Sheath Blight of Maize: An Overview and Prospects for Future Research Directions
Abstract
:1. Introduction
2. Symptoms of Maize Sheath Blight Infection
3. Sheath Blight Pathogen Biology
3.1. Biological Characteristics
3.2. Pathogen Infection and Disease Cycle
3.3. Pathogenic Mechanism of Pathogenic Fungus
3.4. Study on the Resistance Mechanism of Maize Sheath Blight
4. Prevention and Treatment of Maize Sheath Blight
4.1. Selection of Resistant Germplasm Resources
4.2. Agronomic Measures
4.3. Chemical Control
4.4. Biological Control
4.5. Genetic Improvement in Maize Sheath Blight Resistance
5. Prospects
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramachandiran, K.; Pazhanivelan, S. Abiotic factors (nitrogen and water) in maize: A review. Agric. Rev. 2016, 37, 317–324. [Google Scholar] [CrossRef]
- Kumar, A.; Roy, B.; Lakhani, G.P. Evaluation of dried bread waste as feedstuff for growing crossbred pigs. Vet. World 2014, 7, 698–701. [Google Scholar] [CrossRef]
- Singh, A.; Shahi, J.P. Banded leaf and sheath blight: An emerging disease of maize (Zea mays L.). Maydica 2012, 57, 215–219. [Google Scholar]
- Rolfs, F.M. A fruiting stage of Rhizoctonia solani. Science 1903, 18, 729. [Google Scholar] [CrossRef]
- Qi, P.K.; Bai, B.Q.; Zhu, G.X. Chronicles of Fungal Diseases of Cultivated Plants in Jilin Province; Science Press: Beijing, China, 1966. [Google Scholar]
- Błaszczak, W. Studies on the efficacy of disinfectants (formaldehyde and sublimate) on the vitality of Rhizoctonia solani Kuehn. Acta Microbiol. Pol. 1952, 3, 29–33. [Google Scholar]
- Xie, Y. Occurrence and control of maize sheath blight. Guizhou Agric. Sci. 1982, 3, 27–28. [Google Scholar]
- Li, Z.; Pinson, S.R.; Marchetti, M.A.; Stansel, J.W.; Park, W.D. Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight (Rhizoctonia solani). Theor. Appl. Genet. 1995, 91, 382–388. [Google Scholar] [CrossRef]
- Yang, H.; Yang, J.P.; Rong, T.Z. Mapping of QTL molecular markers for resistance to sheath wilt in maize. Chin. Sci. Bull. 2005, 8, 772–776. [Google Scholar]
- Song, Y.Y.; Cao, M.; Xie, L.J.; Liang, X.T.; Zeng, R.S.; Su, Y.J.; Huang, J.H.; Wang, R.L.; Luo, S.M. Induction of DIMBOA accumulation and systemic defense responses as a mechanism of enhanced resistance of mycorrhizal corn (Zea mays L.) to sheath blight. Mycorrhiza 2011, 21, 721–731. [Google Scholar] [CrossRef]
- Li, N.; Lin, B.; Wang, H.; Li, X.; Chu, Z. Natural variation in ZmFBL41 confers banded leaf and sheath blight resistance in maize. Nat. Genet. 2019, 51, 1540–1548. [Google Scholar] [CrossRef]
- Cao, H.; Yang, Z.; Song, S.; Xue, M.; Liang, G.; Li, N. Transcriptome analysis reveals genes potentially related to maize resistance to Rhizoctonia solani. Plant Physiol. Biochem. 2022, 193, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.B.; Tan, J.; Yang, J.P. Research progress on corn sheath blight. Southwest Agric. J. 2007, 20, 209–213. [Google Scholar] [CrossRef]
- Zhang, F.S.; An, F.Z. Occurrence regularity and control of corn sheath blight. Plant Dr. 2012, 4, 6–7. [Google Scholar] [CrossRef]
- Hooda, K.S.; Khokhar, K.M.; Parmar, H.; Gogoi, R.; Joshi, D.; Sharma, S.S.; Yadav, O.P. Banded leaf and sheath blight of maize: Historical perspectives, current status and future directions. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2017, 87, 1041–1052. [Google Scholar] [CrossRef]
- Zhao, M.J.; Zhang, Z.M.; Li, W.C.; Pan, G.T. Research progress and molecular marker-assisted selection strategy of corn sheath blight. Maize Sci. 2006, 14, 161–164. [Google Scholar] [CrossRef]
