Specialty Rice (Oryza sativa L.) with High and Stable Grain Yield under Rainfed Lowland Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Field Evaluation
2.3. Experimental Design and Management
2.4. Analysis of Drought Tolerance Indices
2.5. Analysis of Milling and Grain Quality
2.6. Statistical Analysis
3. Results and Discussion
3.1. SMC, WTD, and Agro-Climatic Condition
3.2. Grain Yield
3.3. Evaluation of Yield Performance Using GGE Biplot Analyses
3.4. Drought Tolerance Indices
3.5. Unique Yield Characteristics of Selected Specialty Rice
3.6. Head Rice Recovery
3.7. Profitability Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GRiSP (Global Rice Science Partnership). Rice Almanac, 4th ed.; International Rice Research Institute: Los Baños, CA, USA, 2013. [Google Scholar]
- Lafitte, H.R.; Yongsheng, G.; Yan, S.; Li, Z.-K. Whole plant responses, key processes, and adaptation to drought stress: The case of rice. J. Exp. Bot. 2007, 58, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.O.; McNally, K.L.; Vera Cruz, C.; Serraj, R.; Henry, A. Screening of rice Gene bank germplasm for yield and selection of new drought tolerance donors. Field Crops Res. 2013, 147, 12–22. [Google Scholar] [CrossRef]
- Quiñones, C.; Mattes, N.; Faronilo, J.; Yadav, S.; Jagadish, K.S.V. Drought stress reduces grain yield by altering floral meristem development and sink size under dry-seeded rice cultivation. Crop Sci. 2017, 57, 2098–2108. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, X.; Liu, F.; Zhu, L.; Yu, H. Effect of Different Water Stress on Growth Index and Yield of Semi-Late Rice. Environ. Sci. Proc. 2023, 25, 84. [Google Scholar] [CrossRef]
- Praba, M.L.; Cairns, J.E.; Babu, R.C.; Lafitte, H.R. Identification of Physiological Traits Underlying Cultivar Differences in Drought Tolerance in Rice and Wheat. J. Agron. Crop Sci. 2009, 195, 30–46. [Google Scholar] [CrossRef]
- Salgotra, R.K.; Chauhan, B.S. Ecophysiological Responses of Rice (Oryza sativa L.) to Drought and High Temperature. Agronomy 2023, 13, 1877. [Google Scholar] [CrossRef]
- Lawlor, D.W. Limitation to Photosynthesis in Water-stressed Leaves: Stomata vs. Metabolism and the Role of ATP. Ann. Bot. 2002, 89, 871–885. [Google Scholar] [CrossRef]
- Wang, X.; Huang, J.; Peng, S.; Xiong, D. Leaf rolling precedes stomatal closure in rice (Oryza sativa) under drought conditions. J. Exp. Bot. 2023, erad316. [Google Scholar] [CrossRef]
- Mackill, D.J.; Coffman, W.R.; Garrity, D.P. Rainfed Lowland Rice Improvement; International Rice Research Institute: Manila, Philippines, 1996; 242p. [Google Scholar]
- Department of Agriculture-Bureau of Agricultural Research. Philippine Rainfed Agriculture Research; Development and Extension Program (PhiRARDEP) Framework and Action Agenda: Quezon City, Philippines, 2011. [Google Scholar]
- Pandey, S.; Bhandari, H. Drought: An overview. In Economic Costs of Drought and Rice Farmers’ Coping Mechanisms: A Cross-Country Comparative Analysis; Pandey, S., Bhandari, H., Hardy, B., Eds.; International Rice Research Institute: Los Baños, Philippines, 2007; 203p. [Google Scholar]
- Manalo, J.A., IV; van de Fliert, E.; Fielding, K. Rice farmers adapting to drought in the Philippines. Int. J. Agric. Sustain. 2020, 18, 594–605. [Google Scholar] [CrossRef]
- Li, G.; Tang, J.; Zheng, J.; Chu, C. Exploration of rice yield potential: Decoding agronomic and physiological traits. Crop J. 2021, 9, 577–589. [Google Scholar] [CrossRef]
- Panda, D.; Mishra, S.S.; Behera, P.K. Drought tolerance in rice: Focus on recent mechanisms and approaches. Rice Sci. 2021, 28, 119–132. [Google Scholar] [CrossRef]
- Venuprasad, R.; Lafitte, H.R.; Atlin, G.N. Response to direct selection for grain yield under drought stress in rice. Crop Sci. 2007, 47, 285–293. [Google Scholar] [CrossRef]
- Kumar, A.; Bernier, J.; Verulkar, S.; Lafitte, H.R.; Atlin, G.N. Breeding for drought tolerance: Direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations. Field Crops Res. 2008, 107, 221–231. [Google Scholar] [CrossRef]
