | - | [61] |
Serbia | 17.0 | 3.38 | 28.9 | - | 0.366 | 27.5 | - | [57] |
Serbia | 14.6–18.6 | - | 20.40–36.4 | 0.05–0.30 | 0.22–0.54 | - | - | [65] |
Morocco | 16.9–18.5 | 3.52–3.8 | 15.3–36.7 | 0.12–0.20 | 0.43–0.52 | - | - | [18] |
Mint | ||||||||
Romania | 18.3–18.7 | 3.99–4.77 | 38.2–45.7 | 0.199–0.213 | 0.503–0.542 | 50.3–58.7 | 2.12–3.62 | This study |
Romania | 17.91 | 4.19 | 26.71 | - | 0.466 | - | - | [58] |
Romania | 17.7 | 4.20 | 26.9 | - | 0.474 | 23.7 | 25.7 | [8] |
Romania | 16.24 | 4.52 | 33.17 | - | 0.60 | - | - | [15] |
Tunisia | 19.80 | - | - | 0.13 | 0.43 | 119.42 | - | [12] |
Morocco | 15.6–18.3 | 3.53–4.07 | 26.6–32 | 0.18–0.23 | 0.350–0.505 | - | - | [18] |
Raspberry | ||||||||
Romania | 17.8–18.7 | 4.27–4.30 | 25.8–42.0 | 0.174–0.176 | 0.294–0.378 | 28.2–33.5 | 2.38–2.87 | This study |
Romania | 17.32–20.12 | 4.01–4.31 | 20.1–42.1 | - | 0.367–0.528 | 14.48–25.72 | 25.36–41.35 | [50] |
Romania | 18.3 | 4.16 | 27.3 | - | 0.446 | 19.9 | 35.5 | [8] |
Romania | 17.27 | 4.27 | 24.06 | - | 0.519 | - | - | [15] |
Romania | 18.35 | 4.16 | 27.31 | - | 0.439 | - | - | [58] |
Poland | - | - | - | - | - | 109.1 | - | [19] |
Chestnut | ||||||||
Romania | 15.9–16.0 | 4.63–4.67 | 49.6–49.9 | 0.459–0.502 | 0.920–0.935 | 72.5–74.1 | 4.21–5.27 | This study |
Spain | 15.83 | 5.31 | 26.25 | - | 1.16 | 35.41 | - | [16] |
Romania | 18.2 | 5.10 | 11.2 | 0.63 | 1.21 | - | - | [66] |
Georgia | 18.2–20.9 | 4.5–4.97 | 20.8–44.6 | 0.89–2.71 | 1.036–1.667 | 80.0–461.5 | - | [67] |
Spain | - | 3.93–4.65 | - | - | 0.737–1.235 | 88.43–166.45 | 6.60–11.78 | [5] |
Spain | 17.6–18.2 | 4.5–4.7 | - | - | 1.0–1.1 | 121.5–138.2 | 8.4–9.6 | [68] |
Portugal | 15.23–16.87 | 4.35–4.42 | 19.67 | - | 0.98–1.14 | 67.88–73.39 | - | [51] |
Turkey | 17.4–19.5 | 4.80–5.34 | - | 0.74–0.80 | 1.30–1.52 | 76.20–94.05 | 4.20–6.50 | [69] |
4.3. pH and Free Acidity
4.4. Ash and Electrical Conductivity
4.5. Total Phenols Content and Total Flavonoids Content
4.6. Mineral Elements’ Content
Country | K (mg kg−1) | Ca (mg kg−1) | Mg (mg kg−1) | Na (mg kg−1) | P (mg kg−1) | Literature Source |
---|---|---|---|---|---|---|
Linden | ||||||
Poland | 925.2 | 63.1 | 28.1 | 80 | - | [75] |
Slovenia | 1510–2290 | 48.1–62.5 | - | 2.9–4.3 | - | [80] |
Bulgaria | 290 | 46.4 | 11.5 | 13.6 | - | [85] |
Hungary | 1027–1883 | 15.2–67.4 | 19.8–30.2 | 5.1–7.4 | 23.0–42.4 | [86] |
Croatia | 1574.8 | 387.8 | 25.5 | 31.9 | - | [87] |
Poland | 1071.6–2311.6 | 47.8–102.5 | 18.9–41.2 | - | - | [76] |
Romania | 955.3 | 137.9 | 50.6 | 123.8 | - | [88] |
Bulgaria | 792 | 77 | 21 | 7.5 | 49 | [55] |
Romania | 494–735 | 35.5–76.5 | 15.7–20.5 | 22.1–51.1 | - | [89] |
Hungary | 1278 | 67.9 | 16.5 | 9.3 | 41.5 | [81] |
Poland | 224–528 | 25.5–48.0 | 7.3–27 | 9.2–47.6 | 35.8–23.8 | [82] |
Acacia | ||||||
Italy | 506 | 15 | 5 | 4.1 | - | [90] |
Hungary | 10–255 | 17.6–59.6 | 1.90–15.9 | 1.60–11.5 | 27.7–92.3 | [86] |
Poland | 127–196 | 28.6–69.2 | 6.5–14 | 3.8–42.8 | 71.4–28.6 | [82] |
Poland | 587.2 | 52.6 | 24 | 53.8 | - | [75] |
Romania | 146.7–244.6 | 1.02–6.9 | 3.25–6.7 | 5.06–24.3 | - | [74] |
Bulgaria | 250 | 46.9 | 13.1 | 62.1 | - | [85] |
Croatia | 258.7–360.8 | 74.4–184.4 | 16.8–30.7 | 51.6–168.9 | - | [63] |
Poland | 221.6–431.1 | 41.7–68.6 | 16. 7–28.6 | - | - | [76] |
Romania | 553.9 | 52.9 | 51.2 | 171.2 | - | [88] |
Serbia | 188–340 | 3.8–8.4 | 3.8–6.8 | 21–124.3 | 33–120 | [91] |
Romania | 180.2–252.4 | 50.1–55.2 | 11.1–18.1 | 21.3–24.3 | - | [92] |
Romania | 356–521 | 5.2–10.2 | 7.1–18.3 | 1.9–32.7 | - | [89] |
Hungary | 226.6 | 12.4 | 5.2 | 6.0 | 24.9 | [81] |
Bulgaria | 126 | 32 | 6 | 8.1 | 24 | [55] |
Rapeseed | ||||||
Hungary | 103–288 | 23.7–60.4 | 13.5–27.6 | 6.3–16.9 | 50.9–71.1 | [86] |
Poland | 84.8–494 | 22.1–62.4 | 9.5–32.1 | 7.0–26 | 35.7–161 | [82] |
Poland | 265.2 | 48.9 | 19.2 | 31.3 | - | [75] |
Poland | 221.6–431.1 | 41.7–68.6 | 16.7–28.6 | - | - | [76] |
Romania | 112.6–194.2 | 87.1–88.6 | 23.5–23.9 | 36.1–47.9 | - | [92] |
Bulgaria | 105 | 46 | 11 | 8.5 | 28 | [55] |
Sunflower | ||||||
Portugal | 276.9 | 24.9 | 68.2 | 87.9 | - | [36] |
Hungary | 245–552 | 58.2–153 | 10.2–36.6 | 4.66–24.5 | 59.8–144 | [86] |
Hungary | 759 | 126.4 | 33.3 | 13.2 | 76.3 | [81] |
Bulgaria | 210–260 | 42.2–56.8 | 6.9–11 | 9.5–10.2 | - | [85] |
Hungary | 446.3–790.2 | - | 24.2–38.7 | - | - | [93] |
Romania | 849.4 | 163.9 | 63.8 | 154.1 | - | [88] |
Romania | 552–574 | 36.6–60.4 | 20.4–23.1 | 24.9–35.2 | - | [89] |
Romania | 234.6–532.1 | 152.4–200.5 | 32.6–39.3 | 47.1–50.7 | - | [92] |
Mint | ||||||
Tunisia | 976.8 | 221.1 | 78.1 | 343.6 | 59.3 | [12] |
Spain | 200–280 | 123–148 | 27.4–36.8 | - | - | [18] |
Romania | - | 1603.5 | 427.9 | - | - | [94] |
Raspberry | ||||||
Poland | 1104.7 | 68.8 | 47.6 | 48.1 | - | [75] |
Estonia | 125.8–292.7 | 29.2–53.9 | 12.1–20.9 | 4.8–9.7 | - | [83] |
Chestnut | ||||||
Italy | 3875 | 119 | 49 | 11.9 | - | [90] |
Italy | 706–714 | 54–55.9 | 48.9–49.9 | 7.5–8.2 | 143 | [82] |
Italy | 3250–5280 | 60–130 | - | 60–90 | - | [95] |
Slovenia | 3670–5520 | 117–183 | - | 7.1–9.0 | - | [80] |
Spain | 1615–3770 | 68–476 | 30–402 | 11–84 | 48–315 | [68] |
Croatia | 2824.4 | 486.7 | 59.1 | 35.8 | - | [87] |
Hungary | 2136–2281 | 51.6–59.7 | 25.4–31.7 | 10.8–18.3 | 66.4–84.7 | [86] |
Hungary | 1815.8 | 153 | 45.4 | 20.9 | 79 | [81] |