- Liu, C.P.; Niu, H.W.; Gao, Y.M.; Zheng, Y.Z.; Yue, Y. Research progress on corn sheath blight. Mod. Agric. Sci. Technol. 2014, 1, 169–173. [Google Scholar]
- Li, A.; Cui, F.; Du, X.; Han, S.; Li, H.Y.; Li, D.C. Cloning, Expression and Function of Cell Wall Degrading Enzyme of Corn Sheath Blight; China Agricultural Science and Technology Press: Beijing, China, 2010; p. 194. [Google Scholar]
- Yang, M.; Yang, Y.Q.; Zheng, L.; Li, M.H.; Zhou, E.X. Component analysis, activity measurement and pathogenic effect of cell wall degrading enzymes from rice sheath blight pathogen Rhizoctonia solani. Chin. J. Rice Sci. 2021, 26, 600–606. [Google Scholar]
- Gao, W.C.; Li, Y.; Zhang, Y.C.; Zhang, Z.M.; Pan, G.T.; Lin, H.J. Cloning of maize transcription factor WRKY76 and Analysis of expression pattern of sheath blight resistance. Guangxi Plant 2016, 36, 273–279. [Google Scholar] [CrossRef]
- Fu, J.; Liu, Q.; Wang, C.; Liang, J.; Liu, L.; Wang, Q. ZmWRKY79 positively regulates maize phytoalexin biosynthetic gene expression and is involved in stress response. J. Exp. Bot. 2018, 69, 497–510. [Google Scholar] [CrossRef]
- Guo, X.; Chen, J.; Gao, M.; Li, D. An Aminobutyric Acid Transaminase in Zea mays Interacts with Rhizoctonia solani Cellulase to Participate in Disease Resistance. Front. Plant Sci. 2022, 13, 860170. [Google Scholar] [CrossRef]
- Li, A.N.; Cui, F.H.; Du, X.K.; Han, S.; Li, H.Y.; Li, D.C. Gene cloning, expression and function of cell wall-degrading enzymes of Rhizoctonia solani. In Proceedings of the Academic Annual Meeting of Chinese Society of Plant Pathology, Beijing, China, 3–6 July 2010; p. 196. [Google Scholar]
- Wang, Q.; Cheng, P. Identification and analysis of sheath blight resistance of differentmaize varieties. Anhui Agric. Sci. Bull. 2012, 18, 66–67. [Google Scholar] [CrossRef]
- Tang, H.T.; Rong, Y.Z.; Yang, J.P. Research progress on corn sheath blight. Maize Sci. 2004, 12, 93–96. [Google Scholar] [CrossRef]
- Georgiou, C.D.; Patsoukis, N.; Zervoudakis, P.G. Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress. Integr. Comp. Biol. 2006, 46, 691–712. [Google Scholar] [CrossRef] [PubMed]
- Ogoshi, A. Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani kuhn. Annu. Rev. Phytopathol. 1987, 25, 125–143. [Google Scholar] [CrossRef]
- Menzies, J.D.; Jr, P.J.; Whitney, H.S.; Phb, T.; Butler, E.E.; Bracker, C. Rhizoctonia Solani, Biology and Pathology; University of California Press: Berkeley, CA, USA, 1970; pp. 7–19. [Google Scholar]
- Carling, D.E.; Kuninaga, S.; Brainard, K.A. Hyphal anastomosis reactions, rDNA-internal transcribed spacer sequences, and virulence levels among subsets of Rhizoctonia solani anastomosis Group-2(AG-2) and AG-BI. Phytopathology 2002, 92, 43–50. [Google Scholar] [CrossRef]
- Carling, D.E.; Baird, R.E.; Gitaitis, R.D.; Brainard, K.A.; Kuninaga, S. Characterization of AG-13, a newly reported anastomosis group of Rhizoctonia solani. Phytopathology 2002, 92, 893–899. [Google Scholar] [CrossRef]
- Guillemaut, C.; Edel-Hermann, V.; Camporota, P.; Alabouvette, C.; Richard-Molard, M.; Steinberg, C. Typing of anastomosis groups of Rhizoctonia solani by restriction analysis of ribosomal DNA. Can. J. Microbiol. 2003, 49, 556–568. [Google Scholar] [CrossRef]
- Ahvenniemi, P.; Wolf, M.; Lehtonen, M.J.; Wilson, P.; German-Kinnari, M.; Valkonen, J.P.T. Evolutionary diversification indicated by compensatory base changes in ITS2 secondary structures in a complex fungal species, Rhizoctonia solani. J. Mol. Evol. 2009, 69, 150–163. [Google Scholar] [CrossRef]