- Kumar, A.; Dixit, S.; Ram, T.; Yadaw, R.B.; Mishra, K.K.; Mandal, N.P. Breeding high-yielding drought-tolerant rice: Genetic variations and conventional and molecular approaches. J. Exp. Bot. 2014, 65, 6265–6278. [Google Scholar] [CrossRef] [PubMed]
- Khanna, A.; Anumalla, M.; Catolos, M.; Bartholomé, J.; Fritsche-Neto, R.; Platten, J.D.; Pisano, D.J.; Gulles, A.; Sta Cruz, M.T.; Ramos, J.; et al. Genetic Trends Estimation in IRRIs Rice Drought Breeding Program and Identification of High Yielding Drought-Tolerant Lines. Rice 2022, 15, 14. [Google Scholar] [CrossRef] [PubMed]
- Juliano, B.O.; Villareal, C.P. Grain Quality Evaluation of World Rices; International Rice Research Institution: Los Baños, Philippines, 1993. [Google Scholar]
- Beltran, J.C.; Bordey, F.H.; Moya, P.F.; Relado-Sevilla, R.Z.; Romero, M.V. Philippine Specialty Rice: Understanding Production, Culture, Quality, and Market; Philippine Rice Research Institute and Manila (Philippines); International Rice Research Institute: Science City of Muñoz, Philippines, 2020; 380p. [Google Scholar]
- Yamuangmorn, S.; Prom-u-Thai, C. The potential of high-anthocyanin purple rice as a functional ingredient in human health. Antioxidants 2021, 10, 833. [Google Scholar] [CrossRef] [PubMed]
- Buttery, R.G.; Ling, L.C.; Juliano, B.O. 2-acetyl-1-pyrroline: An important aroma component of cooked rice. Chem. Ind. 1982, 12, 958–959. [Google Scholar]
- Rathna Priya, T.; Eliazer Nelson, A.R.L.; Ravichandran, K. Nutritional and functional properties of coloured rice varieties of South India: A review. J. Ethn. Food 2019, 6, 11. [Google Scholar] [CrossRef]
- Suebpongsang, P.; Ekasingh, B.; Cramb, R. Commercialisation of rice farming in Northeast Thailand. In White Gold: The Commercialisation of Rice Farming in the Lower Mekong Basin; Cramb, R., Ed.; Palgrave Macmillan, Gateway East Singapore: Singapore, 2019. [Google Scholar] [CrossRef]
- Grandstaff, T.B.; Grandstaff, S.; Limpinuntana, V.; Suphanchaimat, N. Rainfed revolution in Northeast Thailand. Southeast Asian Stud. 2008, 46, 289–376. [Google Scholar]
- Padolina, T.F.; (Retired Plant Breeder, Philippine Rice Research Institute Affiliation, Science City of Muñoz, Nueva Ecija, Philippines). Personal communication, 2018.
- PhilRice. Pinoy Rice Knowledge Bank. 2019. Available online: https://www.pinoyrice.com/rice-varieties/ (accessed on 18 March 2019).
- Arocena, E.C.; (Plant Breeder, Philippine Rice Research Institute Affiliation, Science City of Muñoz, Nueva Ecija, Philippines). Personal communication, 2019.
- Fernandez, G.C.J. Effective selection criteria for assessing plant stress tolerance. In Proceeding of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress, Shanhua, Taiwan, 13–18 August 1992. [Google Scholar] [CrossRef]
- Rosielle, A.A.; Hamblin, J. Theoretical aspects of selection for yield in stress and non-stress environments. Crop Sci. 1981, 21, 943–946. [Google Scholar] [CrossRef]
- Farshadfar, E.; Mohammadi, R.; Farshadfar, M.; Dabiri, S. Relationships and repeatability of drought tolerance indices in wheat-rye disomic addition lines. Aust. J. Crop Sci. 2013, 7, 130–198. [Google Scholar]
- Fischer, R.; Maurer, R. Drought Resistance in Spring Wheat Cultivars. I. Grain Yield Responses. Aust. J. Agric. Res. 1978, 29, 897–912. [Google Scholar] [CrossRef]
- Yan, W.; Tinker, N.A. Biplot analysis of multi-environment trial data: Principles and applications. Can. J. Plant Sci. 2006, 86, 623–645. [Google Scholar] [CrossRef]
- Olivoto, T.; Lúcio, A.D. Metan: An R package for multi-environment trial analysis. Methods Ecol. Evol. 2020, 11, 783–789. [Google Scholar] [CrossRef]
- Olivoto, T.; Lúcio, A.D.; da Silva, J.A.; Sari, B.G.; Diel, M.I. Mean Performance and Stability in Multi-Environment Trials II: Selection Based on Multiple Traits. J. Agron. 2019, 111, 2961–2969. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 16 March 2023).