Bulgaria | 1628 | 66 | 16 | 9.55 | 32 | [55] |
Turkey | 2524–5125 | 320.24–463.10 | 32.05–67.10 | 28.3–52.0 | 56.20–71.02 | [69] |
4.7. FTIR Spectra
4.8. Correlation and Multivariate Statistical Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tanda, A.S. Why insect pollinators important in crop improvement? Indian J. Entomol. 2021, 84, 223–236. [Google Scholar] [CrossRef]
- Pauliuc, D.; Oroian, M. Organic Acids and Physico-Chemical Parameters of Romanian Sunflower Honey. Food Environ. Saf. J. 2020, 19, 148–155. [Google Scholar]
- Oddo, L.P.; Bogdanov, S. Determination of honey botanical origin: Problems and issues. Apidologie 2004, 35, 2001–2002. [Google Scholar]
- da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Escuredo, O.; Rodríguez-Flores, M.S.; Rojo-Martínez, S.; Seijo, M.C. Contribution to the Chromatic Characterization of Unifloral Honeys from Galicia (NW Spain). Foods 2019, 8, 233. [Google Scholar] [CrossRef] [Green Version]
- Lanjwani, M.F.; Channa, F.A. Minerals content in different types of local and branded honey in Sindh, Pakistan. Heliyon 2019, 5, e02042. [Google Scholar] [CrossRef] [Green Version]
- Mădaş, N.M.; Mărghitaş, L.A.; Dezmirean, D.S.; Bonta, V.; Bobiş, O.; Fauconnier, M.-L.; Francis, F.; Haubruge, E.; Nguyen, K.B. Volatile profile and physico-chemical analysis of acacia honey for geographical origin and nutritional value determination. Foods 2019, 8, 445. [Google Scholar] [CrossRef] [Green Version]
- Pauliuc, D.; Dranca, F.; Oroian, M. Antioxidant Activity, Total Phenolic Content, Individual Phenolics and Physicochemical Parameters Suitability for Romanian Honey Authentication. Foods 2020, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Soares, S.; Amaral, J.S.; Oliveira, M.B.P.; Mafra, I. A comprehensive review on the main honey authentication issues: Production and origin. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1072–1100. [Google Scholar] [CrossRef] [Green Version]
- Sereia, M.J.; Março, P.H.; Perdoncini, M.R.G.; Parpinelli, R.S.; de Lima, E.G.; Anjo, F.A. Chapter 9: Techniques for the Evaluationof Physicochemical Quality and Bioactive Compounds in Honey. In Honey Analysis; INTECH: London, UK, 2017; pp. 194–214. [Google Scholar]
- European Commission. Council Directive 2001/110/CE concerning honey. Off. J. Eur. Comm. 2002, L10, 47–52. [Google Scholar]
- Boussaid, A.; Chouaibi, M.; Rezig, L.; Hellal, R.; Donsì, F.; Ferrari, G.; Hamdi, S. Physicochemical and bioactive properties of six honey samples from various floral origins from Tunisia. Arab. J. Chem. 2018, 11, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Halouzka, R.; Tarkowski, P.; Zeljković, S.C. Characterisation of phenolics and other quality parameters of different types of honey. Czech J. Food Sci. 2016, 34, 244–253. [Google Scholar] [CrossRef] [Green Version]
- Milek, M.; Bocian, A.; Kleczyńska, E.; Sowa, P.; Dżugan, M. The Comparison of Physicochemical Parameters, Antioxidant Activity and Proteins for the Raw Local Polish Honeys and Imported Honey Blends. Molecules 2021, 26, 2423. [Google Scholar] [CrossRef]
- Pauliuc, D.; Dranca, F.; Ropciuc, S.; Oroian, M. Advanced Characterization of Monofloral Honeys from Romania. Agriculture 2022, 12, 526. [Google Scholar] [CrossRef]
- Sánchez-Martín, V.; Morales, P.; González-Porto, A.V.; Iriondo-DeHond, A.; López-Parra, M.B.; Del Castillo, M.D.; Hospital, X.F.; Fernández, M.; Hierro, E.; Haza, A.I. Enhancement of the Antioxidant Capacity of Thyme and Chestnut Honey by Addition of Bee Products. Foods 2022, 11, 3118. [Google Scholar] [CrossRef] [PubMed]
- Ratiu, I.A.; Al-Suod, H.; Bukowska, M.; Ligor, M.; Buszewski, B. Correlation study of honey regarding their physicochemical properties and sugars and cyclitols content. Molecules 2020, 25, 34. [Google Scholar] [CrossRef] [Green Version]
- Terrab, A.; Díez, M.J.; Heredia, F.J. Palynological, physico-chemical and colour characterization of Moroccan honeys: III. Other unifloral honey types. Int. J. Food Sci. Technol. 2003, 38, 395–402. [Google Scholar] [CrossRef]
- Gośliński, M.; Nowak, D.; Szwengiel, A. Multidimensional Comparative Analysis of Bioactive Phenolic Compounds of Honeys of Various Origin. Antioxidants 2021, 10, 530. [Google Scholar] [CrossRef]
- Tomczyk, M.; Tarapatskyy, M.; Dżugan, M. The influence of geographical origin on honey composition studied by Polish and Slovak honeys. Czech J. Food Sci. 2019, 37, 232–238. [Google Scholar] [CrossRef] [Green Version]
- Ahmida, N.H.; Elagori, M.; Agha, A.; Elwerfali, S.; Ahmida, M.H. Physicochemical, heavy metals and phenolic compounds analysis of Libyan honey samples collected from Benghazi during 2009–2010. Food Nutr. Sci. 2013, 4, 33–40. [Google Scholar] [CrossRef] [Green Version]
- El Sohaimy, S.A.; Masry, S.H.D.; Shehata, M.G. Physicochemical characteristics of honey from different origins. Ann. Agric. Sci. 2015, 60, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Majewska, E.; Druzynska, B.; Wołosiak, R. Determination of the botanical origin of honeybee honeys based on the analysis oftheir selected physicochemical parameters coupled with chemometric assays. Food Sci. Biotechnol. 2019, 28, 1307–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnasree, V.; Ukkuru, P.M. Quality Analysis of Bee Honeys. Int. J. Curr. Microbiol. Appl. Sci 2017, 6, 626–636. [Google Scholar] [CrossRef]