- Ajayi-Oyetunde, O.O.; Bradley, C.A. Rhizoctonia solani: Taxonomy, population biology and management of rhizoctonia seedling disease of soybean. Plant Pathol. 2018, 67, 3–17. [Google Scholar] [CrossRef]
- Tan, F.H. A preliminary study on the pathogenicity of the dominant fusion group of Rhizoctonia solani in Southwest China. J. Sichuan Agric. Univ. 1991, 1, 149–155. [Google Scholar]
- Sneh, B.; Burpee, L.; Ogoshi, A. Identification of Rhizoctonia species. Brittonia 1991, 44, 31–43. [Google Scholar] [CrossRef]
- González-Vera, A.D.; Bernardes-De-Assis, J.; Zala, M.; Mcdonald, B.A.; Ceresini, P.C. Divergence between sympatric rice- and maize-infecting populations of Rhizoctonia solani AG1-IA from Latin America. Phytopathology 2010, 100, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.C.; Fang, S.G.; Yu, Z.H. Study on the pathogen and biological characteristics of corn sheath blight. J. Hubei Agric. Univ. 1997, 17, 15–19. [Google Scholar]
- Willets, H.J.; Bullock, S. Developmental biology of sclerotia. Mycol. Res. 1992, 96, 801–816. [Google Scholar] [CrossRef]
- Akhtar, J.; Jha, V.K.; Kumar, A.; Lal, H.C. Occurrence of banded leaf and sheath blight of maize in jharkhand with reference to diversity in Rhizoctonia solani. Asian J. Agric. Res. 2009, 1, 32–35. [Google Scholar]
- Xu, J.; Zhou, B.Y.; Liu, Y.Q.; Lin, M.Z.; Li, J.M. A preliminary study on the biological characteristics of corn sheath blight. Plant Prot. 1997, 23, 29–30. [Google Scholar]
- Srinivas, P.; Ratan, V.; Patel, A.P.; Madhavi, G.B. Review on banded leaf and sheath blight of rice caused by Rhizoctonia solani kÜhn. Int. J. Appl. Biol. Pharm. Technol. 2013, 4, 178–185. [Google Scholar]
- Chen, J.; Li, C. Study on pathogenic factors of corn sheath blight. J. Shenyang Agric. Univ. 1999, 30, 189–194. [Google Scholar]
- Basu, A.; Chowdhury, S.; Chaudhuri, T.R.; Kundu, S. Differential behaviour of sheath blight pathogen Rhizoctonia solani in tolerant and susceptible rice varieties before and during infection. Plant Pathol. 2016, 65, 1333–1346. [Google Scholar] [CrossRef]
- Yin, P.P.; Li, S.S.; Wang, Y.L. Study on the infection process of Rhizoctonia solani on Zoysia japonica steud. Bull. Microbiol. 2015, 42, 1253–1262. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, M.L.; Shu, C.W. Research progress on fungal viruses. China Plant Prot. Guide 2016, 36, 18–27. [Google Scholar] [CrossRef]
- Wang, S.S.; Nie, L.C.; Li, P.; Wang, Z. Classification, pathogenic mechanism and application prospects of phytopathogenic mycotoxins. Jiangsu Agric. Sci. 2019, 47, 94–97. [Google Scholar]
- Li, J.; Cornelissen, B.; Rep, M. Host-specificity factors in plant pathogenic fungi. Fungal Genet. Biol. 2020, 144, 34–47. [Google Scholar] [CrossRef]
- Zheng, A.; Lin, R.; Zhang, D.; Qin, P.; Xu, L.; Ai, P. The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nat. Commun. 2013, 4, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Yinping, J.; Paul, P.; Jinghua, S.; Tiffany, L.; Stitzer, M.C.; Bo, W. Improved maize reference genome with single-molecule technologies. Nature 2020, 546, 524–527. [Google Scholar] [CrossRef]
- Jayasinghe, C.K.; Wijayaratne, S.; Fernando, T. Characterization of cell wall degrading enzymes of Thanatephorus cucumeris. Mycopathologia 2004, 157, 73–79. [Google Scholar] [CrossRef]
- Vidhyasekaran, P.; Ponmalar, T.R.; Samiyappan, R.; Velazhahan, R.; Muthukrishnan, S. Host-specific toxin production by Rhizoctonia solani, the rice sheath blight pathogen. Phytopathology 1997, 87, 1258–1263. [Google Scholar] [CrossRef]
- Sriram, S.; Raguchander, T.; Babu, S.; Nandakumar, R.; Shanmugam, V.; Vidhyasekaran, P. Inactivation of phytotoxin produced by the rice sheath blight pathogen Rhizoctonia solani. Can. J. Microbiol. 2000, 46, 520–524. [Google Scholar] [CrossRef]
