Effect of Feeding Dried Apple Pomace on Ruminal Fermentation, Methane Emission, and Biohydrogenation of Unsaturated Fatty Acids in Dairy Cows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals, Design, and Sampling
2.2. Sample Analysis
2.3. Statistic Description
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations (UN). World Population Prospects: The 2017 Revision, Key Findings and Advanced Tables. Available online: https://population.un.org/wpp/publications/files/wpp2017_keyfindings.pdf (accessed on 10 January 2023).
- Manju Wadhwa, M.W.; Bakshi, M.P.; Makkar, H.P. Waste to worth: Fruit wastes and by-products as animal feed. CABI Rev. 2015, 10, 1–26. [Google Scholar] [CrossRef]
- Attia, A.I.; Reda, F.M.; Patra, A.K.; Elnesr, S.S.; Attia, Y.A.; Alagawany, M. Date (Phoenix dactylifera L.) by-products: Chemical composition, nutritive value and applications in poultry nutrition, an updating review. Animals 2021, 11, 1133. [Google Scholar] [CrossRef]
- Jalal, H.; Giammarco, M.; Lanzoni, L.; Akram, M.Z.; Mammi, L.M.; Vignola, G.; Chincarini, M.; Formigoni, A.; Fusaro, I. Potential of Fruits and Vegetable By-Products as an Alternative Feed Source for Sustainable Ruminant Nutrition and Production: A Review. Agriculture 2023, 13, 286. [Google Scholar] [CrossRef]
- Salami, S.A.; Luciano, G.; O’Grady, M.N.; Biondi, L.; Newbold, C.J.; Kerry, J.P.; Priolo, A. Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Anim. Feed Sci. Technol. 2019, 251, 37–55. [Google Scholar] [CrossRef]
- Singh, P.; Hundal, J.S.; Patra, A.K.; Wadhwa, M.; Sharma, A. Sustainable utilization of Aloe vera waste in the diet of lactating cows for improvement of milk production performance and reduction of carbon footprint. J. Clean. Prod. 2021, 288, 125118. [Google Scholar] [CrossRef]
- NHB. Indian Horticulture Database, National Horticulture Board, Ministry of Agriculture, Government of India. Available online: https://nhb.gov.in/area-pro/Indian%20Horticulture%202013.pdf (accessed on 15 January 2023).
- Bartel, I.; Koszarska, M.; Wysocki, K.; Kozłowska, M.; Szumacher-Strabel, M.; Cieślak, A.; Wyrwał, B.; Szejner, A.; Strzałkowska, N.; Horbańczuk, J.O. Effect of Dried Apple Pomace (DAP) as a Feed Additive on Antioxidant System in the Rumen Fluid. Int. J. Mol. Sci. 2022, 23, 10475. [Google Scholar] [CrossRef]
- Pirmohammadi, R.; Rouzbehan, Y.; Rezayazdi, K.; Zahedifar, M. Chemical composition, digestibility and in situ degradability of dried and ensiled apple pomace and maize silage. Small Rumin. Res. 2006, 66, 150–155. [Google Scholar] [CrossRef]
- Singh, B.; Narang, M. Studies on the rumen degradation kinetics and utilization of apple pomace. Bioresour. Technol. 1992, 39, 233–240. [Google Scholar] [CrossRef]
- Beigh, Y.A.; Ganai, A.; Ahmad, H. Utilisation of apple pomace as livetock feed: A review. Indian J. Small Rumin. 2015, 21, 165–179. [Google Scholar] [CrossRef]
- Manterola, B.H.; Cerda, A.D.; Mira, J.J.; Porte, F.E.; Luis, A.S.; Casanova, G. Effects of including high levels of apple pomace on DM and CP degradability and ruminal and blood parameters. Av. Prod. Anim. 1999, 24, 31–39. [Google Scholar]