- Sant’Ana, L.D.; Ferreira, A.B.; Lorenzon, M.C.A.; Berbara, R.L.L.; Castro, R.N. Correlation of total phenolic and flavonoid contents of Brazilian honeys with color and antioxidant capacity. Int. J. Food Prop. 2014, 17, 65–76. [Google Scholar] [CrossRef]
- Pontis, J.A.; Costa, L.A.M.A.D.; Silva, S.J.R.D.; Flach, A. Color, phenolic and flavonoid content, and antioxidant activity of honey from Roraima, Brazil. Food Sci. Technol. 2014, 34, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Al-Farsi, M.; Al-Amri, A.; Al-Hadhrami, A.; Al-Belushi, S. Color, flavonoids, phenolics and antioxidants of Omani honey. Heliyon 2018, 4, e00874. [Google Scholar] [CrossRef] [Green Version]
- Cimpoiu, C.; Hosu, A.; Miclaus, V.; Ioncas, A. Determination of the floral origin of some Romanian honeys on the basis of physical and biochemical properties. Spectrochim. Acta Part A 2013, 100, 149–154. [Google Scholar] [CrossRef]
- Anguebes, F.; Pat, L.; Ali, B.; Guerrero, A.; Cordova, A.V.; Abatal, M.; Garduza, J.P. Application of Multivariable Analysisand FTIR-ATR Spectroscopy to the Prediction of Properties in Campeche Honey. J. Anal. Methods Chem. 2016, 2016, 5427526. [Google Scholar] [CrossRef] [Green Version]
- Svečnjak, L.; Bubalo, D.; Baranović, G.; Novosel, H. Optimization of FTIR-ATR spectroscopy for botanical authentication of unifloral honey types and melissopalynological data prediction. Eur. Food Res. Technol. 2015, 240, 1101–1115. [Google Scholar] [CrossRef]
- Sabri, N.F.B.M.; See, H.H. Classification of honey using fourier transform infrared spectroscopy and chemometrics. EProceedings Chem. 2016, 1, 22–26. [Google Scholar]
- Sahlan, M.; Karwita, S.; Gozan, M.; Hermansyah, H.; Yohda, M.; Yoo, Y.J.; Pratami, D.K. Identification and classification of honey’s authenticity by attenuated total reflectance Fourier-transform infrared spectroscopy and chemometric method. Vet. World 2019, 12, 1304–1310. [Google Scholar] [CrossRef] [Green Version]
- Gok, S.; Severcan, M.; Goormaghtigh, E.; Kandemir, I.; Severcan, F. Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food Chem. 2015, 170, 234–240. [Google Scholar] [CrossRef]
- Anjos, O.; Campos, M.G.; Ruiz, P.C.; Antunes, P. Application of FTIR-ATR spectroscopy to the quantification of sugar in honey. Food Chem. 2015, 169, 218–223. [Google Scholar] [CrossRef]
- Kasprzyk, I.; Depciuch, J.; Grabek-Lejko, D.; Parlinska-Wojtan, M. FTIR-ATR spectroscopy of pollen and honey as a tool for unifloral honey authentication. The case study of rape honey. Food Control 2018, 84, 33–40. [Google Scholar] [CrossRef]
- Aazza, S.; Lyoussi, B.; Antunes, D.; Miguel, M.G. Physicochemical Characterization and Antioxidant Activity of CommercialPortuguese Honeys. J. Food Sci. 2013, 78, 1159–1165. [Google Scholar] [CrossRef] [PubMed]
- Romanian Standards Association. SR (Romanian Standard) 784-3:2009: Honey Bee. Part 3: Analytical Methods. Available online: https://e-standard.eu/en/standard/174480 (accessed on 16 April 2018).
- Rebiai, A.; Lanez, T. Comparative study of honey collected from different flora of Algeria. J. Fundam. Appl. Sci. 2014, 6, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Bogdanov, S. 2009: Harmonized Methods of the International Honey Commission. Available online: https://www.ihc-platform.net/ihcmethods2009.pdf (accessed on 30 May 2018).
- Bobis, O.; Marghitas, L.; Rindt, I.K.; Niculae, M.; Dezmirean, D. Honeydew honey: Correlations between chemical composition, antioxidant capacity and antibacterial effect. Sci. Pap. Anim. Sci. Biotechnol. 2008, 41, 271–277. [Google Scholar]
- Johnbull, O.A.; Frances, A.; Isaac, A.O.; Cynthia, A.C. Analysis of mineral content and some heavy metals of honey samples produced and marketed in Imo state, Nigeria: A prerequisite to fomulating a pharmaceutical dosage form. World J. Pharm. Pharm. Sci. 2020, 9, 130–138. [Google Scholar]
- Bodor, Z.; Benedek, C.; Urbin, Á.; Szabó, D.; Sipos, L. Colour of honey: Can we trust the Pfund scale?—An alternative graphical tool covering the whole visible spectra. LWT—Food Sci. Technol. 2021, 149, 111859. [Google Scholar] [CrossRef]
- Živković, J.; Sunarić, S.; Stanković, N.; Mihajilov-Krstev, T.; Spasić, A. Total phenolic and flavonoid contents, antioxidant and antibacterial activities of selected honeys against human pathogenic bacteria. Acta Pol. Pharm.—Drug Res. 2019, 76, 671–681. [Google Scholar] [CrossRef]
- Becerril-Sánchez, A.L.; Quintero-Salazar, B.; Dublán-García, O.; Escalona-Buendía, H.B. Phenolic Compounds in Honey and Their Relationship with Antioxidant Activity, Botanical Origin, and Color. Antioxidants 2021, 10, 1700. [Google Scholar] [CrossRef] [PubMed]
- Flanjak, I.; Kenjerić, D.; Bubalo, D.; Primorac, L. Characterisation of Selected Croatian Honey Types Based on the Combination of Antioxidant Capacity, Quality Parameters, and Chemometrics. Eur. Food Res. Technol. 2016, 242, 467–475. [Google Scholar] [CrossRef]
- Chiş, A.M.; Purcărea, C. Storage effect on antioxidant capacitiesof some monofloral honey. Stud. Univ. “Vasile Goldiş” Life Sci. Ser. 2017, 27, 91–97. [Google Scholar]
- Mărghitaș, L.A.; Dezmirean, D.; Moise, A.; Bobiș, O.; Laslo, L.; Bogdanov, S. Physico-chemical and bioactive properties of different floral origin honeys from Romania. Food Chem. 2009, 112, 863–867. [Google Scholar]