- Mcelrone, A.J.; Reid, C.D.; Hoye, K.A.; Hart, E.; Jackson, R.B. Elevated CO2 reduces disease incidence and severity of a red maple fungal pathogen via changes in host physiology and leaf chemistry. Glob. Chang. Biol. 2010, 11, 1828–1836. [Google Scholar] [CrossRef]
- Gao, J.; Chen, Z.; Luo, M.; Peng, H.; Zhang, Z. Genome expression profile analysis of the maize sheath in response to inoculation to R. solani. Mol. Biol. Rep. 2014, 41, 2471–2483. [Google Scholar] [CrossRef]
- Pruitt, R.N.; Locci, F.; Wanke, F. The EDS1–PAD4–ADR1 node mediates Arabidopsis pattern-triggeredimmunity. Nature 2021, 598, 495–499. [Google Scholar] [CrossRef]
- Charoensopharat, K.; Aukkanit, N.; Thanonkeo, S.; Saksirirat, W.; Thanonkeo, P.; Akiyama, K. Targeted disruption of a g protein α subunit gene results in reduced growth and pathogenicity in Rhizoctonia solani. World J. Microbiol. Biotechnol. 2008, 24, 345–351. [Google Scholar] [CrossRef]
- Oliver, R.P.; Solomon, P.S. New developments in pathogenicity and virulence of necrotrophs. Curr. Opin. Plant Biol. 2010, 13, 415–419. [Google Scholar] [CrossRef]
- Pierre, J.G.; van der Burgt, A.; Ökmen, B.; Stergiopoulos, I.; Abd-Elsalam, K.A.; Aerts, A.L.; Bahkali, A.H.; Beenen, H.G.; Chettri, P.; Cox, M.P.; et al. The genomes of the fungal plant pathogens cladosporium fulvum and dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. PLoS Genet. 2016, 8, e1003088. [Google Scholar] [CrossRef]
- Ghosh, S.; Kanwar, P.; Jha, G. Identification of candidate pathogenicity determinants of Rhizoctonia solani AG1-IA, which causes sheath blight disease in rice. Curr. Genet. 2018, 64, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tan, B.Y.; Huang, M.R. Research progress of plant innate immune system. J. Nanjing For. Univ. Nat. Sci. Ed. 2012, 36, 129–136. [Google Scholar] [CrossRef]
- Tang, L. Study on Biochemical Factors of Resistance to Dynamic Stages of Corn Sheath Blight and Evaluation of Germplasm Resources Resistance. Master’s Thesis, Sichuan Agricultural University, Chengdu, China, June 2001. [Google Scholar]
- Liu, L.; Zhang, Z.M.; Li, D.B. Pathological observation and genome methylation-sensitive amplified polymorphism analysis of Rhizoctonia solani infection. Chin. J. Agric. Biotechnol. 2011, 19, 243–249. [Google Scholar] [CrossRef]
- Deng, L.C.; Cui, L.N.; Yang, L. Identification of phenylalanine ammonia lyase family genes in maize and disease resistance analysis of sheath blight. Mol. Breed. 2019, 17, 891–897. [Google Scholar] [CrossRef]
- Sharma, R.R.; Gour, H.N.; Gaur, K. Lipid peroxidation and defense related enzymes in maize infected by Rhizoctonia solani. Indian Phytopathol. 2012, 4, 486–487. [Google Scholar]
- Zhang, M.; Tang, L.; Ye, H.Z. Identification of resistance of corn variety resources to sheath blight. In Plant Protection Development Strategy for the 21st Century; China Science and Technology Press: Beijing, China, 2001; pp. 705–708. [Google Scholar]
- Yang, J.P.; Tang, H.T.; Yang, J.X. Identification and genetic study of resistance to corn sheath blight. Chin. J. Plant Pathol. 2005, 35, 174–178. [Google Scholar] [CrossRef]
- Yang, A.G.; Pan, G.T.; Ye, H.Z. Identification of resistance to sheath blight of maize inbred lines and screening of resistant resources. Plant Prot. 2003, 29, 25–28. [Google Scholar] [CrossRef]
- Xie, X.D.; Jiang, Y.F.; Zhou, H.Y. A breeding method for maize strain resistant to sheath blight. Guangxi Zhuang Auton. Reg. 2023, 1, 1. [Google Scholar]