- Torres, R.O.; Henry, A. Yield stability of selected rice breeding lines and donors across conditions of mild to moderately severe drought stress. Field Crops Res. 2018, 220, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Robinson, H.F.; Comstock, R.E.; and Harvey, P.H. Breeding procedure designed to make maximum use of both general and specific combining ability. Agron. J. 1949, 41, 360–367. [Google Scholar] [CrossRef]
- Banayo, N.P.M.; Rahon, R.E.; Santa Cruz, P.; Kato, Y. Fertilizer responsiveness of high-yielding drought-tolerant rice in rainfed lowlands. Plant Prod. Sci. 2020, 24, 279–289. [Google Scholar] [CrossRef]
- Yamane, K.; Garcia, R.; Imayoshi, K.; Mabesa-Telosa, R.C.; Banayo, N.P.M.C.; Vergara, G.; Yamauchi, A.; Cruz, P.S.; Kato, Y. Seed vigour contributes to yield improvement in dry direct-seeded rainfed lowland rice. Ann. Appl. Biol. 2018, 172, 100–110. [Google Scholar] [CrossRef]
- Adhikari, M.; Adhikari, N.R.; Sharma, S.; Gairhe, J.; Bhandari, R.R.; Paudel, S. Evaluation of Drought Tolerant Rice Cultivars Using Drought Tolerant Indices under Water Stress and Irrigated Condition. Am. J. Clim. Change 2019, 8, 228–236. [Google Scholar] [CrossRef]
- Gauchan, D.; Sapkota, B.; Gautam, S.; Thapa Magar, D.B.; Sharma, B.; Amatya, S.; Sapkota, S.; Nepali, M.B.; Singh, S.; Singh, U.S. Development and Dissemination of Stress-tolerant Rice Varieties in Nepal; IRRI/NARC STRASA Project; Socioeconomics and Agricultural Research Policy Division (SARPOD), Nepal Agricultural Research Council: Khumaltar, Nepal, 2014. [Google Scholar]
- Dhawan, G.; Kumar, A.; Dwivedi, P.; Gopala Krishnan, S.; Pal, M.; Vinod, K.K.; Nagarajan, M.; Bhowmick, P.K.; Bollinedi, H.; Ellur, R.K.; et al. 2021. Introgression of qDTY1.1 Governing Reproductive Stage Drought Tolerance into an Elite Basmati Rice Variety “Pusa Basmati 1” through Marker Assisted Backcross Breeding. Agronomy 2021, 11, 202. [Google Scholar] [CrossRef]
- Waheed, R.; Ignacio, J.C.; Arbelaez, J.D.; Juanillas, V.M.; Asif, M.; Henry, A.; Kretzschmar, T.; Arif, M. Drought Response QTLs in a Super Basmati × Azucena Population by High-density GBS-based SNP Linkage Mapping. Plant Breed. 2021, 140, 758–774. [Google Scholar] [CrossRef]
- Henry, A.; Gowda, V.R.P.; Torres, R.O.; McNally, K.L.; Serraj, R. Variation in root system architecture and drought response in rice (Oryza sativa): Phenotyping of the Oryza SNP panel in rainfed lowland fields. Field Crops Res. 2011, 120, 205–214. [Google Scholar] [CrossRef]
- Xangsayasane, P.; Jongdee, B.; Pantuwan, G.; Fukai, S.; Mitchell, J.H.; Inthapanya, P.; Jothiyangkoon, D. Genotypic performance under intermittent and terminal drought screening in rainfed lowland rice. Field Crops Res. 2014, 156, 281–292. [Google Scholar] [CrossRef]
- Villa, J.E.; Henry, A.; Xie, F.; Serraj, R. Hybrid rice performance in environments of increasing drought severity. Field Crops Res. 2012, 125, 14–24. [Google Scholar] [CrossRef]
- Ahakpaz, F.; Abdi, H.; Neyestani, E.; Hesami, A.; Mohammadi, B.; Mahmoudi, K.N.; Abedi-Asl, G.; Noshabadi, M.R.J.; Ahakpaz, F.; Alipour, H. Genotype by environment interaction analysis for grain yield of barley genotypes under dryland conditions and the role of monthly rainfall, Agric. Water Manag. 2021, 245, 106665. [Google Scholar] [CrossRef]
- Singamsetti, A.; Shahi, J.P.; Zaidi, P.H.; Seetharam, K.; Vinayan, M.T.; Kumar, M.; Singla, S.; Shikha, K.; Madankar, K. Genotype× environment interaction and selection of maize (Zea mays L.) hybrids across moisture regimes. Field Crops Res. 2021, 270, 108224. [Google Scholar] [CrossRef]
