Evolution of Nano-Biofertilizer as a Green Technology for Agriculture
Abstract
:1. Introduction
2. Biofertilizer Formulations
3. Solid Biofertilizers
4. Liquid Biofertilizer
5. Modes of Application of Biofertilizer
6. Mode of Action of Biofertilizer Formulations and Effect on Crop Plants
7. Nanofertilizer Formulations
- (1)
- Nanoscale fertilizer: The powdered solid or liquid fertilizers are reformulated into a nanosize, i.e., the size reduction of fertilizer or any supplement required for plant growth, down to the nanoscale. This input can be achieved by mechanical and chemical methods. Compared to traditional fertilizers, these fertilizers offer advantages such as reduced quantity requirement, extended shelf life, and the added capability to function as multitasking agents, serving as both pesticides and scavengers for heavy metals [59].
- (2)
- Nanoscale additives: The addition of nanoparticles, which can be in the form of a fertilizer, micronutrient, or an additional supplement, into the bulk (>100 nm) macroscale fertilizer input. These nanoparticles may enhance the activity of bulk fertilizers, such as increased water retention properties and pathogen control in plants and soil. The introduction of carbon nanotubes (CNT) at the nanoscale into the media used for the germination of tomato seeds had a beneficial impact on enhancing the rate at which these seeds undergo germination as well as significantly enhancing the overall biomass of the plant [60]. Moreover, CNT promotes the intake of water by the seeds which was measured by the total moisture content of the tomato seeds after their incubation in the CNT-supplemented medium.
- (3)
- Nanoscale coatings for fertilizers: The use of nano-thin films or nanoporous materials such as zeolites, clay, and polymer coatings for controlled release of nutrient input. An example within this classification is nanoclays. They serve as supportive fillers for creating nanocomposite formations, enhancing the overall mechanical robustness and thermal resilience of the bulk materials. They act as a medium for absorption in the case of nanofertilizers.
8. Synthesis of Nanofertilizers
9. Top-Down Approach
10. Bottom-Up Approach
11. Biological/Green Synthesis Approach
12. Mode of Application of Nanofertilizers
13. Foliar Mode of Application
14. Soil Mode of Application
15. Mode of Action of Nanofertilizers and Their Effect on Crop Plants
16. Nano-Biofertilizer Formulations
17. Synthesis of Nano-Biofertilizers
18. Mode of Application of Nano-Biofertilizers
19. Mode of Action of Nano-Biofertilizers
20. Critical Aspects of Using Nano-Biofertilizers
21. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sagar, A.; Rathore, P.; Ramteke, P.W.; Ramakrishna, W.; Reddy, M.S.; Pecoraro, L. Plant growth promoting rhizobacteria, arbuscular mycorrhizal fungi and their synergistic interactions to counteract the negative effects of saline soil on agriculture: Key macromolecules and mechanisms. Microorganisms 2021, 9, 1491. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishna, W.; Yadav, R.; Li, K. Plant growth promoting bacteria in agriculture: Two sides of a coin. Appl. Soil Ecol. 2019, 138, 10–18. [Google Scholar] [CrossRef]
- Ramakrishna, W.; Rathore, P.; Kumari, R.; Yadav, R. Brown gold of marginal soil: Plant growth promoting bacteria to overcome plant abiotic stress for agriculture, biofuels and carbon sequestration. Sci. Total Environ. 2020, 711, 135062. [Google Scholar] [CrossRef]
- Rahman, K.M.A.; Zhang, D. Effects of fertilizer broadcasting on the excessive use of inorganic fertilizers and environmental sustainability. Sustainability 2018, 10, 759. [Google Scholar] [CrossRef]
- El-Shetehy, M.; Moradi, A.; Maceroni, M.; Reinhardt, D.; Petri-Fink, A.; Rothen-Rutishauser, B.; Mauch, F.; Schwab, F. Silica nanoparticles enhance disease resistance in Arabidopsis plants. Nat. Nanotechnol. 2021, 16, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.; Zhao, H.; Wang, P. Recent development in functional nanomaterials for sustainable and smart agricultural chemical technologies. Nano Converg. 2022, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ye, X.; Guo, X.; Geng, Z.; Wang, G. Effects of surface ligands on the uptake and transport of gold nanoparticles in rice and tomato. J. Hazard. Mater. 2016, 314, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Wang, C.; Wagner, D.C.; Gardea-Torresdey, J.L.; He, F.; Rico, C.M. Foliar application of nanoparticles: Mechanisms of absorption, transfer, and multiple impacts. Environ. Sci. Nano 2021, 8, 1196–1210. [Google Scholar] [CrossRef]
- Danish, M.; Hussain, T. Nanobiofertilizers in crop production. In Nanotechnology for Agriculture: Crop Production and Protection; Panpatte, D., Jhala, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 107–118. [Google Scholar]
- Thomas, L.; Singh, I. Microbial biofertilizers: Types and applications. In Soil Biology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–19. [Google Scholar]
- Das, H.K. Azotobacters as biofertilizer. Adv. Appl. Microbiol. 2019, 108, 1–43. [Google Scholar] [PubMed]