- Toyokawa, K.; Saito, Z.; Murayama, S.; Takayasu, I.; Tsubomatsu, K. Studies on the Utilization of Windfall and Surplus Apples as Feedstuff. VI. The Effect of Feeding of Dried Apple Pomace as Substitutive Feed for Concentrate on Lactating Cows; Bulletin of the Faculty of Agriculture; Hirosaki University, Hirosaki Daigaku Nogaku-bu Gakujutsu Hokoku: Hirosaki, Japan, 1979. [Google Scholar]
- Macgregor, C.A. Directory of Feeds & Feed Ingredients; Macregor, C.A., Ed.; Hoard’s Dairyman Books: Fort Atkinson, WI, USA, 2000. [Google Scholar]
- Lyu, F.; Luiz, S.F.; Azeredo, D.R.P.; Cruz, A.G.; Ajlouni, S.; Ranadheera, C.S. Apple pomace as a functional and healthy ingredient in food products: A review. Processes 2020, 8, 319. [Google Scholar] [CrossRef]
- Gumul, D.; Kruczek, M.; Ivanišová, E.; Słupski, J.; Kowalski, S. Apple pomace as an ingredient enriching wheat pasta with health-promoting compounds. Foods 2023, 12, 804. [Google Scholar] [CrossRef]
- Huang, H.; Lechniak, D.; Szumacher-Strabel, M.; Patra, A.K.; Kozłowska, M.; Kolodziejski, P.; Gao, M.; Ślusarczyk, S.; Petrič, D.; Cieslak, A. The effect of ensiled paulownia leaves in a high-forage diet on ruminal fermentation, methane production, fatty acid composition, and milk production performance of dairy cows. J. Anim. Sci. Biotechnol. 2022, 13, 104. [Google Scholar] [CrossRef]
- Yanza, Y.R.; Szumacher-Strabel, M.; Lechniak, D.; Ślusarczyk, S.; Kolodziejski, P.; Patra, A.K.; Váradyová, Z.; Lisiak, D.; Vazirigohar, M.; Cieslak, A. Dietary Coleus amboinicus Lour. decreases ruminal methanogenesis and biohydrogenation, and improves meat quality and fatty acid composition in longissimus thoracis muscle of lambs. J. Anim. Sci. Biotechnol. 2022, 13, 5. [Google Scholar] [CrossRef]
- Puchalska, J.; Szumacher-Strabel, M.; Patra, A.K.; Ślusarczyk, S.; Gao, M.; Petrič, D.; Nabzdyk, M.; Cieślak, A. The effect of different concentrations of total polyphenols from Paulownia hybrid leaves on ruminal fermentation, methane production and microorganisms. Animals 2021, 11, 2843. [Google Scholar] [CrossRef]
- Nowak, B.; Moniuszko-Szajwaj, B.; Skorupka, M.; Puchalska, J.; Kozłowska, M.; Bocianowski, J.; Kołodziejski, P.A.; Szumacher-Strabel, M.; Patra, A.K.; Stochmal, A. Effect of Paulownia leaves extract levels on in vitro Ruminal fermentation, microbial population, methane production, and fatty acid biohydrogenation. Molecules 2022, 27, 4288. [Google Scholar] [CrossRef]
- Arndt, C.; Hristov, A.N.; Price, W.J.; McClelland, S.C.; Pelaez, A.M.; Cueva, S.F.; Oh, J.; Dijkstra, J.; Bannink, A.; Bayat, A.R. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 C target by 2030 but not 2050. Proc. Natl. Acad. Sci. USA 2022, 119, e2111294119. [Google Scholar] [CrossRef]
- Haque, M.N. Dietary manipulation: A sustainable way to mitigate methane emissions from ruminants. J. Anim. Sci. Technol. 2018, 60, 15. [Google Scholar] [CrossRef]
