Implementation of a Circular Bioeconomy: Obtaining Cellulose Fibers Derived from Portuguese Vine Pruning Residues for Heritage Conservation, Oxidized with TEMPO and Ultrasonic Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Cellulose Extraction
2.3. Characterization of Cellulose
2.3.1. Optical Microscopy
2.3.2. Determination of CNCs Yield
2.3.3. Color Analysis
2.3.4. Film Thickness
2.3.5. Water Activity
2.3.6. Water Vapor Permeability (WVP)
2.3.7. Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance (FTIR-ATR)
2.3.8. Scanning Electron Microscopy (SEM)
2.3.9. X-Ray Diffraction
2.3.10. Differential Scanning Calorimeter (DSC)
2.4. Film Production
2.4.1. TEMPO Oxidation–Sonication
2.4.2. Solvent Casting
2.5. Statistical Analysis
3. Results
3.1. Cellulose Extraction from Vine Stalks
3.2. Fourier Transform Infrared (FTIR) Spectroscopy Analysis of Isolated Cellulose from Vine Stalks
3.3. Isolated Cellulose Fibers SEM Analysis
3.4. Production of Films from Isolated Cellulose from Vine Stalks
3.4.1. Film Thickness
3.4.2. Aw—Water Activity, WVP—Permeability, and Color Analysis of Films
3.5. FTIR Analysis of Produced Films
3.6. X-Ray Diffraction of the Films and Isolated Cellulose Granulates
3.7. DSC of the Films and Isolated Cellulose Granulates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samyn, P.; Schoukens, G.; Stanssens, D.; Vonck, L.; Abbeele, H. Hydrophobic waterborne coating for cellulose containing hybrid organic nanoparticle pigments with vegetable oils. Cellulose 2013, 20, 2625–2646. [Google Scholar] [CrossRef]
- Baskakov, S.A.; Baskakova, Y.V.; Kabachkov, E.N.; Kichigina, G.A.; Kushch, P.P.; Kiryukhin, D.P.; Krasnikova, S.S.; Badamshina, E.R.; Vasil’ev, S.G.; Soldatenkov, T.A.; et al. Cellulose from Annual Plants and Its Use for the Production of the Films Hydrophobized with Tetrafluoroethylene Telomers. Molecules 2022, 27, 6002. [Google Scholar] [CrossRef] [PubMed]
- Jesus, M.; Romaní, A.; Mata, F.; Domingues, L. Current Options in the Valorisation of Vine Pruning Residue for the Production of Biofuels, Biopolymers, Antioxidants, and Bio-Composites following the Concept of Biorefinery: A Review. Polymers 2022, 14, 1640. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues Machado, A.; Atatoprak, T.; Santos, J.; Alexandre, E.M.; Pintado, M.E.; Paiva, J.A.; Nunes, J. Potentialities of the Extraction Technologies and Use of Bioactive Compounds from Winery By-Products: A Review from a Circular Bioeconomy Perspective. Appl. Sci. 2023, 13, 7754. [Google Scholar] [CrossRef]
- Salgado-Ramos, M.; Mariatti, F.; Tabasso, S.; Sánchez-Verdú, M.P.; Moreno, A.; Cravotto, G. Sustainable and non-conventional protocols for the three-way valorisation of lignin from grape stalks. Chem. Eng. Process.-Process Intensif. 2022, 178, 109027. [Google Scholar] [CrossRef]
- Devesa-Rey, R.; Díaz-Fierros, F.; Barral, M. Trace metals in river bed sediments: An assessment of their partitioning and bioavailability by using multivariate exploratory analysis. J. Environ. Manag. 2010, 91, 2471–2477. [Google Scholar] [CrossRef] [PubMed]
- Dávila, I.; Gordobil, O.; Labidi, J.; Gullón, P. Assessment of suitability of vine shoots for hemicellulosic oligosaccharides production through aqueous processing. Bioresour. Technol. 2016, 211, 636–644. [Google Scholar] [CrossRef]