- Raffi, M.M.; Charyulu, P. Azospirillum-biofertilizer for sustainable cereal crop production: Current status. In Recent Developments in Applied Microbiology and Biochemistry; Elsevier: Amsterdam, The Netherlands, 2021; pp. 193–209. [Google Scholar]
- Kalayu, G. Phosphate solubilizing microorganisms: Promising approach as biofertilizers. Int. J. Agron. 2019, 2019, 4917256. [Google Scholar] [CrossRef]
- Berruti, A.; Lumini, E.; Balestrini, R.; Bianciotto, V. Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Front. Microbiol. 2016, 6, 1559. [Google Scholar] [CrossRef] [PubMed]
- Brahmaprakash, G.P.; Sahu, P.K. Biofertilizers for sustainability. J. Indian Inst. Sci. 2012, 92, 37–62. [Google Scholar]
- Ullah, S.; Adeel, M.; Zain, M.; Rizwan, M.; Irshad, M.K.; Jilani, G.; Hameed, A.; Khan, A.; Arshad, M.; Raza, A.; et al. Physiological and biochemical response of wheat (Triticum aestivum) to TiO2 nanoparticles in phosphorous amended soil: A full life cycle study. J. Environ. Manag. 2020, 263, 110365. [Google Scholar] [CrossRef] [PubMed]
- Sivasakthi, S.; Usharani, G.; Saranraj, P. Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: A review. Afr. J. Agric. Res. 2014, 9, 1265–1277. [Google Scholar]
- Xavier, I.J.; Holloway, G.; Leggett, M. Development of rhizobial inoculant formulations. Crop Manag. 2004, 3, 1–6. [Google Scholar] [CrossRef]
- Vassilev, N.; Vassileva, M.; Martos, V.; Garcia del Moral, L.F.; Kowalska, J.; Tylkowski, B.; Malusá, E. Formulation of microbial inoculants by encapsulation in natural polysaccharides: Focus on beneficial properties of carrier additives and derivatives. Front. Plant Sci. 2020, 11, 270. [Google Scholar] [CrossRef]
- Bashan, Y.; de-Bashan, L.E.; Prabhu, S.R.; Hernandez, J. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant Soil 2014, 378, 1–33. [Google Scholar] [CrossRef]
- Malusá, E.; Sas-Paszt, L.; Ciesielska, J. Technologies for beneficial microorganisms inocula used as biofertilizers. Sci. World J. 2012, 2012, 491206. [Google Scholar] [CrossRef]
- Bashan, Y.; de-Bashan, L.E.; Prabhu, S.R. Superior polymeric formulations and emerging innovative products of bacterial inoculants for sustainable agriculture and the environment. In Agriculturally Important Microorganisms—Commercialization and Regulatory Requirements in Asia; Singh, H.B., Sarma, B.K., Keswani, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 15–46. [Google Scholar]
- Lobo, C.B.; Juárez Tomás, M.S.; Viruel, E.; Ferrero, M.A.; Lucca, M.E. Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies. Microbiol. Res. 2019, 219, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Hindersah, R.; Rahmadina, I.; Harryanto, R.; Suryatmana, P.; Arifin, M. Bacillus and Azotobacter counts in solid biofertilizer with different concentration of zeolite and liquid inoculant. In IOP Conference Series: Earth and Environmental Science, Proceedings of the 2nd International Conference on Agriculture and Bio-Industry, Banda Aceh, Indonesia, 27–28 October 2020; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 667, p. 012010. [Google Scholar]
- Asadu COInnocent, S.I.; Chijioke, E.O.; Samuel, O.E.; Maxwell, O.; Gordian, O.M.; Chibuzor, N.E. Investigation of the influence of biofertilizer synthesized using microbial inoculums on the growth performance of two agricultural crops. Biotechnol. Rep. 2020, 27, e00493. [Google Scholar]
- Vassilev, N.; Eichler-Löbermann, B.; Flor-Peregrin, E.; Martos, V.; Reyes, A.; Vassileva, M. Production of a potential liquid plant bio-stimulant by immobilized Piriformospora indica in repeated-batch fermentation process. AMB Express 2017, 7, 106. [Google Scholar] [CrossRef]
- Singhania, R.R.; Patel, A.K.; Soccol, C.R.; Pandey, A. Recent advances in solid-state fermentation. Biochem. Eng. J. 2009, 44, 13–18. [Google Scholar] [CrossRef]
- Mendes, G.O.; Galvez, A.; Vassileva, M.; Vassilev, N. Fermentation liquid containing microbially solubilized P significantly improved plant growth and P uptake in both soil and soilless experiments. Appl. Soil Ecol. 2017, 117–118, 208–211. [Google Scholar] [CrossRef]
- Santhosh, G.P. Formulation and shelf life of liquid biofertilizer inoculants using cell protectants. IJRBA Technol. 2015, 2, 243–247. [Google Scholar]
- Dey, A. Liquid biofertilizers and their applications: An overview. In Environmental and Agricultural Microbiology: Applications for Sustainability; Wiley: Hoboken, NJ, USA, 2021; pp. 275–292. [Google Scholar]
- Panpatte, D.G.; Jhala, Y.K.; Shelat, H.N.; Vyas, R.V. Microbes for sustainable agro-ecosystem. In Microorganisms for Green Revolution; Springer Singapore: Singapore, 2018; Volume 2, 252p. [Google Scholar]
- Gopi, G.K.; Meenakumari, K.S.; Nysanth, N.S.; Subha, P. An optimized standard liquid carrier formulation for extended shelf-life of plant growth promoting bacteria. Rhizosphere 2019, 11, 100160. [Google Scholar] [CrossRef]
- Li, K.; Ramakrishna, W. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth. J. Hazard. Mater. 2011, 189, 531–539. [Google Scholar] [CrossRef]