- Waqas, M.; Salman, M.; Sharif, M. Application of polyphenolic compounds in animal nutrition and their promising effects. J. Anim. Feed. Sci. 2023, 32, 233–256. [Google Scholar] [CrossRef]
- Grummer, R.R.; Luck, M.L.; Barmore, J.A. Rumen fermentation and lactation performance of cows fed roasted soybeans and tallow. J. Dairy Sci. 1993, 76, 2674–2681. [Google Scholar] [CrossRef]
- Szczechowiak, J.; Szumacher-Strabel, M.; El-Sherbiny, M.; Pers-Kamczyc, E.; Pawlak, P.; Cieslak, A. Rumen fermentation, methane concentration and fatty acid proportion in the rumen and milk of dairy cows fed condensed tannin and/or fish-soybean oils blend. Anim. Feed Sci. Technol. 2016, 216, 93–107. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; MD AOAC International: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Van Soest, P.v.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Bian, Y.; Xing, P.; Wu, Q.L. Macrophyte species drive the variation of bacterioplankton community composition in a shallow freshwater lake. Appl. Environ. Microbiol. 2012, 78, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Denman, S.E.; McSweeney, C.S. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 2006, 58, 572–582. [Google Scholar] [CrossRef]
- Yu, Y.; Lee, C.; Kim, J.; Hwang, S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol. Bioeng. 2005, 89, 670–679. [Google Scholar] [CrossRef]
- Potu, R.B.; AbuGhazaleh, A.A.; Hastings, D.; Jones, K.; Ibrahim, S.A. The effect of lipid supplements on ruminal bacteria in continuous culture fermenters varies with the fatty acid composition. J. Microbiol. 2011, 49, 216–223. [Google Scholar] [CrossRef]
- Wang, R.-F.; Cao, W.-W.; Cerniglia, C.E. PCR detection of Ruminococcus spp. in human and animal faecal samples. Mol. Cell. Probes 1997, 11, 259–265. [Google Scholar] [CrossRef]
- Li, M.; Penner, G.; Hernandez-Sanabria, E.; Oba, M.; Guan, L. Effects of sampling location and time, and host animal on assessment of bacterial diversity and fermentation parameters in the bovine rumen. J. Appl. Microbiol. 2009, 107, 1924–1934. [Google Scholar] [CrossRef]
- Poeker, S.A.; Geirnaert, A.; Berchtold, L.; Greppi, A.; Krych, L.; Steinert, R.E.; de Wouters, T.; Lacroix, C. Understanding the prebiotic potential of different dietary fibers using an in vitro continuous adult fermentation model (PolyFermS). Sci. Rep. 2018, 8, 4318. [Google Scholar] [CrossRef]
- Bryszak, M.; Szumacher-Strabel, M.; Huang, H.; Pawlak, P.; Lechniak, D.; Kołodziejski, P.; Yanza, Y.R.; Patra, A.K.; Váradyová, Z.; Cieslak, A. Lupinus angustifolius seed meal supplemented to dairy cow diet improves fatty acid composition in milk and mitigates methane production. Anim. Feed Sci. Technol. 2020, 267, 114590. [Google Scholar] [CrossRef]
- Givens, D.; Barber, W. Nutritive value of apple pomace for ruminants. Anim. Feed Sci. Technol. 1987, 16, 311–315. [Google Scholar] [CrossRef]
- Tiwari, S.; Narang, M.; Dubey, M. Effect of feeding apple pomace on milk yield and milk composition in crossbred (Red Sindhi x Jersey) cow. Livest. Res. Rural. Dev. 2008, 20, 293–297. [Google Scholar]
- Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Chay-Canul, A.J.; Miranda-Romero, L.A.; Mendoza-Martínez, G.D. Meta-analysis of flavonoids use into beef and dairy cattle diet: Performance, antioxidant status, ruminal fermentation, meat quality, and milk composition. Front. Vet. Sci. 2023, 10, 1134925. [Google Scholar] [CrossRef] [PubMed]
- Balcells, J.; Aris, A.; Serrano, A.; Seradj, A.; Crespo, J.; Devant, M. Effects of an extract of plant flavonoids (Bioflavex) on rumen fermentation and performance in heifers fed high-concentrate diets. J. Anim. Sci. 2012, 90, 4975–4984. [Google Scholar] [CrossRef] [PubMed]
- McDonald, P.E.R.; Greenhalgh, J.F.D.; Morgan, C.A. Animal Nutrition, 5th ed.; Longman Scientific and Technical: Harlow, UK, 1995. [Google Scholar]
- Astuti, W.D.; Ridwan, R.; Fidriyanto, R.; Rohmatussolihat, R.; Sari, N.F.; Sarwono, K.A.; Fitri, A.; Widyastuti, Y. Changes in rumen fermentation and bacterial profiles after administering Lactiplantibacillus plantarum as a probiotic. Vet. World 2022, 15, 1969. [Google Scholar] [CrossRef]
- Tan, Z.; Murphy, M. Ammonia production, ammonia absorption, and urea recycling in ruminants. A review. J. Anim. Feed Sci. 2004, 13, 389–404. [Google Scholar] [CrossRef]
- Zhang, Z.; Niu, X.; Li, F.; Li, F.; Guo, L. Ruminal cellulolytic bacteria abundance leads to the variation in fatty acids in the rumen digesta and meat of fattening lambs. J. Anim. Sci. 2020, 98, skaa228. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, G.; Li, Y.; Zhang, Y. Effects of high forage/concentrate diet on volatile fatty acid production and the microorganisms involved in VFA production in cow rumen. Animals 2020, 10, 223. [Google Scholar] [CrossRef]
- Kim, E.T.; Lee, S.J.; Lee, S.M.; Lee, S.S.; Lee, I.D.; Lee, S.K.; Lee, S.S. Effects of flavonoid-rich plant extracts on in vitro ruminal methanogenesis, microbial populations and fermentation characteristics. Asian-Australas. J. Anim. Sci. 2015, 28, 530. [Google Scholar] [CrossRef]
- Olagaray, K.; Bradford, B. Plant flavonoids to improve productivity of ruminants—A review. Anim. Feed Sci. Technol. 2019, 251, 21–36. [Google Scholar] [CrossRef]
- Irawan, A.; Jayanegara, A.; Niderkorn, V. Impacts of red clover and sainfoin silages on the performance, nutrient utilization and milk fatty acids profile of ruminants: A meta-analysis. J. Anim. Physiol. Anim. Nutr. 2023; in press. [Google Scholar] [CrossRef]
- Oskoueian, E.; Abdullah, N.; Oskoueian, A. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. BioMed Res. Int. 2013, 2013, 349129. [Google Scholar] [CrossRef]
- Broudiscou, L.-P.; Papon, Y.; Broudiscou, A.F. Effects of dry plant extracts on fermentation and methanogenesis in continuous culture of rumen microbes. Anim. Feed Sci. Technol. 2000, 87, 263–277. [Google Scholar] [CrossRef]
- Seradj, A.R.; Abecia, L.; Crespo, J.; Villalba, D.; Fondevila, M.; Balcells, J. The effect of Bioflavex® and its pure flavonoid components on in vitro fermentation parameters and methane production in rumen fluid from steers given high concentrate diets. Anim. Feed Sci. Technol. 2014, 197, 85–91. [Google Scholar] [CrossRef]