- Chirsanova, A.; Capcanari, T.; Boistean, A. Quality Assessment of Honey in Three Different Geographical Areas from Republic of Moldova. Food Nutr. Sci. 2021, 12, 962–977. [Google Scholar] [CrossRef]
- Smetanska, I.; Alharthi, S.S.; Selim, K.A. Physicochemical, antioxidant capacity and color analysis of six honeys from different origin. J. King Saud Univ.—Sci. 2021, 33, 101447. [Google Scholar] [CrossRef]
- Pauliuc, D.; Oroian, M. Organic Acids and Physico-Chemical Parameters of Romanian Raspberry Honey. Food Environ. Saf. J. 2019, 18, 298–307. [Google Scholar]
- Karabagias, I.K.; Maia, M.; Karabagias, V.K.; Gatzias, I.; Badeka, A.V. Characterization of eucalyptus, chestnut and heather honeys from Portugal using multi-parameter analysis and chemo- calculus. Foods 2018, 7, 194. [Google Scholar] [CrossRef] [Green Version]
- Oddo, L.P.; Piro, R.; Bruneau, É.; Guyot-Declerck, C.; Ivanov, T.; Piskulová, J.; Flamini, C.; Lheritier, J.; Morlot, M.; Russmann, H.; et al. Main European unifloral honeys: Descriptive sheets. Apidologie 2004, 35 (Suppl. 1), S38–S81. [Google Scholar] [CrossRef]
- Popescu, R.; Geana, E.I.; Dinca, O.R.; Sandru, C.; Costinel, D.; Ionete, R.E. Characterization of the Quality and Floral Origin of Romanian Honey. Anal. Lett. 2015, 49, 411–422. [Google Scholar] [CrossRef]
- Stihi, C.; Chelarescu, E.D.; Duliu, O.G.; Toma, L.G. Characterization of Romanian honey using physico-chemical parameters and the elemental content determined by analytical techniques. Rom. Rep. Phys. 2016, 68, 362–369. [Google Scholar]
- Atanassova, J.; Yurukova, L.; Lazarova, M. Pollen and inorganic characteristics of Bulgarian unifloral honeys. Czech J. Food Sci. 2012, 30, 520–526. [Google Scholar] [CrossRef] [Green Version]
- Di Marco, G.; Gismondi, A.; Panzanella, L.; Canuti, L.; Impei, S.; Leonardi, D.; Canini, A. Botanical influence on phenolic profile and antioxidant level of Italian honeys. J. Food Sci. Technol. 2018, 55, 4042–4050. [Google Scholar] [CrossRef] [PubMed]
- Sakač, M.; Jovanov, P.; Marić, A.; Četojević-Simin, D.; Novaković, A.; Plavšić, D.; Škrobot, D.; Kovač, R. Antioxidative, Antibacterial and Antiproliferative Properties of Honey Types from the Western Balkans. Antioxidants 2022, 11, 1120. [Google Scholar] [CrossRef]
- Pauliuc, D.; Ciursa, P.; Ropciuc, S.; Dranca, F.; Oroian, M. Physicochemical parameters prediction and authentication of different monofloral honeys based on FTIR spectra. J. Food Compos. Anal. 2021, 102, 104021. [Google Scholar] [CrossRef]
- Alzahrani, H.A.; Alsabehi, R.; Boukraâ, L.; Abdellah, F.; Bellik, Y.; Bakhotmah, B.A. Antibacterial and Antioxidant Potency of Floral Honeys from Different Botanical and Geographical Origins. Molecules 2012, 17, 10540–10549. [Google Scholar] [CrossRef] [Green Version]
- Attanzio, A.; Tesoriere, L.; Allegra, M.; Livrea, M.A. Monofloral honeys by Sicilian black honeybee (Apis mellifera ssp. sicula) havehigh reducing power and antioxidant capacity. Heliyon 2016, 2, e00193. [Google Scholar] [CrossRef] [Green Version]
- Milosavljević, S.; Jadranin, M.; Mladenović, M.; Tešević, V.; Menković, N.; Mutavdžić, D.; Krstić, G. Physicochemical parameters as indicators of the authenticity of monofloral honey from the territory of the Republic of Serbia. Maced. J. Chem. Chem. Eng. 2021, 40, 57–67. [Google Scholar] [CrossRef]
- Akgün, N.; Çelik, Ö.F.; Kelebekli, L. Physicochemical properties, total phenolic content, and antioxidant activity of chestnut, rhododendron, acacia and multifloral honey. J. Food Meas. Charact. 2021, 15, 3501–3508. [Google Scholar] [CrossRef]
- Uršulin-Trstenjak, N.; Puntarić, D.; Levanić, D.; Gvozdić, V.; Pavlek, Ž.; Puntarić, A.; Puntarić, E.; Puntarić, I.; Vidosavljević, D.; Lasić, D.; et al. Pollen, Physicochemical, and Mineral Analysis of Croatian Acacia Honey Samples: Applicability for Identification of Botanical and Geographical Origin. J. Food Qual. 2017, 2017, 8538693. [Google Scholar] [CrossRef]
- Chiş, A.M.; Purcărea, C. The phisico-chemical caracterisation of sun flower honey from bihor county. An. Univ. Din Oradea Fasc. Ecotoxicol. Zooteh. Şi Tehnol. De Ind. Aliment. 2015, XIV B, 107–114. [Google Scholar]
- Živkov Baloš, M.M.; Jakšić, S.M.; Popov, N.S.; Polaček, V.A. Characterization of Serbian sunflower honeys by their physicochemical characteristics. Food Feed. Res. 2021, 48, 1–8. [Google Scholar] [CrossRef]
- Chiş, A.; Purcǎrea, C. Quality of chestnut honey modified by thermal treatment. Studia Univ. Vasile Goldis Arad, Seria Stiintele Vieti. 2011, 21, 573–579. [Google Scholar]
- Kharadze, M.; Abashidze, N.; Djaparidze, I.; Vanidz, M.; Kalandia, A. Antioxidant Activity of Chestnut Honey Produced in Western Georgia. Bull. Georgian Natl. Acad. Sci. 2018, 12, 145–151. [Google Scholar]
- Rodríguez-Flores, S.; Escuredo, O.; Seijo, M.C. Characterization and antioxidant capacity of sweet chestnut honey produced in North-West Spain. J. Apic. Sci. 2016, 60, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Kolayli, S.; Can, Z.; Yildiz, O.; Sahin, H.; Karaoglu, S.A. A comparative study of the antihyaluronidase, antiurease, antioxidant, antimicrobial and physicochemical properties of different unifloral degrees of chestnut (Castanea sativa Mill.) honeys. J. Enzyme Inhib. Med. Chem. 2016, 31 (Suppl. 3), 96–104. [Google Scholar] [CrossRef] [Green Version]