- Li, K.; Pidatala, V.R.; Shaik, R.; Datta, R.; Ramakrishna, W. Integrated metabolomic and proteomic approaches dissect the effect of metal resistant bacteria on maize biomass and copper uptake. Environ. Sci. Technol. 2014, 48, 1184–1193. [Google Scholar] [CrossRef]
- Ahluwalia, O.; Singh, P.C.; Bhatia, R. A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria. Resour. Environ. Sustain. 2021, 5, 100032. [Google Scholar] [CrossRef]
- Sarbani, N.M.M.; Yahaya, N. Advanced development of bio-fertilizer formulations using microorganisms as inoculant for sustainable agriculture and environment–A review. Malays. J. Sci. Health Technol. 2022, 8, 92–101. [Google Scholar] [CrossRef]
- Altuhaish, A.; Hamim, H.; Tjahjoleksono, A. Biofertilizer effects in combination with different drying system and storage period on growth and production of tomato plant under field conditions. Emir. J. Food Agric. 2014, 26, 716. [Google Scholar] [CrossRef]
- Sharma, P.; Bano, A.; Verma, K.; Yadav, M.; Varjani, S.; Singh, S.P.; Tong, Y.W. Food waste digestate as biofertilizer and their direct applications in agriculture. Bioresour. Technol. Rep. 2023, 23, 101515. [Google Scholar] [CrossRef]
- Pirttilä, A.M.; Mohammad Parast Tabas, H.; Baruah, N.; Koskimäki, J.J. Biofertilizers and biocontrol agents for agriculture: How to identify and develop new potent microbial strains and traits. Microorganisms 2021, 9, 817. [Google Scholar] [CrossRef] [PubMed]
- Juwarkar, A.A.; Yadav, S.K.; Kumar, P.h.a.n.i.; Singh, S.K. Effect of biosludge and biofertilizer amendment on growth of Jatropha curcas in heavy metal contaminated soils. Environ. Monit. Assess. 2008, 145, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.; Thalooth, A.; Elewa, T.; Ahmed, A. Yield and nutrient status of wheat plants (Triticum aestivum) as affected by sludge, compost, and biofertilizers under newly reclaimed soil. Bull. Natl. Res. Cent. 2019, 43, 31. [Google Scholar] [CrossRef]
- Ansari, M.F.; Tipre, D.R.; Dave, S.R. Efficiency evaluation of commercial liquid biofertilizers for growth of Cicer aeritinum (chickpea) in pot and field study. Biocatal. Agric. Biotechnol. 2015, 4, 17–24. [Google Scholar] [CrossRef]
- Ramya, S.S.; Vijayanand, N.; Rathinavel, S. Foliar application of liquid biofertilizer of brown alga Stoechospermum marginatum on growth, biochemical and yield of Solanum melongena. Int. J. Recycl. Org. Waste Agric. 2015, 4, 167–173. [Google Scholar] [CrossRef]
- Maheswari, N.U.; Elakkiya, T. Effect of liquid biofertilizers on growth and yield of Vigna mungo L. Int. J. Pharm. Sci. Rev. Res. 2014, 29, 42–45. [Google Scholar]
- Zuverza-Mena, N.; Martínez-Fernández, D.; Du, W.; Hernandez-Viezcas, J.A.; Bonilla-Bird, N.; López-Moreno, M.L.; Komárek, M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses—A review. Plant Physiol. Biochem. 2017, 110, 236–264. [Google Scholar] [CrossRef]
- Sarkar, D.; Sankar, A.; Devika, O.S.; Singh, S.; Shikha Parihar, M.; Rakshit, A.; Sayyed, R.Z.; Gafur, A.; Ansari, M.J.; Danish, S.; et al. Optimizing nutrient use efficiency, productivity, energetics, and economics of red cabbage following mineral fertilization and biopriming with compatible rhizosphere microbes. Sci. Rep. 2021, 11, 15680. [Google Scholar] [CrossRef]
- Ji, S.-H.; Kim, J.-S.; Lee, C.-H.; Seo, H.-S.; Chun, S.-C.; Oh, J.; Choi, E.-H.; Park, G. Enhancement of vitality and activity of a plant growth-promoting bacteria (PGPB) by atmospheric pressure non-thermal plasma. Sci. Rep. 2019, 9, 1044. [Google Scholar] [CrossRef]
- Naqqash, T.; Imran, A.; Hameed, S.; Shahid, M.; Majeed, A.; Iqbal, J.; Hanif, M.K.; Ejaz, S.; Malik, K.A. First report of diazotrophic Brevundimonas spp. as growth enhancer and root colonizer of potato. Sci. Rep. 2020, 10, 12893. [Google Scholar] [CrossRef] [PubMed]
- Zafar-ul-Hye, M.; Tahzeeb-ul-Hassan, M.; Wahid, A.; Danish, S.; Khan, M.J.; Fahad, S.; Brtnicky, M.; Hussain, G.S.; Battaglia, M.L.; Datta, R. Compost mixed fruits and vegetable waste biochar with ACC deaminase rhizobacteria can minimize lead stress in mint plants. Sci. Rep. 2021, 11, 6606. [Google Scholar] [CrossRef] [PubMed]
- Hyder, S.; Gondal, A.S.; Rizvi, Z.F.; Ahmad, R.; Alam, M.M.; Hannan, A.; Ahmed, W.; Fatima, N.; Inam-ul-Haq, M. Characterization of native plant growth promoting rhizobacteria and their anti-oomycete potential against Phytophthora capsici affecting chilli pepper (Capsicum annum L.). Sci. Rep. 2020, 10, 13859. [Google Scholar] [CrossRef] [PubMed]
- Bokhari, A.; Essack, M.; Lafi, F.F.; Andres-Barrao, C.; Jalal, R.; Alamoudi, S.; Razali, R.; Alzubaidy, H.; Shah, K.H.; Siddique, S.; et al. Bioprospecting desert plant Bacillus endophytic strains for their potential to enhance plant stress tolerance. Sci. Rep. 2019, 9, 18154. [Google Scholar] [CrossRef]
- Nacoon, S.; Jogloy, S.; Riddech, N.; Mongkolthanaruk, W.; Ekprasert, J.; Cooper, J.; Boonlue, S. Combination of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria on growth and production of Helianthus tuberosus under field condition. Sci. Rep. 2021, 11, 6501. [Google Scholar] [CrossRef]