- Dávila, I.; Robles, E.; Egüés, I.; Labidi, J.; Gullón, P. The biorefinery concept for the industrial valorization of grape processing by-products. In Handbook of Grape Processing By-Products; Elsevier: Amsterdam, The Netherlands, 2017; pp. 29–53. [Google Scholar]
- Jesus, M.S.; Romaní, A.; Genisheva, Z.; Teixeira, J.A.; Domingues, L. Integral valorization of vine pruning residue by sequential autohydrolysis stages. J. Clean. Prod. 2017, 168, 74–86. [Google Scholar] [CrossRef]
- Paula, R.M.d. Investigação e Manipulação das Propriedades Mecânicas de Nanocelulose. Master’s Thesis, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil, 2021. [Google Scholar]
- Kaffashsaie, E.; Yousefi, H.; Nishino, T.; Matsumoto, T.; Mashkour, M.; Madhoushi, M.; Kawaguchi, H. Direct conversion of raw wood to TEMPO-oxidized cellulose nanofibers. Carbohydr. Polym. 2021, 262, 117938. [Google Scholar] [CrossRef]
- El Halal, S.L.M.; Colussi, R.; Deon, V.G.; Pinto, V.Z.; Villanova, F.A.; Carreño, N.L.V.; Dias, A.R.G.; da Rosa Zavareze, E. Films based on oxidized starch and cellulose from barley. Carbohydr. Polym. 2015, 133, 644–653. [Google Scholar] [CrossRef]
- Carter, E.C.; Schanda, J.D.; Hirschler, R.; Jost, S.; Luo, M.R.; Melgosa, M.; Ohno, Y.; Pointer, M.R.; Rich, D.C.; Vi’enot, F.; et al. CIE 15:2004, Colorimetry, 3rd ed.; Commission Internationale de l’Eclairage: Vienna, Austria, 2004. [Google Scholar]
- Farias, M.G.; Carvalho, C.; Takeiti, C.Y.; Ascheri, J. O efeito da permeabilidade ao vapor de água, atividade de água, molhabilidade e solubilidade em água em filmes de amido e polpa de acerola. In Proceedings of the Embrapa Agroindústria Tropical, VI Workshop da Rede de Nanotecnologia Aplicada ao Agronegócio, Fortaleza, Brazil, 16–18 April 2012; pp. 135–137. [Google Scholar]
- Nam, S.; French, A.D.; Condon, B.D.; Concha, M. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr. Polym. 2016, 135, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Segal, L.; Creely, J.J.; Martin Jr, A.; Conrad, C. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Saito, T.; Kimura, S.; Nishiyama, Y.; Isogai, A. Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose. Biomacromolecules 2007, 8, 2485–2491. [Google Scholar] [CrossRef] [PubMed]
- Gamage, S.; Banerjee, D.; Alam, M.M.; Hallberg, T.; Åkerlind, C.; Sultana, A.; Shanker, R.; Berggren, M.; Crispin, X.; Kariis, H.; et al. Reflective and transparent cellulose-based passive radiative coolers. Cellulose 2021, 28, 9383–9393. [Google Scholar] [CrossRef]
- Trilokesh, C.; Uppuluri, K.B. Isolation and characterization of cellulose nanocrystals from jackfruit peel. Sci. Rep. 2019, 9, 16709. [Google Scholar] [CrossRef] [PubMed]
- Pujol, D.; Liu, C.; Fiol, N.; Olivella, M.À.; Gominho, J.; Villaescusa, I.; Pereira, H. Chemical characterization of different granulometric fractions of grape stalks waste. Ind. Crops Prod. 2013, 50, 494–500. [Google Scholar] [CrossRef]
- Ratnakumar, A.; Samarasekara, A.; Amarasinghe, D.; Karunanayake, L. The influence of particle size on the extraction of cellulose nanofibers using chemical-ultrasonic process. Mater. Today Proc. 2022, 64, 274–278. [Google Scholar] [CrossRef]