- Zhang, F.S. Occurrence and control of corn sheath blight. Pestic. Sci. Manag. 2012, 33, 53–54. [Google Scholar] [CrossRef]
- Jia, L.N.; Du, L.J. Occurrence regularity and comprehensive control measures of corn sheath blight. Anhui Agric. Sci. Bull. 2013, 20, 64. [Google Scholar] [CrossRef]
- Zhang, H.Z. Occurrence law and control strategies of corn sheath blight. Henan Agric. 2018, 19, 45. [Google Scholar]
- Akhtar, J.; Kumar, V.; Tiu, K.R.; Lal, H.C. Integrated disease management of banded leaf and sheath blight of maize. Plant Dis. Res. 2010, 25, 35–38. [Google Scholar]
- Wright, P.J.; Falloon, R.E.; Hedderley, D. A long-term vegetable crop rotation study to determine effects on soil microbial communities and soilborne diseases of potato and onion. N. Z. J. Crop Hortic. Sci. 2016, 45, 29–54. [Google Scholar] [CrossRef]
- Mk, B.; Ak, M. Bioefficacy of strobilurin based fungicides against rice sheath blight disease. Transcriptomics 2016, 4, 1–2. [Google Scholar] [CrossRef]
- He, X.; Ding, C.H.; Hu, L.D. Preliminary study on the green prevention and control technology of biological and chemical pesticides for main diseases of early rice. Pesticides 2020, 59, 68–73. [Google Scholar]
- Wang, G.Z.; Li, X.M.; Han, R.Q. Study on compound granules of allylbenthiazole and flufenoxam and its control effect on rice blast and sheath blight in rice seedling stage. Chin. J. Pestic. 2020, 22, 362–369. [Google Scholar] [CrossRef]
- Wang, Z.W. Screening and Field Control Experiments of Effective Control Agents for Corn Stalk Rot and Sheath Blight; Shandong Agricultural University: Tai’an, China, 2020. [Google Scholar]
- Huang, J.H.; He, D.B.; Chen, H.Z. In vitro screening of formulations for the control of rice sheath blight by Jinggangmycin and Epoxiconazole. Jiangsu Agric. Sci. 2020, 48, 108–110. [Google Scholar]
- Yao, L.; Zhang, G.; Yu, L.; Liu, S.; Wang, X.; Fan, T.; Kang, H.; Feng, W. Development of 1,3,4-Oxadiazole Derived Antifungal Agents and Their Application in Maize Diseases Control. Front. Plant Sci. 2022, 13, 912091. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Zhang, J.; Liang, Z.; Wu, Z.; Liu, P.; Hao, J.; Liu, X. Multidrug resistance of Rhizoctonia solani determined by enhanced efflux for fungicides. Pestic. Biochem. Phys. 2023, 195, 105525. [Google Scholar] [CrossRef]
- Devi, B.; Thakur, B.R. Integrated management of banded leaf and sheath blight of maize caused by Rhizoctonia solani f. sp. sasakii. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 769–777. [Google Scholar] [CrossRef]
- Gullino, M.L.; Leroux, P.; Smith, C.M. Uses and challenges of novel compounds for plant disease control. Crop Prot. 2000, 19, 1–11. [Google Scholar] [CrossRef]
- Ichiba, T.; Kumano, K.; Kashino, H.; Nanba, K.; Mizutani, A.; Miki, N. Effect of metominostrobin on respiratory activity of Rhizoctonia solani and its efficacy for controlling rice sheath blight. J. Pestic. Sci. 2000, 25, 398–401. [Google Scholar] [CrossRef]
- Etesami, H.; Maheshwari, D.K. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future-prospects. Ecotoxicol. Environ. Saf. 2018, 156, 225–246. [Google Scholar] [CrossRef]
- Rajput, L.S.; Harlapur, S.I.; Aggarwal, S.K.; Singh, K.; Choudhary, M. Integrated evaluation of new fungicides and bioagents for the management of banded leaf and sheath blight of maize. Int. J. Curr. Microbiol. 2020, 9, 3187–3195. [Google Scholar] [CrossRef]