- Pita-Calvo, C.; Vazquez, M. Differences between honeydew and blossom honeys: A review. Trends Food Sci. Technol. 2017, 59, 79–87. [Google Scholar] [CrossRef]
- Ciulu, M.; Spano, N.; Pilo, M.I.; Sanna, G. Recent Advances in the Analysis of Phenolic Compounds in Unifloral Honeys. Molecules 2016, 21, 451. [Google Scholar] [CrossRef]
- Gomes, T.; Feás, X.; Iglesias, A.; Estevinho, L.M. Study of organic honey from the northeast of Portugal. Molecules 2011, 16, 5374–5386. [Google Scholar] [CrossRef]
- Bertoncelj, J.; Doberšek, U.; Jamnik, M.; Golob, T. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem. 2007, 105, 822–828. [Google Scholar] [CrossRef]
- Mărghitaș, L.A.; Dezmirean, D.S.; Pocol, C.B.; Ilea, M.; Bobiș, O.; Gergen, I. The development of a biochemical profile of acacia honey by identifying biochemical determinants of its quality. Not. Bot. Hort. Agrobot. Cluj 2010, 38, 84–90. [Google Scholar]
- Kędzierska-Matysek, M.; Matwijczuk, A.; Florek, M.; Barłowska, J.; Wolanciuk, A.; Matwijczuk, A.; Chruściel, E.; Walkowiak, R.; Karcz, D.; Gładyszewska, B. “Application of FTIR spectroscopy for analysis of the quality of honey”. BIO Web Conf. 2018, 10, 02008. [Google Scholar] [CrossRef] [Green Version]
- Dżugan, M.; Zaguła, G.; Wesołowska, M.; Sowa, P.; Puchalski, C.Z. Levels of toxic and essential metals in varietal honeys from Podkarpacie. J. Elem. 2017, 22, 1039–1048. [Google Scholar] [CrossRef]
- Kamaruzzaman, M.A.; Chin, K.-Y.; Ramli, E.S.M. A Review of Potential Beneficial Effects of Honey on Bone Health. Evid. Based Complement. Altern. Med. 2019, 2019, 8543618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alqari, A.S.; Owayss, A.A.; Mahmoud, A.A.; Hannan, M.A. Mineral content and physical properties of local and imported honeys in Saudi Arabia. J. Saudi Chem. Soc. 2014, 18, 618–625. [Google Scholar] [CrossRef] [Green Version]
- Solayman, M.; Islam, A.; Paul, S.; Ali, Y.; Khalil, I.; Alam, N.; Gan, S.H. Physicochemical properties, minerals, trace elements, and heavy metals in honey of different origins: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 219–233. [Google Scholar] [CrossRef]
- Kropf, U.; Stibilj, V.; Jaćimović, J.R.; Bertoncelj, J.; Golob, T.; Korošec, M. Elemental Composition of Different Slovenian Honeys Using k0-Instrumental Neutron Activation Analysis. J. AOAC Int. 2017, 100, 871–880. [Google Scholar] [CrossRef]
- Bodó, A.; Radványi, L.; Kőszegi, T.; Csepregi, R.; Nagy, D.U.; Farkas, Á.; Kocsis, M. Quality Evaluation of Light- and Dark-Colored Hungarian Honeys, Focusing on Botanical Origin, Antioxidant Capacity and Mineral Content. Molecules 2021, 26, 2825. [Google Scholar] [CrossRef]
- Grembecka, M.; Szefer, P. Evaluation of honeys and bee products quality based on their mineral composition using multivariate techniques. Environ. Monit. Assess. 2013, 185, 4033–4047. [Google Scholar] [CrossRef] [Green Version]
- Kivima, E.; Seiman, A.; Pall, R.; Sarapuu, E.; Martverk, K.; Laos, K. Characterization of Estonian honeys by botanical origin. Proc. Estonian Acad. Sci. 2014, 63, 183. [Google Scholar] [CrossRef]
- Tesileanu, R.; Fedorca, M. Solurile Afectate de Săruri din România: Concepte de Bază și Stare Actuală. 2016. Available online: https://www.researchgate.net/publication/294855962_Solurile_afectate_de_saruri_din_Romania_concepte_de_baza_si_stare_actuala (accessed on 4 February 2019).
- Nikolova, K.; Gentscheva, G.; Ivanova, E. Survey of the mineral content and some physicochemical parameters of Bulgarian bee honeys. Bulgarian Chem. Commun. 2013, 45, 244–249. [Google Scholar]
- Czipa, N.; Kovács, B. Electrical conductivity of hungarian honeys. J. Food Phys. 2014, 27, 13–20. [Google Scholar]
- Bilandžić, N.; Gačić, M.; Đokić, M.; Sedak, M.; Šipušić, Đ.I.; Končurat, A.; Gajger, I.T. Major and trace elements levels in multifloral and unifloral honeys in Croatia. J. Food Compos. Anal. 2014, 33, 132–138. [Google Scholar] [CrossRef]
- Oroian, M.; Amariei, S.; Leahu, A.; Gheorghe, G. Multi-Element Composition of Honey as a Suitable Tool for Its Authenticity Analysis Pol. J. Food Nutr. Sci. 2015, 65, 93–100. [Google Scholar]
- Pătruică, S.; Hărmănescu, M.; Jivan, A.; Cioabă, C.; Simiz, E.; Călamar, C.D. Researches concerning of the mineral content of acacia honey derived on differents country. Sci. Pap. Anim. Sci. Biotechnol. 2009, 42, 178–181. [Google Scholar]
- Bontempo, L.; Camin, F.; Ziller, L.; Perini, M.; Nicolini, G.; Larcher, R. Isotopic and elemental composition of selected types of Italian honey. Meas. J. Int. Meas. Confed. 2017, 98, 283–289. [Google Scholar] [CrossRef]
- Popov-Raljic, J.; Arsic, N.; Zlatkovic, B.; Basarin, B.; Mladenovic, M.; Lalicic, J.; Ivkov, M.; Popov, V. Evaluation of color, mineral substances and sensory uniqueness of meadow and acacia honey from Serbia. Rom. Biotechnol. Lett. 2015, 20, 10784–10799. [Google Scholar]
- Tudoreanu, L.; Codreanu, M.; Crivineanu, V.; Goran, G. The Quality of Romanian Honey Varieties -Mineral Content and Textural Properties. Bull. USAVM Cluj-Napoca Vet. Med. 2012, 69, 452–458. [Google Scholar] [CrossRef]