- Araújo, L.; Machado, A.R.; Pintado, M.; Vieira, E.; Moreira, P. Toward a Circular Bioeconomy: Extracting Cellulose from Grape Stalks. Eng. Proc. 2023, 37, 86. [Google Scholar]
- El Achaby, M.; El Miri, N.; Hannache, H.; Gmouh, S.; Aboulkas, A. Production of cellulose nanocrystals from vine shoots and their use for the development of nanocomposite materials. Int. J. Biol. Macromol. 2018, 117, 592–600. [Google Scholar] [CrossRef]
- Rafidah, M.S.; Jahimin, A.; Sani, S.M. Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Sci. Technol. 2021, 55, 295–313. [Google Scholar]
- Abderrahim, B.; Abderrahman, E.; Mohamed, A.; Fatima, T.; Abdesselam, T.; Krim, O. Kinetic thermal degradation of cellulose, polybutylene succinate and a green composite: Comparative study. World J. Environ. Eng 2015, 3, 95–110. [Google Scholar]
- Ventura-Cruz, S.; Tecante, A. Extraction and characterization of cellulose nanofibers from Rose stems (Rosa spp.). Carbohydr. Polym. 2019, 220, 53–59. [Google Scholar] [CrossRef]
- Ouyang, X.; Wang, W.; Yuan, Q.; Li, S.; Zhang, Q.; Zhao, P. Improvement of lignin yield and purity from corncob in the presence of steam explosion and liquid hot pressured alcohol. RSC Adv. 2015, 5, 61650–61656. [Google Scholar] [CrossRef]
- Abdul Rahman, N.H.; Chieng, B.W.; Ibrahim, N.A.; Abdul Rahman, N. Extraction and characterization of cellulose nanocrystals from tea leaf waste fibers. Polymers 2017, 9, 588. [Google Scholar] [CrossRef] [PubMed]
- Echevarría-Guanilo, M.E.; Gonçalves, N.; Romanoski, P.J. Psychometric properties of measurement instruments: Conceptual bases and evaluation methods-part I. Texto Contexto-Enferm. 2017, 26. [Google Scholar] [CrossRef]
- Raghuwanshi, V.S.; Garnier, G. Cellulose Nano-Films as Bio-Interfaces. Front. Chem. 2019, 7, 535. [Google Scholar] [CrossRef]
- Matta Jr, M.D.d.; Sarmento, S.; Sarantópoulos, C.I.; Zocchi, S.S. Barrier properties of films of pea starch associated with xanthan gum and glycerol. Polímeros 2011, 21, 67–72. [Google Scholar] [CrossRef]
- Gonçalves, S.S.; Antunes, L.B.; Silveira, M.F.A.; de Souza, A.R.M.; de Moraes Carvalho, D. Efeito do glicerol nas propriedades mecânicas de filmes a base de quitosana. DESAFIOS-Rev. Interdiscip. Univ. Fed. Tocantins 2019, 6, 110–117. [Google Scholar] [CrossRef]
- Fakhouri, F.M. Bioplásticos Flexíveis e Biodegradáveis à Base de Amido e Gelatina. Ph.D. Thesis, Universidade Estadual dse Campinas, Faculdade de Engenharia de Alimentos, Campinas, Brazil, 2009. [Google Scholar]
- Avelino, K.R.d.S. Desenvolvimento e Caracterização de Filmes Comestíveis à Base de Tomate (Lycopersicon esculentum). Master’s Thesis, Universidade Federal da Grande Dourados, Dourados, Brazil, 2019. [Google Scholar]
- Wang, S.; Chen, X.; Fang, L.; Gao, H.; Han, M.; Chen, X.; Xia, Y.; Xie, L.; Yang, H. Double heterojunction CQDs/CeO2/BaFe12O19 magnetic separation photocatalysts: Construction, structural characterization, dye and POPs removal, and the interrelationships between magnetism and photocatalysis. Nucl. Anal. 2022, 1, 100026. [Google Scholar] [CrossRef]
- Wang, S.; Gao, H.; Fang, L.; Hu, Q.; Sun, G.; Chen, X.; Yu, C.; Tang, S.; Yu, X.; Zhao, X.; et al. Synthesis of novel CQDs/CeO2/SrFe12O19 magnetic separation photocatalysts and synergic adsorption-photocatalytic degradation effect for methylene blue dye removal. Chem. Eng. J. Adv. 2021, 6, 100089. [Google Scholar] [CrossRef]