- Venkateswarlu, B.; Beura, S.K. Evaluation of selective fungicides and biocontrol agents for suppression of banded leaf and sheath blight of maize (Zea mays L.). Curr. J. Appl. Sci. Technol. 2020, 9, 140–146. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, L.; Xia, H.; Yu, C.; Dou, K.; Li, Y. Omics for understanding synergistic action of validamycin Aand trichoderma asperellum GDFS1009 against maize sheath blight pathogen. Sci. Rep. 2017, 7, 40140. [Google Scholar] [CrossRef]
- Hayat, R.; Ahmed, I.; Sheirdil, R.A. An overview of plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. In Crop Production for Agricultural Improvement; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Bakker, P.A.H.M.; Corné, M.J.P.; Loon, L.C.V. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 2007, 97, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Devi, K.A.; Garima, P.; Rawat, A.K.S.; Sharma, G.D.; Piyush, P. The endophytic symbiont-pseudomonas aeruginosa stimulates the antioxidant activity and growth of Achyranthes aspera L. Front. Microbiol. 2017, 8, 1897–1911. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, U.B.; Malviya, D.; Paul, S.; Sahu, P.K.; Trivedi, M.; Paul, D.; Saxena, A.K. Seed biopriming with microbial inoculant triggers local and systemic defense responses against Rhizoctonia solani causing banded leaf and sheath blight in maize (Zea mays L.). Int. J. Environ. Res. Public Health 2020, 17, 1396. [Google Scholar] [CrossRef]
- Feng, Z.; Xu, M.; Yang, J.; Zhang, R.; Geng, Z.; Mao, T.; Sheng, Y.; Wang, L.; Zhang, J.; Zhang, H. Molecular characterization of a novel strain of Bacillus halotolerans protecting wheat from sheath blight disease caused by Rhizoctonia solani Kühn. Front. Plant Sci. 2022, 13, 1019512. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Han, H.; Hou, J.; Bao, F.; Tan, H.; Lou, X.; Wang, G.; Zhao, F. Control of Maize Sheath Blight and Elicit Induced Systemic Resistance Using Paenibacillus polymyxa Strain SF05. Microorganisms 2022, 10, 1318. [Google Scholar] [CrossRef] [PubMed]
- Romero-Arenas, O.; Amaro-Leal, L.J.; Rivera, A.; Parraguirre-Lezama, C.; Sánchez-Morales, P.; Villa-Ruano, N. Formulations of Beauveria bassiana MABb1 and mesoporous materials for the biological control of Sphenarium purpurascens in maize crops from Puebla, Mexico. J. Asia Pac. Entomol. 2020, 23, 653–659. [Google Scholar] [CrossRef]
- Dutta, P.; Deka, M.K.; Pegu, J.; Das, A. Efficacy of biocontrol agents against Rhizoctonia solani Khuen causing banded leaf and sheath blight of maize (Zea mays L.). Egypt. J. Biol. Pest Control 2013, 37, 10–14. [Google Scholar] [CrossRef]
- Beyene, T.M. Advances in quantitative trait loci, mapping and importance of markers assisted selection in plant breeding research. Int. J. Plant Breed. Genet. 2016, 10, 58–68. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, Z.; Zhang, S.; Li, W.; Jeffers, D.P.; Rong, T. Quantitative trait loci for resistance to banded leaf and sheath blight in maize. Crop Sci. 2005, 46, 1039–1045. [Google Scholar] [CrossRef]
- Yang, H. QTL mapping of resistant to banded leaf and sheath blight in maize (Zea Mays, L.). Scientia 2005, 50, 782–787. [Google Scholar] [CrossRef]
- Lin, H.J.; Tan, D.F.; Zhang, Z.M.; Lan, H.; Gao, S.B.; Rong, T.Z.; Pan, G.T. Analysis of digenic epistatic and QTL × environment interactions for resistance to banded leaf and sheath blight in maize (Zea mays). Int. J. Agric. Biol. 2008, 10, 605–611. [Google Scholar]
- Lin, H.; Leng, P.; Pan, G.; Zhang, Z. Association analysis of candidate quantitative trait loci for resistance to banded leaf and sheath blight in maize. Int. J. Biosci. Biochem. Bioinform. 2013, 3, 528–534. [Google Scholar] [CrossRef]
- Zhao, M.J. Screening of Germplasm Resources for Resistance to Corn Sheath Blight and QTL Mapping; Sichuan Agricultural University: Chengdu, China, 2004. [Google Scholar]