- Ambrosini, A.; de Souza, R.; Passaglia, L.M. Ecological role of bacterial inoculants and their potential impact on soil microbial diversity. Plant Soil 2016, 400, 193–207. [Google Scholar] [CrossRef]
- Mehta, P.; Walia, A.; Chauhan, A.; Kulshrestha, S.; Shirkot, C.K. Phosphate solubilisation and plant growth promoting potential by stress tolerant Bacillus sp. isolated from rhizosphere of apple orchards in trans Himalayan region of Himachal Pradesh. Ann. Appl. Biol. 2013, 163, 430–443. [Google Scholar] [CrossRef]
- Navya, H.M.; Naveen, J.; Hariprasad, P.; Niranjana, S.R. Beneficial rhizospheric microorganisms mediated plant growth promotion and suppression of aflatoxigenic fungal and aflatoxin contamination in groundnut seeds. Ann. Appl. Biol. 2015, 167, 225–235. [Google Scholar] [CrossRef]
- Dias, M.P.; Bastos, M.S.; Xavier, V.B.; Cassel, E.; Astarita, L.V.; Santarém, E.R. Plant growth and resistance promoted by Streptomyces spp. in tomato. Plant Physiol. Biochem. 2017, 118, 479–493. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Navarro, M.; Ashraf, M.; Akram, N.A.; Munné-Bosch, S. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Sci. 2019, 289, 110270. [Google Scholar] [CrossRef]
- Boutasknit, A.; Baslam, M.; Ait-El-Mokhtar, M.; Anli, M.; Ben-Laouane, R.; Ait-Rahou, Y.; Mitsui, T.; Douira, A.; el Modafar, C.; Wahbi, S.; et al. Assemblage of indigenous arbuscular mycorrhizal fungi and green waste compost enhance drought stress tolerance in carob (Ceratonia siliqua L.) trees. Sci. Rep. 2021, 11, 22835. [Google Scholar] [CrossRef]
- Kalia, A.; Sharma, S.P.; Kaur, H. Nanoscale fertilizers: Harnessing boons for enhanced nutrient use efficiency and crop productivity. Nanobiotechnol. Appl. Plant Prot. 2019, 2, 191–208. [Google Scholar]
- Khodakovskaya, M.V.; Kim, B.-S.; Kim, J.N.; Alimohammadi, M.; Dervishi, E.; Mustafa, T.; Cernigla, C.E. Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community. Small 2013, 9, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, R.; Mukhopadhyay, A.; Paul, S.; Sarkar, S.; Mukhopadhyay, R. Nanocomposite-based smart fertilizers: A boon to agricultural and environmental sustainability. Sci. Total Environ. 2023, 863, 160859. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.T.; Adil, S.F.; Shaik, M.R.; Alkhathlan, H.Z.; Khan, M.; Khan, M. Engineered nanomaterials in soil: Their impact on soil microbiome and plant health. Plants 2022, 11, 109. [Google Scholar] [CrossRef] [PubMed]
- Raliya, R.; Saharan, V.; Dimkpa, C.; Biswas, P. Nanofertilizer for Precision and Sustainable Agriculture: Current State and Future Perspectives. J. Agric. Food Chem. 2018, 66, 6487–6503. [Google Scholar] [CrossRef]
- Mahapatra, D.M.; Satapathy, K.C.; Panda, B. Biofertilizers and nanofertilizers for sustainable agriculture: Phycoprospects and challenges. Sci. Total Environ. 2022, 803, 149990. [Google Scholar] [CrossRef] [PubMed]
- Fatima, F.; Hashim, A.; Anees, S. Efficacy of nanoparticles as nanofertilizer production: A review. Environ. Sci. Pollut. Res. 2021, 28, 1292–1303. [Google Scholar] [CrossRef]
- Anjum, S.; Anjum, I.; Hano, C.; Kousar, S. Advances in nanomaterials as novel elicitors of pharmacologically active plant specialized metabolites: Current status and future outlooks. RSC Adv. 2019, 9, 40404–40423. [Google Scholar] [CrossRef]
- Akhtar, N.; Ilyas, N.; Meraj, T.A.; Pour-Aboughadareh, A.; Sayyed, R.Z.; Mashwani ZU, R.; Poczai, P. Improvement of plant responses by nanobiofertilizer: A step towards sustainable agriculture. Nanomaterials 2022, 12, 965. [Google Scholar] [CrossRef]
- Hatami, M.; Kariman, K.; Ghorbanpour, M. Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants. Sci. Total Environ. 2016, 571, 275–291. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Christie, P.; Zhang, S. Uptake, translocation, and transformation of metal-based nanoparticles in plants: Recent advances and methodological challenges. Environ. Sci. Nano 2019, 6, 41–59. [Google Scholar] [CrossRef]
- Lough, T.J.; Lucas, W.J. Integrative plant biology: Role of phloem long-distance macromolecular trafficking. Annu. Rev. Plant Biol. 2006, 57, 203–232. [Google Scholar] [CrossRef]
- Kurepa, J.; Paunesku, T.; Vogt, S.; Arora, H.; Rabatic, B.M.; Lu, J.; Wanzer, M.B.; Woloschak, G.E.; Smalle, J.A. Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett. 2010, 10, 2296–2302. [Google Scholar] [CrossRef]
- Su, Y.; Ashworth, Y.; Kim, C.; Adeleye, A.S.; Rolshausen, P.; Roper, C.; White, J.; Jassby, D. Delivery, uptake, fate, and transport of engineered nanoparticles in plants: A critical review and data analysis. Environ. Sci. Nano 2019, 6, 2311–2331. [Google Scholar] [CrossRef]
- Abdel-Aziz HM, M.; Soliman, M.I.; Abo Al-Saoud, A.M.; El-Sherbeny, G.A. Waste-derived NPK nanofertilizer enhances growth and productivity of Capsicum annuum L. Plants 2021, 10, 1144. [Google Scholar] [CrossRef]
- Skrzypczak, D.; Mikula, K.; Izydorczyk, G.; Taf, R.; Gersz, A.; Witek-Krowiak, A.; Chojnacka, K. Smart fertilizers—Toward implementation in practice. In Smart Agrochemicals for Sustainable Agriculture; Chojnacka, K., Saeid, A., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 81–102. [Google Scholar]