- Pour-Aboughadareh, A.; Barati, A.; Koohkan, S.A.; Jabari, M.; Marzoghian, A.; Gholipoor, A.; Shahbazi-Homonloo, K.; Zali, H.; Poodineh, O.; Kheirgo, M. Dissection of genotype-by-environment interaction and yield stability analysis in barley using AMMI model and stability statistics. Bull. Natl. Res. Cent. 2022, 46, 19. [Google Scholar] [CrossRef]
- Raman, A.; Verulkar, S.; Mandal, N.; Variar, M.; Shukla, V.; Dwivedi, J.; Singh, B.; Singh, O.; Swain, P.; Mall, A.; et al. Drought yield index to select high yielding rice lines under different drought stress severities. Rice 2012, 5, 31. [Google Scholar] [CrossRef]
- Bennani, S.; Nsarellah, N.; Jlibene, M.; Tadesse, W.; Birouk, A.; Ouabbou, H. Efficiency of drought tolerance indices under different stress severities for bread wheat selection. AJCS 2017, 11, 395–405. [Google Scholar] [CrossRef]
- Mau, Y.S.; Ndiwa, A.S.S.; Oematan, S.S.; Markus, J.E.R. Drought tolerance indices for selection of drought tolerant, high yielding upland rice genotypes. AJCS 2019, 13, 170–178. [Google Scholar] [CrossRef]
- Hussain, T.; Hussain, N.; Ahmed, M.; Nualsri, C.; Duangpan, S. Responses of lowland rice genotypes under terminal water stress and identification of drought tolerance to stabilize rice productivity in Southern Thailand. Plants 2021, 10, 2565. [Google Scholar] [CrossRef] [PubMed]
- Kandel, B.P.; Joshi, L.P.; Sharma, S.; Adhikari, P.; Koirala, B.; Shrestha, K. Drought tolerance screening of rice genotypes in mid-hills of Nepal using various drought indices, Acta Agriculturae Scandinavica. Sect. B-Soil Plant Sci. 2022, 72, 744–750. [Google Scholar] [CrossRef]
- Asrat, S.; Yesuf, M.; Carlsson, F.; Wale, E.; Farmers’ Preferences for Crop Variety Traits: Lessons for on-Farm Conservation and Technology Adoption. Environment for Development Initiative. 2009. Available online: http://www.jstor.org/stable/resrep14912 (accessed on 25 August 2023).
- Maligalig, R.; Demont, M.; Umberger, W.J.; Peralta, A. Understanding Filipino Rice Farmer Preference Heterogeneity for Varietal Trait Improvements: A Latent Class Analysis. J. Agric. Econ. 2021, 72, 134–157. [Google Scholar] [CrossRef] [PubMed]
- Powell, N.; Ji, X.; Ravash, R.; Edlington, J.; Dolferus, R. Yield stability for cereals in a changing climate. Funct. Plant Biol. FPB 2012, 39, 539–552. [Google Scholar] [CrossRef] [PubMed]
- Stuecker, M.F.; Tigchelaar, M.; Kantar, M.B. Climate variability impacts on rice production in the Philippines. PLoS ONE 2018, 13, e0201426. [Google Scholar] [CrossRef] [PubMed]
- Niones, J.M.; Suralta, R.R.; Inukai, Y.; Yamauchi, A. Field evaluation on functional roles of root plastic responses on dry matter production and grain yield of rice under cycles of transient soil moisture stresses using chromosome segment substitution lines. Plant Soil 2012, 359, 107–120. [Google Scholar] [CrossRef]
- Suralta, R.R.; Lucob, N.B.; Perez, L.M. Shoot and root development in rice (Oryza sativa L.) genotypes during progressive drying in soils with varying moisture regimes. PJCS 2012, 37, 1–12. [Google Scholar]
- Kano-Nakata, M.; Gowda, V.R.P.; Henry, A.; Serraj, R.; Inukai, Y.; Fujita, D.; Kobayashi, N.; Suralta, R.R.; Yamauchi, A. Functional roles of the plasticity of root system development in biomass production and water uptake under rainfed lowland conditions. Field Crops Res. 2013, 144, 288–296. [Google Scholar] [CrossRef]
- RTWG (Rice Technical Working Group). National Cooperative Testing Manual for Rice: Guidelines and Policies; RTWG, National Seed Industry Council, Department of Agriculture: Quezon City, Philippines, 1997; 113p. [Google Scholar]
- PSA. Price Situationer of Selected Agricultural Commodities First Phase of June 2021. Available online: https://psa.gov.ph/statistics/price-situationer/selected-agri-commodities/node/164718 (accessed on 30 June 2021).