- Chen, G.P.; Tan, H.; Zheng, D.B.; Yang, L.T.; Yang-Rui, L.I. QTL mapping of resistance to banded leaf and sheath blight in maize. Southwest China J. Agric. Sci. 2009, 22, 950–955. [Google Scholar]
- Lin, H.J.; Liu, C.L.; Shen, Y.O. QTL analysis of resistance to corn sheath blight based on RIL population. J. Nucl. Agric. Sci. 2013, 7, 895–903. [Google Scholar] [CrossRef]
- Zhao, M.J.; Gao, S.B.; Zhang, Z.M. Preliminary mapping of QTL related to resistance to sheath blight in maize at jointing and heading stages. J. Mol. Cell Biol. 2006, 39, 139–144. [Google Scholar]
- Liu, C.L. QTL Analysis of Resistance to Sheath Blight and Related Traits in Maize Using Recombinant Inbred Lines; Sichuan Agricultural University: Chengdu, China, 2010. [Google Scholar]
- Wisser, R.J.; Balint-Kurti, P.J.; Nelson, R.J. The genetic architecture of disease resistance in maize: A synthesis of published studies. Phytopathology 2006, 96, 120–129. [Google Scholar] [CrossRef]
- Wisser, R.J.; Kolkman, J.M.; Patzoldt, M.E.; Holland, J.B.; Yu, J.; Krakowsky, M. Multivariate analysis of maize disease resistances suggests a pleiotropic genetic basis and implicates a GST gene. Proc. Natl. Acad. Sci. USA 2011, 108, 7339–7344. [Google Scholar] [CrossRef]
- Jain, D.; Khurana, J.P. Role of Pathogenesis-Related (PR) Proteins in Plant Defense Mechanism; Springer: Berlin/Heidelberg, Germany, 2018; pp. 265–281. [Google Scholar] [CrossRef]
- Datta, K.; Tu, J.; Oliva, N.; Ona, I.; Velazhahan, R.; Mew, T.W. Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Sci. 2001, 160, 405–414. [Google Scholar] [CrossRef]
- Liu, X.; Cai, S.B.; Zhang, B.Q.; Zhou, M.P.; Zhang, Z.Y. Molecular detection and identification of TaPIEP1 transgenic wheat with enhanced-resistance to sharp eyespot and fusarium head blight. Zuo Wu Xue Bao 2011, 37, 1144–1150. [Google Scholar] [CrossRef]
- Yue, G.; Chong, Z.; Xiao, H.; Zi, Y.W.; Lai, M.; Yuan, D.P. Inhibition of OsSWEET11 function in mesophyll cells improves resistance of rice to sheath blight disease. Mol. Plant Pathol. 2018, 19, 2149–2161. [Google Scholar] [CrossRef]
- Dorjee, L.; Gogoi, R.; Kamil, D.; Kumar, R.; Mondal, T.K.; Pattanayak, S.; Gurung, B. Essential oil-grafted copper nanoparticles as a potential next-generation fungicide for holistic disease management in maize. Front. Microbiol. 2023, 14, 1204512. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shi, T.; Tang, T.; Chen, C.; Liang, Y.; Zuo, S. Nanosheet-Facilitated Spray Delivery of dsRNAs Represents a Potential Tool to Control Rhizoctonia solani Infection. Int. J. Mol. Sci. 2022, 23, 12922. [Google Scholar] [CrossRef] [PubMed]
Year | Event | References |
---|---|---|
1903 | Rhizoctonia solani was first identified. | Rolfs et al. [4] |
1966 | The earliest records of the occurrence of corn sheath blight in China were found in Jilin Province. | Qi et al. [5] |
1952 | Studies on the efficacy of disinfectants (formaldehyde and sublimate) on the vitality of Rhizoctonia solani Kuehn were conducted. | BŁASZCZAK W et al. [6] |
1982 | The occurrence and control strategy of maize sheath blight were first proposed in China. | Xie et al. [7] |
1995 | The quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight (Rhizoctonia solani) were characterized for the first time. | Li et al. [8] |
2005 | Three major QTL sites for the resistance index of maize sheath blight were detected for the first time. | Yang et al. [9] |
2011 | The mechanism behind the increased resistance of maize to sheath blight was reported for the first time. | Song et al. [10] |