- Yu, S.; Li, L.; Zhao, H.; Zhang, S.; Tu, Y.; Liu, M.; Zhao, Y.; Jiang, L. Dietary citrus flavonoid extract improves lactational performance through modulating rumen microbiome and metabolites in dairy cows. Food Funct. 2023, 14, 94–111. [Google Scholar] [CrossRef] [PubMed]
- Pauletto, M.; Elgendy, R.; Ianni, A.; Marone, E.; Giantin, M.; Grotta, L.; Ramazzotti, S.; Bennato, F.; Dacasto, M.; Martino, G. Nutrigenomic effects of long-term grape pomace supplementation in dairy cows. Animals 2020, 10, 714. [Google Scholar] [CrossRef]
- Ishler, V.; Heinrichs, J.; Varga, G. From Feed to Milk: Understanding Rumen Function; Pennsylvania State University: State College, PA, USA, 1996; Volume 422. [Google Scholar]
- Sommai, S.; Wanapat, M.; Prachumchai, R.; Cherdthong, A. Effect of Brazilian spinach (Alternanthera sissoo) pellet supplementation and dietary ratios on rumen characteristics, microorganisms, methane production, milk yield, and milk composition in dairy cows. J. Anim. Physiol. Anim. Nutr. 2023, in press. [Google Scholar] [CrossRef]
- Formato, M.; Cimmino, G.; Brahmi-Chendouh, N.; Piccolella, S.; Pacifico, S. Polyphenols for Livestock Feed: Sustainable Perspectives for Animal Husbandry? Molecules 2022, 27, 7752. [Google Scholar] [CrossRef]
- Singla, A.; Hundal, J.S.; Patra, A.K.; Wadhwa, M.; Nagarajappa, V.; Malhotra, P. Effect of dietary supplementation of Emblica officinalis fruit pomace on methane emission, ruminal fermentation, nutrient utilization, and milk production performance in buffaloes. Environ. Sci. Pollut. Res. 2021, 28, 18120–18133. [Google Scholar] [CrossRef]
- Singh, S.; Hundal, J.S.; Patra, A.K.; Sethi, R.S.; Sharma, A. A composite polyphenol-rich extract improved growth performance, ruminal fermentation and immunity, while decreasing methanogenesis and excretion of nitrogen and phosphorus in growing buffaloes. Environ. Sci. Pollut. Res. 2022, 29, 24757–24773. [Google Scholar] [CrossRef]
Items | TMR CON | TMR DAP | DAP |
---|---|---|---|
Particular components, g/kg DM | |||
Corn silage | 388 | 329 | - |
Alfalfa silage | 82 | 70 | - |
Grass silage | 91 | 76 | - |
Beet pulp | 103 | 88 | - |
Brewer’s grain | 95 | 81 | - |
Concentrate 1 | 39 | 33 | - |
Farmer’s grain with Maxammon 2 | 81 | 69 | - |
Rapeseed meal | 108 | 92 | - |
Mineral and vitamin premix 3 | 14 | 12 | - |
Dried apple pomace | - | 150 | - |
Forage to concentrate ratio | 76:24 | 64:36 | - |
Chemical composition 4, g/kg DM | |||
DM, g/kg as fed | 425 | 487 | 993 |
OM | 895 | 907 | 985 |
aNDF | 342 | 354 | 437 |
CP | 164 | 158 | 116 |
EE | 29.4 | 31.9 | 51 |
Phenolic acids, g GEA/kg DM 5 | 6.67 | 59.2 | 14.4 |
VEM 6 | 952 | 971 | 1100 |
Species | Primer Sequences (5′ to 3′) | Reference |
---|---|---|
Ruminococcus flavefaciens | F: CGAACGGAGATAATTTGAGTTTACTTAGG R: CGGTCTCTGTATGTTATGAGGTATTACC | [28] |
Fibrobacter succinogenes | F: GTTCGGAATTACTGGGCGTAAA R: CGCCTGCCCCTGAACTATC | [29] |
Streptococcus bovis | F: TTCCTAGAGATAGGAAGTTTCTTCGG R: ATGATGGCAACTAACAATAGGGGT | [30] |