- Exchange Rates. 2021. Available online: https://exchangerate.org.uk (accessed on 23 June 2021).
Name | Country of Origin | Year Acquired | Collection Number | Grain Yield (t ha−1) | Remarks |
---|---|---|---|---|---|
NSIC Rc192 (DT check) | Philippines | 2016 | CSRc-101 | 3.7 | Modern variety |
Aromatic | |||||
Basmati 370 | India | 2017 | CSRc-123 | 3.1 | Traditional variety |
CLRice-1 | Philippines | 2017 | CSRc-115 | 3.5 | Improved line |
NSIC Rc34 | Philippines | 2016 | CSRc-102 | 4.8 | Modern variety |
NSIC Rc218 | Philippines | 2016 | CSRc-103 | 3.8 | Modern variety |
NSIC Rc342 | Philippines | 2016 | CSRc-104 | 4.3 | Modern variety |
NSIC Rc344 | Philippines | 2016 | CSRc-105 | 5.3 | Modern variety |
Pigmented | |||||
Black rice | Philippines | 2016 | CSRc-112 | 3.8 | Traditional variety |
Calatrava | Philippines | 2016 | CSRc-114 | 3.4 | Traditional variety |
CLRice-2 | Philippines | 2017 | CSRc-121 | 3.6 | Improved line |
CLRice-3 | Philippines | 2017 | CSRc-122 | 3.5 | Improved line |
Pinilisa | Philippines | 2016 | CSRc-111 | 3.0 | Traditional variety |
Red rice | Philippines | 2016 | CSRc-113 | 3.2 | Traditional variety |
Glutinous | |||||
NSIC Rc15 | Philippines | 2016 | CSRc-106 | 5.4 | Modern variety |
NSIC Rc17 | Philippines | 2016 | CSRc-107 | 4.2 | Modern variety |
NSIC Rc19 | Philippines | 2016 | CSRc-108 | 4.5 | Modern variety |
NSIC Rc21 | Philippines | 2016 | CSRc-109 | 4.5 | Modern variety |
NSIC Rc31 | Philippines | 2016 | CSRc-110 | 4.7 | Modern variety |
Genotype | Water Treatment | Wet Season | Water Treatment | Dry Season | ||
---|---|---|---|---|---|---|
2019 | 2020 | 2020 | 2021 | |||
Aromatic | ||||||
NSIC Rc192 (DT check) | Irrigated | 6.90 a | 5.32 cd | Irrigated | 7.89 abc | 7.10 b |
Rainfed | 6.33 ab | 4.84 cdef | Mild drought | 4.21 e | 1.34 e | |
Rainfed-late | n.a. | 1.78 k | Severe drought | 0.98 j | n.a. | |
NSIC Rc344 | Irrigated | 6.28 ab | 5.22 cde | Irrigated | 7.50 bcd | 6.93 b |
Rainfed | 6.39 ab | 5.02 cdef | Mild drought | 3.34 ef | 2.60 d | |
Rainfed-late | n.a. | 3.66 ghi | Severe drought | 1.80 ghij | n.a. | |
NSIC Rc342 | Irrigated | 6.09 b | 6.30 ab | Irrigated | 8.93 a | 8.84 a |
Rainfed | 5.64 bc | 6.78 a | Mild drought | 2.77 fg | 1.87 de | |
Rainfed-late | n.a. | 2.54 jk | Severe drought | 2.26 fghi | n.a. | |
NSIC Rc218 | Irrigated | 4.77 de | 4.72 cdef | Irrigated | 8.28 ab | 6.97 b |
Rainfed | 5.25 cd | 4.78 cdef | Mild drought | 2.69 fgh | 2.51 de | |
Rainfed-late | n.a. | 2.09 k | Severe drought | 1.61 ghij | n.a. | |
NSIC Rc34 | Irrigated | 4.56 def | 5.63 bc | Irrigated | 8.35 ab | 7.07 b |
Rainfed | 5.16 cde | 4.12 fgh | Mild drought | 3.02 ef | 1.79 de | |
Rainfed-late | n.a. | 2.74 ijk | Severe drought | 1.81 ghij | n.a. | |
Basmati 370 | Irrigated | 3.93 fg | 5.27 cd | Irrigated | 7.01 cd | 7.13 b |