- Chen, Q.-J.; Zhou, L.-L.; Zou, J.-Q.; Gao, X. The preparation and characterization of nanocomposite film reinforced by modified cellulose nanocrystals. Int. J. Biol. Macromol. 2019, 132, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
- Solano, A.C.V.; de Gante, C.R. Development of biodegradable films based on blue corn flour with potential applications in food packaging. Effects of plasticizers on mechanical, thermal, and microstructural properties of flour films. J. Cereal Sci. 2014, 60, 60–66. [Google Scholar] [CrossRef]
- Qu, R.; Tang, M.; Wang, Y.; Li, D.; Wang, L. TEMPO-oxidized cellulose fibers from wheat straw: Effect of ultrasonic pretreatment and concentration on structure and rheological properties of suspensions. Carbohydr. Polym. 2021, 255, 117386. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.R.; Pinheiro, A.C.; Vicente, A.A.; Souza-Soares, L.A.; Cerqueira, M.A. Liposomes loaded with phenolic extracts of Spirulina LEB-18: Physicochemical characterization and behavior under simulated gastrointestinal conditions. Food Res. Int. 2019, 120, 656–667. [Google Scholar] [CrossRef]
- Di Cola, E.; Grillo, I.; Ristori, S. Small angle X-ray and neutron scattering: Powerful tools for studying the structure of drug-loaded liposomes. Pharmaceutics 2016, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Caparino, O.; Tang, J.; Nindo, C.; Sablani, S.; Powers, J.; Fellman, J. Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’var.) powder. J. Food Eng. 2012, 111, 135–148. [Google Scholar] [CrossRef]
- Balea, A.; Fuente, E.; Tarrés, Q.; Pèlach, M.À.; Mutjé, P.; Delgado-Aguilar, M.; Blanco, A.; Negro, C. Influence of pretreatment and mechanical nanofibrillation energy on properties of nanofibers from Aspen cellulose. Cellulose 2021, 28, 9187–9206. [Google Scholar] [CrossRef]
- Zhai, L.; Kim, H.C.; Kim, J.W.; Choi, E.S.; Kim, J. Cellulose nanofibers isolated by TEMPO-oxidation and aqueous counter collision methods. Carbohydr. Polym. 2018, 191, 65–70. [Google Scholar]
- Berto, G.L.; Mattos, B.D.; Rojas, O.J.; Arantes, V. Single-step fiber pretreatment with monocomponent endoglucanase: Defibrillation energy and cellulose nanofibril quality. ACS Sustain. Chem. Eng. 2021, 9, 2260–2270. [Google Scholar] [CrossRef]
- Mendoza, D.J.; Browne, C.; Raghuwanshi, V.S.; Simon, G.P.; Garnier, G. One-shot TEMPO-periodate oxidation of native cellulose. Carbohydr. Polym. 2019, 226, 115292. [Google Scholar] [CrossRef]
- Dymińska, L.; Szatkowski, M.; Wróbel-Kwiatkowska, M.; Żuk, M.; Kurzawa, A.; Syska, W.; Gągor, A.; Zawadzki, M.; Ptak, M.; Mączka, M. Improved properties of micronized genetically modified flax fibers. J. Biotechnol. 2013, 164, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Wu, Q.; Wang, Q.; Wolcott, M. Mechanical activation and characterization of micronized cellulose particles from pulp fiber. Ind. Crops Prod. 2019, 141, 111750. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, C.; Li, S.; Yan, Y.; Yu, S.; Huang, L. Micronized cellulose particles from mechanical treatment and their performance on reinforcing polypropylene composite. Cellulose 2023, 30, 235–246. [Google Scholar] [CrossRef]