- Mejias, J.H.; Salazar, F.; Pérez Amaro, L.; Hube, S.; Rodriguez, M.; Alfaro, M. Nanofertilizers: A cutting-edge approach to increase nitrogen use efficiency in grasslands. Front. Environ. Sci. 2021, 9, 635114. [Google Scholar] [CrossRef]
- Corradini, E. A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polym. Lett. 2010, 4, 509–515. [Google Scholar] [CrossRef]
- Sen, J. Nano clay composite and phyto nanotechnology: A new horizon to food security issue in Indian agriculture. J. Glob. Biosci. 2015, 4, 2187–2198. [Google Scholar]
- Cataldo, E.; Salvi, L.; Paoli, F.; Fucile, M.; Masciandaro, G.; Manzi, D.; Masini, C.M.; Mattii, G.B. Application of zeolites in agriculture and other potential uses: A review. Agronomy 2021, 11, 1547. [Google Scholar] [CrossRef]
- Kottegoda, N.; Sandaruwan, C.; Priyadarshana, G.; Siriwardhana, A.; Rathnayake, U.A.; Berugoda Arachchige, D.M.; Kumarasinghe, A.R.; Dahanayake, D.; Karunaratne, V.; Amaratunga, G.A. Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 2017, 11, 1214–1221. [Google Scholar] [CrossRef]
- Zhou, D.; Jin, S.; Li, L.; Wang, Y.; Weng, N. Quantifying the adsorption and uptake of CuO nanoparticles by wheat root based on chemical extractions. J. Environ. Sci. 2011, 23, 1852–1857. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, K.; Verma, P.; Singh, O.; Panwar, A.; Singh, T.; Kumar, Y.; Raliya, R. Effect of nitrogen and zinc nanofertilizer with the organic farming practices on cereal and oil seed crops. Sci. Rep. 2022, 12, 6938. [Google Scholar] [CrossRef] [PubMed]
- Afify, R.R.; El-Nwehy, S.S.; Bakry, A.B.; Add El-Aziz, A.M. Response of peanut (Arachis hypogaea L.) crop grown on newly reclaimed sandy soil to foliar application of potassium nano-fertilizer. Middle East J. Appl. Sci. 2019, 9, 78–85. [Google Scholar]
- McKnight, M.M.; Qu, Z.; Copeland, J.K.; Guttman, D.S.; Walker, V.K. A practical assessment of nano-phosphate on soybean (Glycine max) growth and microbiome establishment. Sci. Rep. 2020, 10, 9151. [Google Scholar] [CrossRef]
- Kornarzyński, K.; Sujak, A.; Czernel, G.; Wiącek, D. Effect of Fe3O4 nanoparticles on germination of seeds and concentration of elements in Helianthus annuus L. under constant magnetic field. Sci. Rep. 2020, 10, 8068. [Google Scholar] [CrossRef]
- Yusefi-Tanha, E.; Fallah, S.; Rostamnejadi, A.; Pokhrel, L.R. Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer: Influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Sci. Total Environ. 2020, 738, 140240. [Google Scholar] [CrossRef] [PubMed]
- Shalev, O.; Karasov, T.L.; Lundberg, D.S.; Ashkenazy, H.; Pramoj Na Ayutthaya, P.; Weigel, D. Commensal Pseudomonas strains facilitate protective response against pathogens in the host plant. Nat. Ecol. Evol. 2022, 6, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Gudkov, S.V.; Shafeev, G.A.; Glinushkin, A.P.; Shkirin, A.V.; Barmina, E.V.; Rakov, I.I.; Simakin, A.V.; Kislov, A.V.; Astashev, M.E.; Vodeneev, V.A.; et al. Production and use of selenium nanoparticles as fertilizers. ACS Omega 2020, 5, 17767–17774. [Google Scholar] [CrossRef]
- Liu, J.; Wolfe, K.; Potter, P.M.; Cobb, G.P. Distribution and speciation of copper and arsenic in rice plants (Oryza sativa japonica ‘Koshihikari’) treated with copper oxide nanoparticles and arsenic during a life cycle. Environ. Sci. Technol. 2019, 53, 4988–4996. [Google Scholar] [CrossRef]
- Kandil, E.E.; Abdelsalam, N.R.; el Aziz, A.A.A.; Ali, H.M.; Siddiqui, M.H. Efficacy of nanofertilizer, fulvic acid and boron fertilizer on sugar beet (Beta vulgaris L.) yield and quality. Sugar. Technol. 2020, 22, 782–791. [Google Scholar] [CrossRef]
- Kumar, P.; Pahal, V.; Gupta, A.; Vadhan, R.; Chandra, H.; Dubey, R.C. Effect of silver nanoparticles and Bacillus cereus LPR2 on the growth of Zea mays. Sci. Rep. 2020, 10, 20409. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Sharma, A.; Sharma, M.; Bhalla, N.; Estrela, P.; Jain, A.; Thakur, P.; Thakur, A. Nanomaterial fungicides: In vitro and in vivo antimycotic activity of cobalt and nickel nanoferrites on phytopathogenic fungi. Glob. Chall. 2017, 1, 1700041. [Google Scholar] [CrossRef]
- Du, C.; Abdullah, J.J.; Greetham, D.; Fu, D.; Yu, M.; Ren, L.; Li, S.; Lu, D. Valorization of food waste into biofertiliser and its field application. J. Clean. Prod. 2018, 187, 273–284. [Google Scholar] [CrossRef]
- Kumari, R.; Singh, D.P. Nano-biofertilizer: An emerging eco-friendly approach for sustainable agriculture. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2020, 90, 733–741. [Google Scholar] [CrossRef]
- Panichikkal, J.; Prathap, G.; Nair, R.A.; Krishnankutty, R.E. Evaluation of plant probiotic performance of Pseudomonas sp. encapsulated in alginate supplemented with salicylic acid and zinc oxide nanoparticles. Int. J. Biol. Macromol. 2021, 166, 138–143. [Google Scholar] [CrossRef]