Rainfed | 4.38 ef | 4.28 efg | Mild drought | 2.78 fg | 2.17 de | |
Rainfed-late | n.a. | 3.18 hij | Severe drought | 1.25 ij | n.a. | |
CLRice-1 | Irrigated | 3.46 g | 3.25 hij | Irrigated | 6.66 d | 5.34 c |
Rainfed | 3.80 fg | 4.47 defg | Mild drought | 1.53 hij | 1.58 de | |
Rainfed-late | n.a. | 3.18 hij | Severe drought | 1.72 ghij | n.a. | |
Pigmented | ||||||
NSIC Rc192 (DT check) | Irrigated | 6.90 a | 5.32 bc | Irrigated | 7.89 a | 7.10 b |
Rainfed | 6.33 a | 4.84 c | Mild drought | 4.21 cd | 1.34 ef | |
Rainfed-late | n.a. | 1.78 fg | Severe drought | 0.98 hij | n.a. | |
Black rice | Irrigated | 4.83 bc | 7.13 a | Irrigated | 7.79 a | 6.77 b |
Rainfed | 5.98 ab | 5.68 bc | Mild drought | 3.19 de | 1.97 e | |
Rainfed-late | n.a. | 2.78 def | Severe drought | 2.11 fg | n.a. | |
CLRice-2 | Irrigated | 4.68 cd | 6.07 ab | Irrigated | 8.01 a | 7.93 a |
Rainfed | 5.91 ab | 5.58 bc | Mild drought | 2.45 ef | 1.28 ef | |
Rainfed-late | n.a. | 2.14 defg | Severe drought | 2.01 fgh | n.a. | |
Red rice | Irrigated | 4.50 cde | 5.12 bc | Irrigated | 6.18 b | 5.77 c |
Rainfed | 4.68 cd | 5.04 bc | Mild drought | 2.21 ef | 1.65 e | |
Rainfed-late | n.a. | 2.57 defg | Severe drought | 1.13 ghi | n.a. | |
Calatrava | Irrigated | 3.38 ef | 4.52 c | Irrigated | 5.24 bc | 4.63 d |
Rainfed | 3.53 def | 3.23 d | Mild drought | 1.99 fgh | 1.39 ef | |
Rainfed-late | n.a. | 1.45 g | Severe drought | 1.63 fghi | n.a. | |
CLRice-3 | Irrigated | 3.23 f | 2.61 defg | Irrigated | 5.15 bc | 5.14 cd |
Rainfed | 3.17 f | 3.22 d | Mild drought | 2.30 ef | 1.28 ef | |
Rainfed-late | n.a. | 1.49 g | Severe drought | 1.54 fghi | n.a. | |
Pinilisa | Irrigated | 0.86 g | 4.62 c | Irrigated | 3.52 d | 7.09 b |
Rainfed | 1.52 g | 3.12 de | Mild drought | 0.89 ij | 0.87 f | |
Rainfed-late | n.a. | 1.93 efg | Severe drought | 0.00 j | n.a. | |
Glutinous | ||||||
NSIC Rc192 (DT check) | Irrigated | 6.90 a | 5.32 a | Irrigated | 7.89 a | 7.10 b |
Rainfed | 6.33 ab | 4.84 ab | Mild drought | 4.21 c | 1.34 cd | |
Rainfed-late | n.a. | 1.78 e | Severe drought | 0.98 e | n.a. | |
NSIC Rc15 | Irrigated | 4.56 cd | 5.54 a | Irrigated | 7.67 a | 9.50 a |
Rainfed | 6.85 a | 5.42 a | Mild drought | 2.05 d | 2.47 c | |
Rainfed-late | n.a. | 3.30 cd | Severe drought | 1.76 de | n.a. | |
NSIC Rc21 | Irrigated | 4.32 cd | 5.04 ab | Irrigated | 7.77 a | 7.35 b |
Rainfed | 5.22 bc | 4.91 ab | Mild drought | 1.62 de | 1.66 cd | |
Rainfed-late | n.a. | 2.95 de | Severe drought | 0.85 e | n.a. | |
NSIC Rc19 | Irrigated | 4.23 cd | 5.43 a | Irrigated | 6.33 b | 7.50 b |
Rainfed | 5.09 c | 4.61 ab | Mild drought | 1.65 de | 1.06 d | |
Rainfed-late | n.a. | 2.95 de | Severe drought | 1.29 de | n.a. | |
NSIC Rc31 | Irrigated | 3.50 d | 4.88 ab | Irrigated | 7.08 ab | 6.89 b |
Rainfed | 4.83 c | 4.68 ab | Mild drought | 2.04 d | 1.93 cd | |