- Madureira, A.R.; Atatoprak, T.; Cabuk, D.; Sousa, F.; Pullar, R.C.; Pintado, M. Extraction and characterisation of cellulose nanocrystals from pineapple peel. Int. J. Food Stud. 2018, 7, 24–33. [Google Scholar] [CrossRef]
- Freixo, R.; Bastos, F.; Ribeiro, A.; Pereira, C.; Costa, E.; Ramos, O. Evaluation of different acid hydrolysis in sugarcane bagasse for cellulose-rich extract production. In Proceedings of the Encontro com a Ciência e Tecnologia em Portugal-Ciência, Lisbon, Portugal, 28–30 June 2021. [Google Scholar]
- Sahu, P.; Gupta, M.K. Water absorption behavior of cellulosic fibers polymer composites: A review on its effects and remedies. J. Ind. Text. 2020, 51, 7480S–7512S. [Google Scholar] [CrossRef]
- Yeng, L.C.; Wahit, M.U.; Othman, N. Thermal and flexural properties of regenerated cellulose(rc)/poly(3-hydroxybutyrate)(phb)biocomposites. J. Teknol. 2015, 75, 107–112. [Google Scholar] [CrossRef]
- Bahlouli, S.; Belaadi, A.; Makhlouf, A.; Alshahrani, H.; Khan, M.K.A.; Jawaid, M. Effect of Fiber Loading on Thermal Properties of Cellulosic Washingtonia Reinforced HDPE Biocomposites. Polymers 2023, 15, 2910. [Google Scholar] [CrossRef]
ΔE | |
---|---|
500 μm | 14.41 ± 4.51 |
300 μm | 18.77 ± 10.82 |
150 μm | 26.81 ± 0.34 |
Retain (<150 μm) | 7.75 ± 12.97 |
Sample (µm) | CI (%) | |
---|---|---|
Film | 500 | 67.38 ± 3.24 |
300 | 63.63 ± 2.99 | |
150 | 59.32 ± 0.61 | |
Retain | 63.64 ± 1.57 | |
Cellulose granulates | 500 | 74.23 ± 1.72 |
300 | 68.34 ± 2.92 | |
150 | 68.60 ± 0.63 | |
Retain | 66.82 ± 1.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araújo, L.; Machado, A.R.; Sousa, S.; Ramos, Ó.L.; Ribeiro, A.B.; Casanova, F.; Pintado, M.E.; Vieira, E.; Moreira, P. Implementation of a Circular Bioeconomy: Obtaining Cellulose Fibers Derived from Portuguese Vine Pruning Residues for Heritage Conservation, Oxidized with TEMPO and Ultrasonic Treatment. Agriculture 2023, 13, 1905. https://doi.org/10.3390/agriculture13101905
Araújo L, Machado AR, Sousa S, Ramos ÓL, Ribeiro AB, Casanova F, Pintado ME, Vieira E, Moreira P. Implementation of a Circular Bioeconomy: Obtaining Cellulose Fibers Derived from Portuguese Vine Pruning Residues for Heritage Conservation, Oxidized with TEMPO and Ultrasonic Treatment. Agriculture. 2023; 13(10):1905. https://doi.org/10.3390/agriculture13101905
Chicago/Turabian StyleAraújo, Liliana, Adriana R. Machado, Sérgio Sousa, Óscar L. Ramos, Alessandra B. Ribeiro, Francisca Casanova, Manuela E. Pintado, Eduarda Vieira, and Patrícia Moreira. 2023. "Implementation of a Circular Bioeconomy: Obtaining Cellulose Fibers Derived from Portuguese Vine Pruning Residues for Heritage Conservation, Oxidized with TEMPO and Ultrasonic Treatment" Agriculture 13, no. 10: 1905. https://doi.org/10.3390/agriculture13101905
APA StyleAraújo, L., Machado, A. R., Sousa, S., Ramos, Ó. L., Ribeiro, A. B., Casanova, F., Pintado, M. E., Vieira, E., & Moreira, P. (2023). Implementation of a Circular Bioeconomy: Obtaining Cellulose Fibers Derived from Portuguese Vine Pruning Residues for Heritage Conservation, Oxidized with TEMPO and Ultrasonic Treatment. Agriculture, 13(10), 1905. https://doi.org/10.3390/agriculture13101905