- Saberi-Rise, R.; Moradi-Pour, M. The effect of Bacillus subtilis Vru1 encapsulated in alginate—Bentonite coating enriched with titanium nanoparticles against Rhizoctonia solani on bean. Int. J. Biol. Macromol. 2020, 152, 1089–1097. [Google Scholar] [CrossRef]
- Jung, B.K.; Khan, A.R.; Hong, S.-J.; Park, G.-S.; Park, Y.-J.; Kim, H.-J.; Jeon, H.-J.; Khan, M.A.; Waqas, M.; Lee, I.-J.; et al. Quorum sensing activity of the plant growth-promoting rhizobacterium Serratia glossinae GS2 isolated from the sesame (Sesamum indicum L.) rhizosphere. Ann. Microbiol. 2017, 67, 623–632. [Google Scholar] [CrossRef]
- Gouda, S.; Kerry, R.G.; Das, G.; Paramithiotis, S.; Shin, H.S.; Patra, J.K. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res. 2018, 206, 131–140. [Google Scholar] [CrossRef]
- Kalia, A.; Kaur, H. Nano-biofertilizers: Harnessing dual benefits of nano-nutrient bio-fertilizers for enhanced nutrient use efficiency sustainable productivity. In Nanoscience for Sustainable Agriculture; Pudake, R., Chauhan, N., Kole, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 57–73. [Google Scholar]
- Lahiani, M.H.; Dervishi, E.; Chen, J.; Nima, Z.; Gaume, A.; Biris, A.S.; Khodakovskaya, M.V. Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl. Mater. Interfaces 2013, 5, 7965–7973. [Google Scholar] [CrossRef]
- Bhanvase, B.A.; Shende, T.P.; Sonawane, S.H. A review on graphene–TiO2 and doped graphene–TiO2 nanocomposite photocatalyst for water and wastewater treatment. Environ. Technol. Rev. 2017, 6, 1–14. [Google Scholar] [CrossRef]
- Haris, Z.; Ahmad, I. Impact of metal oxide nanoparticles on beneficial soil microorganisms and their secondary metabolites. Int. J. Life-Sci. Sci. Res. 2017, 3, 1020–1030. [Google Scholar] [CrossRef]
- Sharma, B.; Tiwari, S.; Kumawat, K.C.; Cardinale, M. Nano-biofertilizers as bio-emerging strategies for sustainable agriculture development: Potentiality and their limitations. Sci. Total Environ. 2023, 860, 160476. [Google Scholar] [CrossRef] [PubMed]
- Mittal, D.; Kaur, G.; Singh, P.; Yadav, K.; Ali, S.A. Nanoparticle-based sustainable agriculture and food science: Recent advances and future outlook. Front. Nanotechnol. 2020, 2, 579954. [Google Scholar] [CrossRef]
- Ahmed, B.; Syed, A.; Rizvi, A.; Shahid, M.; Bahkali, A.H.; Khan, M.S.; Musarrat, J. Impact of metal-oxide nanoparticles on growth, physiology and yield of tomato (Solanum lycopersicum L.) modulated by Azotobacter salinestris strain ASM. Environ. Pollut. 2021, 269, 116218. [Google Scholar] [CrossRef]
- Eliaspour, S.; Seyed Sharifi, R.; Shirkhani, A.; Farzaneh, S. Effects of biofertilizers and iron nano-oxide on maize yield and physiological properties under optimal irrigation and drought stress conditions. Food Sci. Nutr. 2020, 8, 5985–5998. [Google Scholar] [CrossRef]
- Panichikkal, J.; Mohanan, D.P.; Koramkulam, S.; Krishnankutty, R.E. Chitosan nanoparticles augmented indole-3-acetic acid production by rhizospheric Pseudomonas monteilii. J. Basic Microbiol. 2022, 62, 1467–1474. [Google Scholar] [CrossRef]
- Rajak, J.; Bawaskar, M.; Rathod, D.; Agarkar, G.; Nagaonkar, D.; Gade, A.; Rai, M. Interaction of copper nanoparticles and an endophytic growth promoter Piriformospora indica with Cajanus cajan. J. Sci. Food Agric. 2017, 97, 4562–4570. [Google Scholar] [CrossRef]
- Tahir, M.; Imran, M.; Nawaz, F.; Shahid, M.; Naeem, M.A.; Ahmad, I.; Akram, M.; Khalid, U.; Farooq, A.B.U.; Bakhat, H.F.; et al. Effects of Bacillus sp. MR-1/2 and magnetite nanoparticles on yield improvement of rice by urea fertilizer under different watering regimes. J. Appl. Microbiol. 2021, 131, 2433–2447. [Google Scholar] [CrossRef]
- Palmqvist, N.G.M.; Bejai, S.; Meijer, J.; Seisenbaeva, G.A.; Kessler, V.G. Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. Sci. Rep. 2015, 5, 10146. [Google Scholar] [CrossRef]
- Win, T.T.; Khan, S.; Bo, B.; Zada, S.; Fu, P. Green synthesis and characterization of Fe3O4 nanoparticles using Chlorella-K01 extract for potential enhancement of plant growth stimulating and antifungal activity. Sci. Rep. 2021, 11, 21996. [Google Scholar] [CrossRef] [PubMed]
- Kandil, E.E.; Abdelsalam, N.R.; Mansour, M.A.; Ali, H.M.; Siddiqui, M.H. Potentials of organic manure and potassium forms on maize (Zea mays L.) growth and production. Sci. Rep. 2020, 10, 8752. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Singh, B.R.; Naqvi, A.H.; Singh, H.B. Potential of biosynthesized silver nanoparticles using Stenotrophomonas sp. BHU-S7 (MbTCC 5978) for management of soil-borne and foliar phytopathogens. Sci. Rep. 2017, 7, 45154. [Google Scholar] [CrossRef] [PubMed]
- Merinero, M.; Alcudia, A.; Begines, B.; Martínez, G.; Martín-Valero, M.J.; Pérez-Romero, J.A.; Mateos-Naranjo, E.; Redondo-Gómez, S.; Navarro-Torre, S.; Torres, Y.; et al. Assessing the biofortification of wheat plants by combining a plant growth-promoting rhizobacterium (PGPR) and polymeric Fe-nanoparticles: Allies or Enemies? Agronomy 2022, 12, 228. [Google Scholar] [CrossRef]
- Moradi Pour, M.; Saberi Riseh, R.; Skorik, Y.A. Sodium alginate and gelatin nanoformulations for encapsulation of Bacillus velezensis and their use for biological control of Pistachio Gummosis. Materials 2022, 15, 2114. [Google Scholar] [CrossRef]