- Ördög, A.; Tari, I.; Bátori, Z.; Poór, P. Mineral content analysis of unifloral honeys from the Hungarian great plain. J. Elem. 2017, 22, 271–281. [Google Scholar]
- Scripcă, L.A.; Amariei, S. The Influence of Chemical Contaminants on the Physicochemical Properties of Unifloral andMul-tifloral Honey from the North-East Region of Romania. Foods 2021, 10, 1039. [Google Scholar] [CrossRef]
- Di Rosa, A.R.; Leone, F.; Cheli, F.; Chiofalo, V. Novel approach for the characterisation of Sicilian honeys based on the cor-relation of physico-chemical parameters and artificial senses. Ital. J. Anim. Sci. 2019, 18, 389–397. [Google Scholar] [CrossRef]
- David, M.; Hategan, A.R.; Berghian-Grosan, C.; Magdas, D.A. The Development of Honey Recognition Models Based on the Association between ATR-IR Spectroscopy and Advanced Statistical Tools. Int. J. Mol. Sci. 2022, 23, 9977. [Google Scholar] [CrossRef] [PubMed]
- Mendes, E.; Duarte, N. Mid-Infrared Spectroscopy as a Valuable Tool to Tackle Food Analysis: A Literature Review on Coffee, Dairies, Honey, Olive Oil and Wine. Foods 2021, 10, 477. [Google Scholar] [CrossRef] [PubMed]
- Matwijczuk, A.; Budziak-Wieczorek, I.; Czernel, G.; Karcz, D.; Baránska, A.; Jedlínska, A.; Samborska, K. Classification of Honey Powder Composition by FTIR Spectroscopy Coupled with Chemometric Analysis. Molecules 2022, 27, 3800. [Google Scholar] [CrossRef] [PubMed]
- Guler, A.; Bakan, A.; Nisbet, C.; Yavuz, O. Determination of important biochemical properties of honey to discriminate pure and adulterated honey with sucrose (Saccharum offcinarum L.) syrup. Food Chem. 2007, 105, 1119–1125. [Google Scholar] [CrossRef]
- Spirić, D.; Ćirić, J.; Dorđević, V.; Nikolić, D.; Janković, S.; Nikolić, A.; Petrović, Z.; Katanić, N.; Teodorović, V. Toxic and essential element concentrations in diferent honey types. Int. J. Environ. Anal. Chem. 2019, 99, 474–485. [Google Scholar] [CrossRef]
- Almeida, A.M.M.; Oliveira, M.B.S.; Costa, J.G.; Valentim, I.B.; Goulart, M.O.F. Antioxidant Capacity, Physicochemical and Floral Characterization of Honeys from the NorthEast of Brazil. Rev. Virtual Química 2016, 8, 57–77. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Yung, A.C.; Azlan, S.A.B.M.; Sulaiman, S.A.; Rao, P.V.; Hawlader, M.N.I.; Gan, S.H. Identification of phenolic acids and flavonoids in monofloral honey from Bangladesh by high performance liquid chromatography: Determination of antioxidant capacity. BioMed Res. Int. 2014, 2014, 737490. [Google Scholar] [CrossRef] [Green Version]
- Otmani, A.; Amessis-Ouchemoukh, N.; Birinci, C.; Yahiaoui, S.; Kolayli, S.; Rodríguez-Flores, M.S.; Escuredo, O.; Seijo, M.C.; Ouchemoukh, S. Phenolic compounds and antioxidant and antibacterial activities of Algerian honeys. Food Biosci. 2021, 42, 101070. [Google Scholar] [CrossRef]
- Kavanagh, S.; Gunnoo, J.; Marques, P.T.; Stout, J.C.; White, B. Physicochemical Properties and Phenolic Content of Honey from Different Floral Origins and from Rural versus Urban Landscapes. Food Chem. 2019, 272, 66–75. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; Tulipani, S.; Romandini, S.; Bertoli, E.; Battino, M. Contribution of honey in nutrition and human health: A review. Med. J. Nutr. Metab. 2010, 3, 15–23. [Google Scholar] [CrossRef]
Sample | Producer | Location | Geographical Location | Sample | Producer | Location | Geographical Location |
---|---|---|---|---|---|---|---|
L1 | 1 | Barnova Iasi | 47°05′32″ N 27°38′14″ E | L3 | 3 | Popesti Iasi | 47°08′42″ N 27°15′33″ E |
A1 | 1 | Lunca Prutului Iasi | 47°27’0″ N 27°33’0″ E | A3 | 3 | Baltati Iasi | 47°13′42″ N 27°06′32″ E |
RP1 | 1 | Barnova Iasi | 47°05′32″ N 27°38′14″ E | RP3 | 3 | Baltati Iasi | 47°13′42″ N 27°06′32″ E |
SF1 | 1 | Barnova Iasi | 47°05′32″ N 27°38′14″ E | SF3 | 3 | Popesti Iasi | 47°08′42″ N 27°15′33″ E |
M1 | 1 | Danube Delta Tulcea | 45°20′ N 29°30′ E | L4 | 4 | Aroneanu Iasi | 47°12′50″ N 27°36′00″ E |
RB1 | 1 | Bistrita mountains | 47°12′, 25°67′ E | A4 | 4 | Aroneanu Iasi | 47°12′50″ N 27°36′00″ E |
C1 | 1 | Satu Mare county | 47°47′24″ N 22°53′24″ E | L5 | 5 | Tomesti Iasi | 47°07′07″ N 27°42′48″ E |
L2 | 2 | Raducaneni Iasi | 46°57′33″ N 27°58′41″ E | A5 | 5 | Tomesti Iasi | 47°07′07″ N 27°42′48″ E |
RP2 | 2 | Raducaneni Iasi | 46°57′33″ N 27°58′41″ E | L6 | 6 | Roscani Iasi | 47°26′18.12″ N 27°25′42.78″ E |
M2 | 2 | Danube Delta Tulcea | 45°20′ N 29°30′ E | A6 | 6 | Roscani Iasi | 47°26′18.12″ N 27°25′42.78″ E |
RB2 | 2 | Dobrovat Iasi | 46°57′55″ N 27°43′18″ E |
Parameter | Descriptive Statistics | Type | ANOVA | ||||||
---|---|---|---|---|---|---|---|---|---|
Linden 6 Samples | Acacia 5 Samples | Rapeseed 3 Samples | Sunflower 2 Samples | Mint 2 Samples | Raspberry 2 Samples | Chestnut 1 Sample | |||
mm Pfund | Min–Max | 23.1–41.8 | 0.1–2.0 | 45.2–73.7 | 15.5–53.9 | 18.8–65.2 | 28.5–43.7 | 98.3–100.2 | *** |
Mean ± SD | 28.6 ± 9.94 | 0.6 ± 0.81 | 59.3 ± 14.30 | 34.7 ± 27.14 | 42.0 ± 32.83 | 36.1 ± 10.75 | 99.2 ± 0.59 | ||
CV | 34.81 | 132 | 24.12 | 78.27 | 78.17 | 29.77 | 0.59 | ||
RI | Min–Max | 1.486–1.494 | 1.488–1.493 | 1.486–1.492 | 1.488–1.493 | 1.490–1.491 | 1.490–1.492 | 1.497–1.498 | ns |
Mean ± SD | 1.489 ± 0.00 | 1.491 ± 0.00 | 1.488 ± 0.00 | 1.490 ± 0.00 | 1.490 ± 0.00 | 1.491 ± 0.00 | 1.497 ± 0.00 | ||
CV | 0.20 | 0.15 | 0.24 | 0.21 | 0.05 | 0.09 | 0.01 | ||