Butyrivibrio proteoclasticus | F: TCCTAGTGTAGCGGTGAAATG R: TTAGCGACGGCACTGAATGCCTA | [31] |
Ruminococcus albus | F: CCCTAAAAGCAGTCTTAGTTCG R: CCTCCTTGCGGTTAGAACA | [32] |
Butyrivibrio fibrisolvens | F: ACACACCGCCCGTCACA R: TCCTTACGGTTGGGTCACAGA | [33] |
Megasphaera elsdenii | F: AGATGGGGACAACAGCTGGA R: CGAAAGCTCCGAAGAGCCT | [30] |
Prevotella spp. | F: GAAGGTCCCCCACATTG R: CAATCGGAGTTCTTCGTG | [30] |
Lactobacillus spp. | F: TATGGTAATTGTGTGNCAGCMGCCGCGGTAA R: AGTCAGTCAGCCGGATACHVGGGTWTCTAAT | [34] |
Items 1 | Treatments 2 | SEM 3 | p-Value 4 | |
---|---|---|---|---|
TMR CON | TMR DAP | |||
DMI 4, kg/d | 23.9 | 24.4 | 0.09 | 0.01 |
Milk yield, kg/d | 30.6 | 31.9 | 0.34 | 0.04 |
Total-tract digestibility 5, g/kg DM | ||||
DM | 645 | 667 | 5.14 | 0.02 |
OM | 673 | 712 | 7.71 | 0.01 |
NDF | 512 | 551 | 10.5 | 0.06 |
CP | 564 | 651 | 12.5 | 0.01 |
EE | 645 | 667 | 5.14 | 0.02 |
Composition | Treatments 1 | SEM 2 | p-Value 3 | |
---|---|---|---|---|
TMR CON | TMR DAP | |||
pH | 6.01 | 6.18 | 0.02 | 0.001 |
NH3-N, mM | 13.0 | 6.97 | 0.44 | 0.001 |
Total VFA 4, mM | 91.7 | 103 | 1.59 | 0.001 |
VFA 4, mM | ||||
Acetic (A) | 57.8 | 60.4 | 0.68 | 0.060 |
Propionic (P) | 17.5 | 24.4 | 0.85 | 0.001 |
Isobutyric | 0.58 | 0.84 | 0.06 | 0.040 |
Butyric | 11.9 | 14.1 | 0.271 | 0.001 |
Isovaleric | 2.04 | 1.13 | 0.136 | 0.001 |
Valeric | 1.85 | 2.13 | 0.121 | 0.260 |
VFA 4, % | ||||
Acetic (A) | 63.1 | 58.7 | 0.482 | 0.001 |
Propionic (P) | 19.1 | 23.6 | 0.526 | 0.001 |
Isobutyric | 0.64 | 0.84 | 0.067 | 0.130 |
Butyric | 13.0 | 13.7 | 0.211 | 0.070 |
Isovaleric | 2.23 | 1.10 | 0.155 | 0.001 |
Valeric | 2.01 | 2.04 | 0.106 | 0.870 |
A/P | 3.30 | 2.50 | 0.090 | 0.001 |
Total bacteria, ×109/mL | 8.36 | 10.5 | 0.157 | <0.001 |
Archaea, ×107/mL | 5.19 | 4.20 | 0.116 | <0.001 |
Methanobacteriales, ×107/mL | 1.84 | 0.58 | 0.061 | <0.001 |
Methanomicrobiales, ×107/mL | 2.17 | 1.79 | 0.061 | <0.001 |
Total protozoa, ×103/mL | 636 | 289 | 56.9 | 0.01 |
Isotrichidae, ×103/mL | 6.34 | 3.24 | 0.976 | 0.115 |
Ophryoscolecidae, ×103/mL | 631 | 287 | 56.24 | 0.01 |
CH4 g/d | 451 | 417 | 8.62 | 0.05 |
CH4, g/kg DMI | 18.7 | 16.1 | 0.49 | 0.01 |
CO2, g/d | 12.127 | 11.426 | 308 | 0.26 |
CO2, g/kg DMI | 502 | 472 | 17.5 | 0.42 |
Parameters | Treatments 1 | SEM 2 | p-Value 3 | |
---|---|---|---|---|
TMR CON | TMR DAP | |||
Ruminococcus flavefaciens * | 0.41 | 0.16 | 0.08 | 0.12 |
Ruminococcus albus * | 4.16 | 11.05 | 1.34 | 0.01 |
Fibrobacter succinogenes * | 2.34 | 3.00 | 0.53 | 0.54 |
Butyrivibrio fibrisolvens * | 3.54 | 1.55 | 0.65 | 0.13 |
Butyrivibrio proteoclasticus * | 2.47 | 2.59 | 0.42 | 0.89 |
Streptococcus bovis * | 0.20 | 0.70 | 0.08 | <0.001 |
Megasphaera elsdenii * | 0.04 | 0.17 | 0.02 | <0.001 |
Prevotella spp. * | 6.51 | 6.82 | 0.70 | 0.83 |
Lactobacillus spp. * | 0.10 | 0.40 | 0.14 | 0.32 |
FA Profile (g/100 g FA) 1 | Treatments 2 | SEM 3 | p-Value 4 | |||
---|---|---|---|---|---|---|
TMR CON | TMR DAP | Group | Time | Group × Time | ||
C12:0 | 0.30 | 0.46 | 0.010 | <0.001 | <0.001 | 0.241 |
C14:0 | 0.88 | 1.49 | 0.037 | <0.001 | 0.129 | 0.328 |