2019 | The negative feedback regulatory resistance gene FBL41 was cloned from maize for the first time, and a new mechanism by which the gene product enhances the plant’s disease resistance by regulating the synthesis of lignin, an important component of cell wall, was reported. | Chu et al. [11] |
2022 | A transcriptome analysis revealed the genes potentially related to the resistance of rhizoctonia contrasticum in maize, providing support for marker-assisted breeding for disease resistance. | Cao et al. [12] |
Type | Gene Name | References | |
---|---|---|---|
Disease-related gene (Rhizoctonia solani AG1-IA) | Endocellulase | eg45-1, eg45-2, eg12 | Li et al. [18] |
Endopolygalacturonase | endo-pg1, endo-pg2, endo-pg3 | ||
Exo-cut polygalacturonase | ex-pg | ||
Protease | pr-1, pr-2, pr-3, pr-4 | ||
Xylanase | xyn-1, xyn-2 | ||
Cell-wall-degrading enzymes | PG, PMG, Cx, PGTE, PMET, FPA | Yang et al. [19] | |
Resistance-related gene | Receptor kinase | ZmWRKY76, ZmWRKY79 | Gao et al. [20] Fu et al. [21] |
F-box domain-containing protein | ZmFBL41 | Chu et al. [11] | |
NAC transcription factor | ZmNAC41, ZmBAK1 | Cao et al. [22] | |
Gamma-aminobutyric acid transaminas | ZmGABA-T | Guo et al. [23] |
Chromosome | Marker | Linked Marker | Number of QTLs |
---|---|---|---|
1 | SSR | umc1245, bnlg1597, bnlg1671, bnlg421, umc1044, umc1321, bnlg1953, bnlg0176, bnlg1203, umc1988, dupssr12, umc2189, bnlg2123, umc1797 | 14 |
2 | SSR | umc1285, umc2150, umc2246, phi96100, bnlg1017, umc1185, bnlg1018, bnlg1036, nc003, umc1658, umc2192, umc1080, dupssr25, bnlg1662, bnlg1721, bnlg1606, bnlg1940 | 17 |
3 | SSR | umc1010, bnlg1350, bnlg197, umc1052, bnlg1447, bnlg1523, bnlg1325, bnlg1456, mmc0022, umc1528, umc1659 | 11 |
4 | SSR | umc2287, phi093, bnlg1755, umc1008, umc2281, bnlg1621, umc1294, umc1662, bnlg1937, bnlg1265, umc1228, bnlg1318, umc2082, umc2081, umc2280, nc005, umc1088, umc1299, umc2137, bnlg0292, umc1051, bnlg2162, bnlg0589, bnlg1890, ZmFBL41 | 25 |
5 | SSR | umc2307, umc1253, umc1496, umc1416, nc007, bnlg1879, phi10918, umc2164, bnlg1237, umc1072 | 10 |
6 | SSR | bnlg1006, bnlg161, umc1002, bnlg1600, bnlg1538, umcl006, umcl083, 1mc1818, umc1723, umc1257, umc1014, umc2318, umc1187, umc1859, bnlg1443, bnlg1759, umc2059 | 17 |
7 | SSR | bnlg1686, phi116, umc1428, bnlg2132, umc1016, bnlg1792, bnlg2203, bnlg1305, bnlg1805, dupssr13, umc1154, bnlg1759, umc2059 | 11 |
8 | SSR | phi123, umc1034, bnlg1834, umc1858, bnlg0666, umc1960, umc2357, bnlg1056 | 8 |
9 | SSR | umc1231, bnlg1583, dupssr06, bnlg1714, umc2343 | 5 |
10 | SSR | umc1152, umc1319, phil18, mmc0501, phi054, umc1993, bnlg1518, bnlg1185 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di, R.; Liu, L.; Shoaib, N.; Xi, B.; Zhou, Q.; Yu, G. Sheath Blight of Maize: An Overview and Prospects for Future Research Directions. Agriculture 2023, 13, 2006. https://doi.org/10.3390/agriculture13102006
Di R, Liu L, Shoaib N, Xi B, Zhou Q, Yu G. Sheath Blight of Maize: An Overview and Prospects for Future Research Directions. Agriculture. 2023; 13(10):2006. https://doi.org/10.3390/agriculture13102006
Chicago/Turabian StyleDi, Runze, Lun Liu, Noman Shoaib, Boai Xi, Qiyan Zhou, and Guowu Yu. 2023. "Sheath Blight of Maize: An Overview and Prospects for Future Research Directions" Agriculture 13, no. 10: 2006. https://doi.org/10.3390/agriculture13102006
APA StyleDi, R., Liu, L., Shoaib, N., Xi, B., Zhou, Q., & Yu, G. (2023). Sheath Blight of Maize: An Overview and Prospects for Future Research Directions. Agriculture, 13(10), 2006. https://doi.org/10.3390/agriculture13102006