Rainfed-late | n.a. | 2.69 de | Severe drought | 1.02 e | n.a. | |
NSIC Rc17 | Irrigated | 3.49 d | 4.41 abc | Irrigated | 6.12 b | 6.66 b |
Rainfed | 4.65 cd | 3.88 bcd | Mild drought | 2.03 d | 1.42 cd | |
Rainfed-late | n.a. | 2.69 de | Severe drought | 1.75 de | n.a. |
Variety | Rainfed | Controlled Drought | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GMP | MP | HMI | STI | TOL | SSI | GMP | MP | HMI | STI | TOL | SSI | ||
NSIC Rc192 (DT check) | 5.13 (4) | 5.21 (4) | 5.06 (5) | 1.35 (4) | 1.79 (18) | 2.10 (17) | 3.65 (4) | 4.14 (4) | 3.21 (4) | 0.22 (3) | 3.93 (19) | 0.13 (1) | |
Aromatic | |||||||||||||
NSIC Rc344 | 5.38 (2) | 5.39 (3) | 5.36 (2) | 1.48 (2) | 0.73 (13) | 0.91 (7) | 3.85 (1) | 4.17 (3) | 3.56 (1) | 0.25 (1) | 3.17 (12) | 0.13 (1) | |
NSIC Rc342 | 5.56 (1) | 5.59 (1) | 5.52 (1) | 1.58 (1) | 1.21 (17) | 1.40 (14) | 3.78 (3) | 4.25 (1) | 3.36 (3) | 0.24 (2) | 3.89 (18) | 0.13 (1) | |
NSIC Rc218 | 4.38 (11) | 4.39 (12) | 4.37 (12) | 0.98 (10) | 0.70 (11) | 1.06 (10) | 3.28 (7) | 3.51 (8) | 3.07 (7) | 0.18 (5) | 2.48 (6) | 0.15 (3) | |
NSIC Rc34 | 4.52 (7) | 4.55 (8) | 4.49 (9) | 1.04 (7) | 1.09 (15) | 1.53 (16) | 3.35 (5) | 3.65 (5) | 3.08 (5) | 0.19 (4) | 2.89 (8) | 0.15 (3) | |
Basmati 370 | 4.26 (12) | 4.27 (13) | 4.25 (13) | 0.93 (11) | 0.66 (9) | 1.14 (13) | 3.09 (10) | 3.34 (9) | 2.85 (9) | 0.16 (7) | 2.53 (7) | 0.16 (4) | |
CLRice-1 | 3.49 (14) | 3.49 (15) | 3.48 (15) | 0.62 (13) | −0.27 (1) | −0.57 (1) | 2.33 (16) | 2.48 (16) | 2.18 (15) | 0.09 (12) | 1.74 (2) | 0.19 (7) | |
Pigmented | |||||||||||||
Black rice | 5.36 (3) | 5.40 (2) | 5.33 (3) | 1.47 (3) | 1.17 (16) | 1.40 (14) | 3.80 (2) | 4.20 (2) | 3.45 (2) | 0.24 (2) | 3.56 (17) | 0.13 (1) | |
CLRice -2 | 4.94 (6) | 4.96 (7) | 4.92 (6) | 1.25 (6) | 0.83 (14) | 1.11 (12) | 3.21 (9) | 3.65 (6) | 2.82 (10) | 0.17 (6) | 3.46 (15) | 0.14 (2) | |
Red rice | 4.44 (9) | 4.45 (10) | 4.42 (10) | 1.01 (8) | 0.72 (12) | 1.07 (11) | 2.83 (11) | 3.24 (10) | 2.47 (11) | 0.14 (8) | 3.15 (11) | 0.16 (4) | |
Calatrava | 3.29 (15) | 3.34 (16) | 3.23 (16) | 0.55 (14) | 1.21 (17) | 2.21 (18) | 2.57 (14) | 2.81 (15) | 2.35 (14) | 0.11 (11) | 2.28 (5) | 0.18 (6) | |
CLRice -3 | 2.77 (16) | 2.77 (17) | 2.76 (17) | 0.39 (15) | 0.29 (4) | 0.72 (5) | 2.23 (17) | 2.31 (17) | 2.16 (16) | 0.08 (13) | 1.21 (1) | 0.19 (7) | |
Pinilisa | 2.45 (17) | 2.46 (18) | 2.43 (18) | 0.31 (16) | 0.55 (7) | 1.45 (15) | 1.27 (18) | 1.66 (18) | 0.96 (19) | 0.03 (14) | 2.15 (3) | 0.25 (10) | |
Glutinous | |||||||||||||
NSIC Rc15 | 5.12 (5) | 5.12 (5) | 5.12 (4) | 1.34 (5) | −0.14 (2) | −0.20 (2) | 3.25 (8) | 3.57 (7) | 2.96 (8) | 0.18 (5) | 2.96 (9) | 0.15 (3) | |
NSIC Rc21 | 4.52 (7) | 4.52 (9) | 4.51 (7) | 1.04 (7) | 0.32 (5) | 0.49 (4) | 2.54 (15) | 3.03 (13) | 2.13 (17) | 0.11 (11) | 3.30 (14) | 0.16 (4) | |