C14:1 | 0.51 | 0.52 | 0.007 | 0.660 | <0.001 | 0.018 |
C15:0 | 1.28 | 1.32 | 0.009 | <0.001 | <0.001 | 0.033 |
C15:1 | 0.47 | 0.49 | 0.010 | 0.032 | 0.049 | 0.015 |
C16:0 | 21.46 | 20.75 | 0.132 | <0.001 | <0.001 | 0.965 |
C16:1 | 0.23 | 0.27 | 0.005 | <0.001 | <0.001 | 0.061 |
C17:0 | 0.59 | 0.59 | 0.004 | 0.545 | 0.029 | 0.048 |
C17:1 | 0.04 | 0.04 | 0.002 | 0.429 | <0.001 | 0.506 |
C18:0 | 53.80 | 51.53 | 0.316 | <0.001 | <0.001 | 0.001 |
C18:1 t10 | 1.12 | 1.59 | 0.043 | <0.001 | <0.001 | 0.764 |
C18:1 t11 | 3.00 | 2.89 | 0.056 | 0.060 | 0.001 | 0.002 |
C18:1 cis9 | 8.11 | 8.84 | 0.099 | <0.001 | <0.001 | 0.033 |
C18:2 c9c12 | 6.29 | 7.19 | 0.207 | <0.001 | <0.001 | <0.001 |
C18:3 c9c12c15 | 0.94 | 1.17 | 0.041 | <0.001 | <0.001 | 0.122 |
C18:2 c9t11 | 0.62 | 0.50 | 0.042 | 0.004 | <0.001 | 0.009 |
C18:2 t10c12 | 0.17 | 0.18 | 0.006 | 0.088 | <0.001 | 0.082 |
C18:3 n6 | 0.20 | 0.19 | 0.006 | 0.693 | 0.035 | 0.008 |
SFA | 78.31 | 76.13 | 0.296 | <0.001 | <0.001 | <0.001 |
UFA | 21.69 | 23.87 | 0.296 | <0.001 | <0.001 | <0.001 |
MUFA | 13.46 | 14.64 | 0.116 | <0.001 | <0.001 | 0.052 |
PUFA | 8.21 | 9.23 | 0.216 | <0.001 | <0.001 | <0.001 |
n-6 | 12.77 | 14.58 | 0.413 | <0.001 | <0.001 | <0.001 |
n-3 | 0.94 | 1.17 | 0.041 | <0.001 | <0.001 | 0.121 |
n6/n3 | 14.01 | 12.75 | 0.494 | 0.011 | 0.021 | 0.054 |
PUFA/SFA | 0.11 | 0.12 | 0.003 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gadulrab, K.; Sidoruk, P.; Kozłowska, M.; Szumacher-Strabel, M.; Lechniak, D.; Kołodziejski, P.; Pytlewski, J.; Strzałkowska, N.; Horbańczuk, J.O.; Jóźwik, A.; et al. Effect of Feeding Dried Apple Pomace on Ruminal Fermentation, Methane Emission, and Biohydrogenation of Unsaturated Fatty Acids in Dairy Cows. Agriculture 2023, 13, 2032. https://doi.org/10.3390/agriculture13102032
Gadulrab K, Sidoruk P, Kozłowska M, Szumacher-Strabel M, Lechniak D, Kołodziejski P, Pytlewski J, Strzałkowska N, Horbańczuk JO, Jóźwik A, et al. Effect of Feeding Dried Apple Pomace on Ruminal Fermentation, Methane Emission, and Biohydrogenation of Unsaturated Fatty Acids in Dairy Cows. Agriculture. 2023; 13(10):2032. https://doi.org/10.3390/agriculture13102032
Chicago/Turabian StyleGadulrab, Khaled, Pola Sidoruk, Martyna Kozłowska, Małgorzata Szumacher-Strabel, Dorota Lechniak, Paweł Kołodziejski, Jarosław Pytlewski, Nina Strzałkowska, Jarosław Olav Horbańczuk, Artur Jóźwik, and et al. 2023. "Effect of Feeding Dried Apple Pomace on Ruminal Fermentation, Methane Emission, and Biohydrogenation of Unsaturated Fatty Acids in Dairy Cows" Agriculture 13, no. 10: 2032. https://doi.org/10.3390/agriculture13102032
APA StyleGadulrab, K., Sidoruk, P., Kozłowska, M., Szumacher-Strabel, M., Lechniak, D., Kołodziejski, P., Pytlewski, J., Strzałkowska, N., Horbańczuk, J. O., Jóźwik, A., Yanza, Y. R., Irawan, A., Patra, A. K., & Cieślak, A. (2023). Effect of Feeding Dried Apple Pomace on Ruminal Fermentation, Methane Emission, and Biohydrogenation of Unsaturated Fatty Acids in Dairy Cows. Agriculture, 13(10), 2032. https://doi.org/10.3390/agriculture13102032