- Hafez, E.M.; Osman, H.S.; Gowayed, S.M.; Okasha, S.A.; Omara, A.E.-D.; Sami, R.; Abd El-Monem, A.M.; Abd El-Razek, U.A. Minimizing the adversely impacts of water deficit and soil salinity on maize growth and productivity in response to the application of plant growth-promoting rhizobacteria and silica nanoparticles. Agronomy 2021, 11, 676. [Google Scholar] [CrossRef]
- Carvajal-Muñoz, J.S.; Carmona-Garcia, C.E. Benefits and limitations of biofertilization in agricultural practices. Livest. Res. Rural Dev. 2012, 24, 43. [Google Scholar]
- Biswal, D. Use of Nanofertilizers in Agriculture: Advantages, Disadvantages, and Future Implications. In Implications of Nanoecotoxicology on Environmental Sustainability; IGI Global: Harrisburg, PA, USA, 2023; pp. 102–133. [Google Scholar]
- Raimi, A.; Adeleke, R.; Roopnarain, A. Soil fertility challenges and Biofertiliser as a viable alternative for increasing smallholder farmer crop productivity in sub-Saharan Africa. Cogent Food Agric. 2017, 3, 1400933. [Google Scholar] [CrossRef]
- El-Ghamry, A.; Mosa, A.A.; Alshaal, T.; El-Ramady, H. Nanofertilizers vs. biofertilizers: New insights. Environ. Biodivers. Soil Secur. 2018, 2, 51–72. [Google Scholar]
- Herrmann, L.; Lesueur, D. Challenges of formulation and quality of biofertilizers for successful inoculation. Appl. Microbiol. Biotechnol. 2013, 97, 8859–8873. [Google Scholar] [CrossRef]
- Yadav, R.; Ramakrishna, W. Biochar as an environment-friendly alternative for multiple applications. Sustainability 2023, 15, 13421. [Google Scholar] [CrossRef]
S. No. | Microbe as Biofertilizer | Plants | Effects on Various Parameters | References |
---|---|---|---|---|
1 | Endomycorrhiza | Ceratonia siliqua L. | Drought tolerance enhanced due to higher stomatal conductance, photosynthetic efficiency, leaf water potential, chlorophyll, and carotenoids. Plant uptake of NPK and calcium, concentration of soluble sugars and protein content increased | [45] |
2 | Trichoderma harzianum, Pseudomonas fluorescens, Bacillus subtilis | Brassica oleracea var. capitata f. rubra | Increased NPK and plant growth attributes. Energy output, energy balance, maximum gross return, and net return were enhanced | [46] |
3 | Bacillus subtilis | Oryza sativa | Plasma treated bacteria increased bacterial vitality, improved colonization in roots and elevated the level of phytohormones, enhanced plant growth, yield, and tolerance to diseases | [47] |
4 | Brevundimonas spp. | Solanum tuberosum | Increased potato biomass, nitrogen content, nitrogen fixation as well as P-solubilization, improved plant growth and soil fertility | [48] |
5 | Alcaligenes faecalis, Bacillus amyloliquefaciens, Rhizobacteria, compost mixed biochar (CB) | Mentha piperita L. | A. faecalis + CB improved soil health and plant growth attributes: dry weight, chlorophyll and NPK | [49] |
6 | Pseudomonas putida, P. libanensis, P. aeruginosa B. subtilis, B. megaterium, B. cereus | Capsicum annuum L. | Infection by Phytophthora capsici accompanied with simultaneous increase in plant growth | [50] |
7 | B. cereus PK6-15, B. subtilis PK5-26, B. circulans PK3-15 & PK3-109 | Arabidopsis thaliana | Enhanced plant growth under salinity stress. B. circulans PK3-15 and PK3-109 inoculation resulted in >50% increase in plant fresh weight | [51] |
8 | Arbuscular mycorrhizal fungus and phosphate solubilizing bacteria | Helianthus tuberosus | Promoted plant and tuber growth under field conditions. PSB increased AMF spore density and colonization rate | [52] |
9 | Bacillus mycoides B38V | Helianthus annuus L. | Promoted plant growth and biomass | [53] |
10 | B. subtilis CB8A | Malus malus | P-solubilization was directly proportional to the production of siderophores, indole acetic acid and antifungal activity | [54]) |
11 | Pseudomonas fluorescens, Bacillus sp., Trichoderma atroviride isolates | Arachis hypogea | Significant improvement in seedling emergence, plant biomass and pod yield. A. flavus infection as well as aflatoxin production was reduced. | [55] |
12 | Streptomyces sp. PM1 and PM5 | Solanum lycopersicum | PM1: Significant reduction in soft rot disease and mortality of plants PM5: Promoted growth by direct interaction with Streptomyces sp. | [56] |
S. No. | Nanoparticles Used | Plants | Concentration Used | Mode of Application | Effect on Growth and Related Parameters | References | Country |
---|---|---|---|---|---|---|---|
1 | N and Zn | Wheat, pearl millet, sesame, mustard | 100 ppm and 50 ppm | Foliar | 24.2%, 8.4%, 5.4% and 4.2% higher yield in sesame, mustard, wheat, and pearl millet, respectively | [81] | India |
2 | K | Arachis hypogea L. | 150 + 150 ppm | Foliar | Increased nutrient content in shoot and seed | [82] | Egypt |
3 | Ca10(PO4)6 (OH)2 (nano-hydroxyapatite) | Glycine max | 50 ppm nHA 100 ppm nHA | Soil | No significant effect on soil and rhizosphere microbes | [83] | Canada |