M % | Min–Max | 17.0–20.4 | 17.5–19.5 | 17.8–20.4 | 17.6–19.3 | 18.3–18.7 | 17.8–18.7 | 15.9–16.0 | ns |
Mean ± SD | 18.9 ± 1.18 | 18.3 ± 0.92 | 19.5 ± 1.44 | 18.4 ± 1.24 | 18.5 ± 0.29 | 18.3 ± 0.64 | 15.9 ± 0.03 | ||
CV | 6.24 | 5.04 | 7.36 | 6.75 | 1.55 | 3.49 | 0.21 | ||
SS % | Min–Max | 79.6–83.0 | 80.5–82.5 | 79.6–82.2 | 80.7–82.4 | 81.3–81.7 | 81.3–82.2 | 84.0–84.1 | ns |
Mean ± SD | 81.1 ± 1.18 | 81.7 ± 0.92 | 80.5 ± 1.44 | 81.6 ± 1.24 | 81.5 ± 0.29 | 81.8 ± 0.64 | 84.1 ± 0.03 | ||
CV | 1.46 | 1.13 | 1.78 | 1.53 | 0.35 | 0.78 | 0.04 | ||
SG g/cm3 | Min–Max | 1.415–1.437 | 1.421–1.434 | 1.415–1.432 | 1.422–1.434 | 1.426–1.429 | 1.426–1.432 | 1.444–1.445 | ns |
Mean ± SD | 1.420 ± 0.01 | 1.428 ± 0.01 | 1.421 ± 0.01 | 1.428 ± 0.01 | 1.28 ± 0.00 | 1.429 ± 0.00 | 1.445 ± 0.00 | ||
CV | 0.55 | 0.44 | 0.68 | 0.59 | 0.14 | 0.30 | 0.02 |
Parameter | Descriptive Statistics | Type | ANOVA | ||||||
---|---|---|---|---|---|---|---|---|---|
Linden 6 Samples | Acacia 5 Samples | Rapeseed 3 Samples | Sunflower 2 Samples | Mint 2 Samples | Raspberry 2 Samples | Chestnut 1 Sample | |||
pH | Min–Max | 3.81–5.08 | 3.94–4.64 | 3.95–4.17 | 3.91–4.91 | 3.99–4.77 | 4.27–4.30 | 4.63–4.67 | ns |
Mean ± SD | 4.59 ± 0.44 | 4.17 ± 0.27 | 4.06 ± 0.11 | 4.41 ± 0.71 | 4.38 ± 0.55 | 4.29 ± 0.02 | 4.65 ± 0.01 | ||
CV | 9.50 | 6.49 | 2.65 | 16.09 | 12.54 | 0.50 | 0.31 | ||
FA meq kg−1 | Min–Max | 23.4–38.6 | 12.8–25.4 | 24.3–46.6 | 35.6–50.1 | 38.2–45.7 | 25.8–42.0 | 49.6–49.9 | ** |
Mean ± SD | 29.51 ± 5.20 | 19.8 ± 5.08 | 34.7 ± 11.21 | 42.9 ± 10.25 | 42.0 ± 5.33 | 33.9 ± 11.46 | 49.8 ± 0.11 | ||
CV | 17.64 | 25.60 | 32.30 | 23.92 | 12.71 | 33.79 | 0.23 | ||
Ash % | Min–Max | 0.199–0.471 | 0.044–0.190 | 0.061–0.114 | 0.184–0.501 | 0.199–0.213 | 0.174–0.176 | 0.459–0.502 | ** |
Mean ± SD | 0.33 ± 0.11 | 0.098 ± 0.06 | 0.088 ± 0.03 | 0.343 ± 0.22 | 0.206 ± 0.01 | 0.175 ± 0.00 | 0.483 ± 0.02 | ||
CV | 34.75 | 64.12 | 30.56 | 65.45 | 4.81 | 0.81 | 3.30 | ||
EC mS cm−1 | Min–Max | 0.358–0.692 | 0.140–0.320 | 0.209–0.252 | 0.469–0.699 | 0.503–0.542 | 0.294–0.378 | 0.920–0.935 | *** |
Mean ± SD | 0.594 ± 0.17 | 0.200 ± 0.08 | 0.2350.02± | 0.584 ± 0.16 | 0.523 ± 0.03 | 0.336 ± 0.06 | 0.927 ± 0.01 | ||
CV | 27.82 | 40.36 | 9.73 | 27.85 | 5.28 | 17.68 | 0.57 | ||
TPC mg GAE/100g | Min–Max | 22.0–27.5 | 13.7–23.1 | 22.4–24.1 | 21.10–23.90 | 50.3–58.7 | 28.2–33.5 | 72.5–74.1 | *** |
Mean ± SD | 25.1 ± 2.42 | 17.9 ± 3.79 | 23.3 ± 0.87 | 22.50 ± 1.98 | 54.5 ± 5.93 | 30.9 ± 3.75 | 73.2 ± 0.51 | ||
CV | 9.63 | 21.17 | 3.72 | 8.80 | 10.89 | 12.15 | 0.70 | ||
TFC mg QE/100g | Min–Max | 1.48–2.56 | 0.46–1.29 | 2.29–2.87 | 1.21–2.56 | 2.12–3.62 | 2.38–2.87 | 4.21–5.27 | *** |
Mean ± SD | 1.81 ± 0.43 | 0.87 ± 0.32 | 2.43 ± 0.33 | 1.89 ± 0.95 | 2.87 ± 1.06 | 2.63 ± 0.35 | 4.81 ± 0.31 | ||
CV | 24.0 | 36.18 | 13.35 | 50.64 | 36.96 | 13.20 | 6.41 |
Parameter | Descriptive Statistics | Type | ANOVA | ||||||
---|---|---|---|---|---|---|---|---|---|
Linden 6 Samples | Acacia 5 Samples | Rapeseed 3 Samples | Sunflower 2 Samples | Mint 2 Samples | Raspberry 2 Samples | Chestnut 1 Sample | |||
K mg kg−1 | Min–Max | 404–1507 | 75–213 | 46–196 | 455–1150 | 415–697 | 228–327 | 1455–1467 | ** |
Mean ± SD | 984 ± 476 | 131 ± 53.96 | 101 ± 82.76 | 803 ± 491.44 | 556 ± 199.15 | 278 ± 70.00 | 1462 ± 1.71 | ||
CV | 48.45 | 41.15 | 82.08 | 61.24 | 35.81 | 25.23 | 0.12 | ||
Ca mg kg−1 | Min–Max | 31.7–429.8 | 17.7–139.7 | 24.3–84.3 | 131.0–132.0 | 122.6–171.9 | 15.7–128.8 | 155.7–173.1 | ns |
Mean ± SD | 167.5 ± 143 | 62.2 ± 53.41 | 58.3 ± 30.79 | 131.5 ± 0.71 | 147.3 ± 34.86 | 72.3 ± 79.97 | 164.0 ± 5.50 | ||
CV | 85.51 | 85.82 | 52.81 | 0.54 | 23.67 | 110.69 | 3.35 | ||
Mg mg kg−1 | Min–Max | 39.4–96.9 | 10.8–64.6 | 33.3–58.6 | 50.8–74.3 | 29.5–78.2 | 70.9–72.8 | 320.2–339.0 | *** |
Mean ± SD | 59.4 ± 21.12 | 24.8 ± 22.52 | 46.2 ± 12.66 | 62.6 ± 16.62 | 53.9 ± 34.44 | 71.9 ± 1.34 | 330.6 ± 1.23 | ||
CV | 35.54 | 90.80 | 27.38 | 26.57 | 63.95 | 1.87 | 0.37 | ||
Na mg kg−1 | Min–Max | 97.9–223.1 | 28.4–292.6 | 45.0–128.3 | 129.7–247.0 | 172.5–181.2 | 110.1–156.1 | 216.0–245.2 | ns |
Mean ± SD | 169.4 ± 49.41 | 94.5 ± 113.23 | 98.0 ± 46.03 | 188.4 ± 82.94 | 176.9 ± 6.15 | 133.1 ± 32.53 | 233.3 ± 5.79 | ||
CV | 29.18 | 119.85 | 46.99 | 44.04 | 3.48 | 24.44 | 2.48 | ||
P mg kg−1 | Min–Max | 29.8–52.9 | 21.8–47.3 | 39.5–50.5 | 40.1–52.5 | 43.5–74.5 | 44.2–79.4 | 125.6–145.1 | *** |
Mean ± SD | 42.1 ± 9.68 | 34.1 ± 9.69 | 45.4 ± 5.54 | 46.3 ± 8.77 | 59.0 ± 21.92 | 61.8 ± 24.89 | 137.2 ± 1.05 | ||
CV | 22.98 | 28.41 | 12.21 | 18.94 | 37.15 | 40.28 | 0.76 |
mm Pfund | RI | M | SS | SG | pH | FA | Ash | EC | TPC | TFC | K | Ca | Mg | Na | P | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L-A | *** | ns | ns | ns | ns | ns | * | ** | *** | ** | ** | ** | ns | * | ns | ns |
L-RP | ** | ns | ns | ns | ns | ns | ns | ** | ** | ns | ns | * | ns | ns | ns | ns |
L-SF | ns | ns | ns | ns | ns | ns | * | ns | ns | ns | ns | ns | ns | ns | ns | ns |
L-M | ns | ns | ns | ns | ns | ns | * | ns | ns | *** | ns | ns | ns | ns | ns | ns |
L-RB | ns | ns | ns | ns | ns | ns | ns | ns | ns | * | ns | ns | ns | ns | ns | ns |
L-C | ** | ns | ns | ns | ns | ns | * | ns | ns | *** | ** | ns | ns | *** | ns | *** |
A-RP | *** | ns | ns | ns | ns | ns | * | ns | ns | ns | *** | ns | ns | ns | ns | ns |