NSIC Rc19 | 4.51 (8) | 4.52 (9) | 4.50 (8) | 1.04 (7) | 0.61 (8) | 0.91 (8) | 2.54 (15) | 3.08 (12) | 2.09 (18) | 0.11 (11) | 3.49 (16) | 0.16 (4) | |
NSIC Rc31 | 4.40 (10) | 4.41 (11) | 4.39 (11) | 0.99 (9) | 0.69 (10) | 1.04 (9) | 2.81 (12) | 3.21 (11) | 2.46 (12) | 0.13 (9) | 3.09 (10) | 0.16 (4) | |
NSIC Rc17 | 3.84 (13) | 3.84 (14) | 3.84 (14) | 0.76 (12) | 0.21 (3) | 0.38 (3) | 2.62 (13) | 2.84 (14) | 2.41 (13) | 0.12 (10) | 2.22 (4) | 0.17 (5) |
Variety | Head Rice Recovery (%) | |||
---|---|---|---|---|
19WS | 20WS | Mean | ||
NSIC Rc192 (Drought tolerant check) | 51.94 abc | 54.38 ab | 53.16 | |
Aromatic | ||||
NSIC Rc344 | 52.99 abc | 53.97 ab | 53.48 | |
NSIC Rc342 | 49.60 abcd | 53.02 ab | 51.31 | |
NSIC Rc218 | 55.72 a | 49.00 abc | 52.36 | |
NSIC Rc34 | 54.25 ab | 52.69 abc | 53.47 | |
Basmati 370 | 40.17 de | 47.32 bcd | 43.74 | |
CLRice-1 | 34.31 ef | 38.46 de | 36.39 | |
Pigmented | ||||
Black rice | 40.18 de | 42.66 cd | 41.42 | |
CLRice-2 | 29.62 f | 32.64 ef | 31.13 | |
Red rice | 48.26 abcd | 47.39 bcd | 47.83 | |
Calatrava | 46.08 bcd | 47.22 bcd | 46.65 | |
CLRice-3 | 31.86 ef | 33.62 ef | 32.74 | |
Pinilisa | 43.96 cd | 31.30 f | 37.63 | |
Glutinous | ||||
NSIC Rc15 | 53.12 abc | 58.47 a | 55.79 | |
NSIC Rc21 | 53.90 ab | 55.75 ab | 54.82 | |
NSIC Rc19 | 50.45 abc | 52.34 abc | 51.40 | |
NSIC Rc31 | 46.21 abcd | 52.74 abc | 49.47 | |
NSIC Rc17 | 46.19 abcd | 58.54 a | 52.37 | |
Year (Y) | ns | |||
Genotype (G) | ** | |||
Y × G | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agustin, A.M.L.; Ordonio, J.L.; Natividad, M.B.S.; Lucob-Agustin, N.B.; Suralta, R.R.; Ehara, H.; Mitsuya, S.; Kano-Nakata, M. Specialty Rice (Oryza sativa L.) with High and Stable Grain Yield under Rainfed Lowland Conditions. Agriculture 2023, 13, 1985. https://doi.org/10.3390/agriculture13101985
Agustin AML, Ordonio JL, Natividad MBS, Lucob-Agustin NB, Suralta RR, Ehara H, Mitsuya S, Kano-Nakata M. Specialty Rice (Oryza sativa L.) with High and Stable Grain Yield under Rainfed Lowland Conditions. Agriculture. 2023; 13(10):1985. https://doi.org/10.3390/agriculture13101985
Chicago/Turabian StyleAgustin, Ace Mugssy L., Jeremias L. Ordonio, Marie Bie S. Natividad, Nonawin B. Lucob-Agustin, Roel R. Suralta, Hiroshi Ehara, Shiro Mitsuya, and Mana Kano-Nakata. 2023. "Specialty Rice (Oryza sativa L.) with High and Stable Grain Yield under Rainfed Lowland Conditions" Agriculture 13, no. 10: 1985. https://doi.org/10.3390/agriculture13101985
APA StyleAgustin, A. M. L., Ordonio, J. L., Natividad, M. B. S., Lucob-Agustin, N. B., Suralta, R. R., Ehara, H., Mitsuya, S., & Kano-Nakata, M. (2023). Specialty Rice (Oryza sativa L.) with High and Stable Grain Yield under Rainfed Lowland Conditions. Agriculture, 13(10), 1985. https://doi.org/10.3390/agriculture13101985