4 | Fe3O4 | Helianthus annuus | 500 ppm | Soil | Iron nanoparticles improved the ability of sunflower roots and seeds to absorb certain elements | [84] | Poland |
5 | ZnO | Glycine max cv. Kowsar | 38 nm for spherical, 59 nm for floral-like, and 500 nm for rod-like | Soil | Highest oxidative stress response observed at 400 mg Zn/kg with spherical 38 nm ZnONPs. ZnONPs can serve as a nanofertilizer | [85] | Iran |
6 | SiO2 | Arabidopsis thaliana | 25, 100, 400 and 1600 mg SiO2 L−1 | Foliar | Protected plant from infection by the bacterial pathogen Pseudomonas | [86] | Switzerland |
7 | Se | Capsicum annuum, Cucumis sativus, Eruca sativa, Raphanus sativus, Solanum melongena, Solanum lycopersicum | 1, 5, 10, and 25 μg kg−1 | Soil | Selenium nanoparticles at 5 and 10 μg kg−1 showed the best effect on plant growth promotion | [87] | USA |
8 | CuO | Oryza sativa ssp. Japonica ‘Koshihikari’ | 0–100 mg/L | Soil | Arsenic in grains negatively correlated with Cu with beneficial effect of nCuO | [88] | USA |
9 | B | Beta vulgaris L. | 8% boric acid of the total solution | Foliar | Increased root yield, shoot yield, and biological yield | [89] | Egypt |
10 | Ti | Triticum aestivum | 0, 30, 50 and 100 mg kg−1 | Soil | Positive effect on yield and quality of wheat at lower concentration of TiO2-NPs | [16] | China and Pakistan |
11 | Ag | Zea mays | 200 ppm, further diluted to 25 ppm | Seeds treated with AgNPs before sowing; soil mode | Bacillus cereus LPR2 combined with Ag nanoparticles increased maize plant growth and also inhibited a fungal pathogen | [90] | India |
12 | Co and Ni | Capsicum annuum | 400 ppm of NiFe2O4, 500 ppm of CoFe2O4 nanoparticles | Soil | Reduced disease incidence of Fusarium wilt of Capsicum | [91] | India |
S. No. | Nano-Biofertilizer | Plants | Response | References | Country |
---|---|---|---|---|---|
1 | AgNPs and Bacillus cereus LPR2 | Zea mays | Enhanced plant growth and LPR2 strongly inhibited the growth of deleterious fungal pathogen | [90] | India |
2 | Iron nano-oxide, Pseudomonas and Mycorrhiza | Zea mays | Iron nano-oxide did not show any beneficial significant effect. Biofertilizer containing Pseudomonas and mycorrhiza increased yield both under normal conditions and drought stress | [105] | Iran |
3 | Chitosan nanoparticles and rhizospheric Pseudomonas monteilii | Vigna unguiculata | Enhanced shoot length, leaf number, and fresh weight | [106] | India |
4 | CuNPs and Piriformospora indica | Cajanus cajan | Healthy seedlings and maximum vitality | [107] | India |
5 | Magnetite nanoparticles (MNPs) and Bacillus sp. MR-1/2 | Oryza sativa | Increased N uptake and reduced oxidative stress in rice grown in deficit water conditions | [108] | Pakistan |
6 | Titania nanoparticles and Bacillus amyloliquefaciens UCMB5113 | Brassica napus | TiNPs increased the adhesion of Bacillus amyloliquefaciens UCMB5113 on roots and protected against infection | [109] | Sweden |
7 | Fe3O4-NPs and Chlorella K01 | Oryza sativa, Zea mays, Brassica nigra, Vigna radiata, Citrullus lanatus | Fe3O4-NPs significantly enhanced rice, corn, mustard, green gram, and watermelon germination, stimulated plant growth and resistance against a number of fungal pathogens | [110] | China |
8 | Nano-potassium fertilizer, compost manure and humic acid | Zea mays: maize hybrid ‘Pioneer SC 30N11’ | Significant increase in grain yield and quality of maize | [111] | Egypt and Saudi Arabia |
9 | AgNPs using Stenotrophomonas sp. BHU-S7 | Cicer arietinum | Adversely affected pathogenic propagules such as conidia and sclerotia leading to their reduced germination | [112] | India |
10 | FeNPs and Bacillus aryabhattai RSO25 | Triticum aestivum | FeNPs alone was recommended for achieving efficient Fe biofortification in wheat because combined treatment caused Fe accumulation in spikes | [113] | Spain |
11 | Carbon nanotubes and SiO2 nanoparticles, Bacillus velezensis encapsulated in sodium alginate–gelatin microcapsules | Pistacia vera | Nano formulations conferred protected PGPR from adverse environmental conditions and act as biocontrol agent | [114] | Iran and Russia |
12 | PGPR and SiNPs | Zea mays L. | Treatment enhanced yield and nutrient content in maize | [115] | Egypt |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, C.; Singh, J.; Karunakaran, A.; Ramakrishna, W. Evolution of Nano-Biofertilizer as a Green Technology for Agriculture. Agriculture 2023, 13, 1865. https://doi.org/10.3390/agriculture13101865
Patel C, Singh J, Karunakaran A, Ramakrishna W. Evolution of Nano-Biofertilizer as a Green Technology for Agriculture. Agriculture. 2023; 13(10):1865. https://doi.org/10.3390/agriculture13101865
Chicago/Turabian StylePatel, Chitranshi, Jyoti Singh, Anagha Karunakaran, and Wusirika Ramakrishna. 2023. "Evolution of Nano-Biofertilizer as a Green Technology for Agriculture" Agriculture 13, no. 10: 1865. https://doi.org/10.3390/agriculture13101865
APA StylePatel, C., Singh, J., Karunakaran, A., & Ramakrishna, W. (2023). Evolution of Nano-Biofertilizer as a Green Technology for Agriculture. Agriculture, 13(10), 1865. https://doi.org/10.3390/agriculture13101865