A-SF | * | ns | ns | ns | ns | ns | ** | ns | ** | ns | ns | * | ns | ns | ns | ns |
A-M | * | ns | ns | ns | ns | ns | ** | ns | ** | *** | ** | ** | ns | ns | ns | ns |
A-RB | *** | ns | ns | ns | ns | ns | ns | ns | ns | ** | ** | * | ns | * | ns | ns |
A-C | *** | ns | ns | ns | ns | ns | ** | ** | ** | *** | *** | *** | ns | *** | ns | *** |
RP-SF | ns | ns | ns | ns | ns | ns | ns | ns | * | ns | ns | ns | * | ns | ns | ns |
RP-M | ns | ns | ns | ns | ns | ns | ns | ** | *** | ** | ns | * | ns | ns | ns | ns |
RP-RB | ns | ns | ns | ns | ns | ns | ns | * | ns | * | ns | ns | ns | ns | ns | ns |
RP-C | ns | ns | ns | ns | ns | * | ns | ** | ** | *** | * | ** | ns | ** | ns | ** |
SF-M | ns | ns | ns | ns | ns | ns | ns | ns | ns | * | ns | ns | ns | ns | ns | ns |
SF-RB | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
SF-C | ns | ns | ns | ns | ns | ns | ns | ns | ns | * | ns | ns | * | * | ns | ns |
M-RB | ns | ns | ns | ns | ns | ns | ns | * | ns | * | ns | ns | ns | ns | ns | ns |
M-C | ns | ns | ns | ns | ns | ns | ns | * | ns | ns | ns | ns | ns | ns | ns | ns |
RB-C | ns | ns | ns | ns | ns | * | ns | ** | ns | ns | ns | * | ns | ** | ns | ns |
Spectral Range | FT-IR Wavenumber (cm−1) | ||||||
---|---|---|---|---|---|---|---|
Linden | Acacia | Rapeseed | Sunflower | Mint | Raspberry | Chestnut | |
D1 | 3377–3416 | 3393–3415 | 3383–3398 | 3396–3408 | 3376–3388 | 3370–3416 | 3369 |
D2 | 2933–2934 | 2934–2935 | 2932–2933 | 2922–2933 | 2933 | 2929–2933 | 2933 |
D3 | 2117–2120 | 2118–2119 | 2115–2118 | 2120–2121 | 2116–2118 | 2116–2117 | 2119 |
D4 | 1641–1647 | 1636–1647 | 1638–1646 | 1637–1640 | 1637–1639 | 1640–1647 | 1638 |
D5 | 1452–1453 | 1452–1454 | 1453–1454 | 1450–1454 | 1452–1453 | 1453 | 1454 |
D6 | 1415–1416 | 1415–1418 | 1415–1417 | 1415–1418 | 1414–1416 | 1415–1416 | 1416 |
D7 | 1342–1350 | 1348–1350 | 1340–1342 | 1348 | 1342–1344 | 1339–1345 | 1343 |
D8 | 1256–1258 | 1256–1257 | 1256 | 1257 | 1255–1256 | 1255–1259 | 1256 |
D9 | 1144–1146 | 1144–1146 | 1144 | 1144–1145 | 1144 | 1144–1145 | 1145 |
D10 | 1055–1057 | 1054–1056 | 1056 | 1056 | 1056 | 1054–1057 | 1056 |
D11 | 919–920 | 919–920 | 918–919 | 919 | 919 | 919 | 919 |
D12 | 866–867 | 867 | 866–867 | 867 | 867–868 | 867 | 867 |
D13 | 819 | 819–819 | 818 | 818 | 818 | 818–819 | 819 |
D14 | 778–779 | 778–779 | 778 | 778 | 778 | 778–779 | 778 |
RI | M | SS | Color | SG | pH | FA | Ash | EC | TPC | TFC | K | Ca | Mg | Na | P | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RI | 1.00 | |||||||||||||||
M | −0.99 *** | 1.00 | ||||||||||||||
SS | 0.99 *** | −1.00 *** | 1.00 | |||||||||||||
Color | 0.61 | −0.61 | 0.61 | 1.00 | ||||||||||||
SG | 0.99 *** | −0.99 *** | 0.99 *** | 0.61 | 1.00 | |||||||||||
pH | 0.62 | −0.63 | 0.63 | 0.41 | 0.62 | 1.00 | ||||||||||
FA | 0.55 | −0.55 | 0.55 | 0.82 * | 0.55 | 0.52 | 1.00 | |||||||||
Ash | 0.71 | −0.72 | 0.72 | 0.58 | 0.71 | 0.93 ** | 0.68 | 1.00 | ||||||||
EC | 0.74 | −0.74 | 0.74 | 0.68 | 0.74 | 0.92 ** | 0.76 * | 0.97 *** | 1.00 | |||||||
TPC | 0.79 * | −0.79 * | 0.79 * | 0.78 * | 0.80 * | 0.59 | 0.75 * | 0.61 | 0.75 * | 1.00 | ||||||
TFC | 0.73 | −0.73 | 0.73 | 0.95 *** | 0.73 | 0.50 | 0.83 * | 0.61 | 0.72 | 0.90 ** | 1.00 | |||||
K | 0.70 | −0.71 | 0.71 | 0.60 | 0.70 | 0.95 *** | 0.65 | 0.98 *** | 0.98 *** | 0.66 | 0.63 | 1.00 | ||||
Ca | 0.45 | −0.46 | 0.46 | 0.40 | 0.45 | 0.93 ** | 0.58 | 0.85 * | 0.89 ** | 0.59 | 0.46 | 0.90 ** | 1.00 | |||
Mg | 0.91 ** | −0.91 ** | 0.91 ** | 0.84 * | 0.91 ** | 0.64 | 0.67 | 0.77 * | 0.81 * | 0.82 * | 0.88 ** | 0.78 * | 0.51 | 1.00 | ||
Na | 0.71 | −0.72 | 0.72 | 0.63 | 0.72 | 0.90 ** | 0.81 * | 0.95 *** | 0.98 *** | 0.75 * | 0.70 | 0.94 ** | 0.89 ** | 0.75 | 1.00 | |
P | 0.91 ** | −0.91 ** | 0.91 ** | 0.86 * | 0.91 ** | 0.59 | 0.72 | 0.71 | 0.78 * | 0.89 ** | 0.93 ** | 0.72 | 0.47 | 0.98 *** | 0.73 | 1.00 |
Variable | PC 1 | PC 2 | PC 3 |
---|---|---|---|
RI | 0.98 | 0.03 | 0.15 |
M | −0.99 | −0.03 | −0.15 |
SS | 0.99 | 0.03 | 0.15 |
Color | 0.05 | 0.00 | 0.93 |
SG | 0.98 | 0.02 | 0.15 |
pH | 0.12 | 0.91 | −0.23 |
FA | −0.06 | 0.03 | 0.88 |
Ash | 0.00 | 0.94 | 0.19 |
EC | 0.12 | 0.90 | 0.36 |
TPC | 0.31 | 0.31 | 0.73 |
TFC | 0.12 | 0.02 | 0.98 |
K | 0.15 | 0.88 | 0.18 |
Ca | −0.31 | 0.66 | 0.04 |
Mg | 0.31 | 0.47 | 0.70 |
Na | 0.00 | 0.81 | 0.10 |
P | 0.33 | 0.16 | 0.86 |
Eigenvalue | 6.85 | 4.02 | 2.89 |
% Total variance | 42.83 | 25.15 | 18.04 |
Cumulative % | 42.83 | 67.97 | 86.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pop, I.M.; Simeanu, D.; Cucu-Man, S.-M.; Pui, A.; Albu, A. Quality Profile of Several Monofloral Romanian Honeys. Agriculture 2023, 13, 75. https://doi.org/10.3390/agriculture13010075
Pop IM, Simeanu D, Cucu-Man S-M, Pui A, Albu A. Quality Profile of Several Monofloral Romanian Honeys. Agriculture. 2023; 13(1):75. https://doi.org/10.3390/agriculture13010075
Chicago/Turabian StylePop, Ioan Mircea, Daniel Simeanu, Simona-Maria Cucu-Man, Aurel Pui, and Aida Albu. 2023. "Quality Profile of Several Monofloral Romanian Honeys" Agriculture 13, no. 1: 75. https://doi.org/10.3390/agriculture13010075
APA StylePop, I. M., Simeanu, D., Cucu-Man, S.-M., Pui, A., & Albu, A. (2023). Quality Profile of Several Monofloral Romanian Honeys. Agriculture, 13(1), 75. https://doi.org/10.3390/agriculture13010075