Role of Cortisol in Horse’s Welfare and Health
Abstract
:1. Introduction
2. Cortisol in Horse’s Welfare and Health
3. Matrices for Cortisol Sampling
3.1. Blood Cortisol
3.2. Salivary Cortisol
3.3. Blood and Salivary Cortisol in Stimulation or Suppresion Tests
3.4. Hair Cortisol
3.5. Fecal Cortisol
3.6. Other Cortisol Matrices
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hovey, M.R.; Davis, A.; Chen, S.; Godwin, P.; Porr, S.C.A. Evaluating Stress in Riding Horses: Part One-Behavior Assessment and Serum Cortisol. J. Equine Vet. Sci. 2021, 96, 103297. [Google Scholar] [CrossRef] [PubMed]
- Hausberger, M.; Roche, H.; Henry, S.; Visser, E.K. A review of the human-horse relationship. Appl. Anim. Behav. Sci. 2008, 109, 1–24. [Google Scholar] [CrossRef]
- Iqbal, T.; Elahi, A.; Wijns, W.; Shahzad, A. Cortisol detection methods for stress monitoring in connected health. Health Sci. Rev. 2023, 6, 100079. [Google Scholar] [CrossRef]
- Scheidegger, M.D.; Gerber, V.; Ramseyer, A.; Schüpbach-Regula, G.; Bruckmaier, R.M.; van der Kolk, J.H. Repeatability of the ACTH stimulation test as reflected by salivary cortisol response in healthy horses. Domest. Anim. Endocrinol. 2016, 57, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Sauer, F.J.; Hermann, M.; Ramseyer, A.; Burger, D.; Riemer, S.; Gerber, V. Effects of breed, management and personality on cortisol reactivity in sport horses. PLoS ONE 2019, 14, 0221794. [Google Scholar] [CrossRef] [PubMed]
- Lundblad, J.; Rashid, M.; Rhodin, M.; Haubro Andersen, P. Effect of transportation and social isolation on facial expressions of healthy horses. PLoS ONE 2021, 16, e0241532. [Google Scholar] [CrossRef]
- Kang, H.; Zsoldos, R.R.; Sole-Guitart, A.; Narayan, E.; Cawdell-Smith, A.J.; Gaughan, J.B. Heat stress in horses: A literature review. Int. J. Biometeorol. 2023, 67, 957–973. [Google Scholar] [CrossRef] [PubMed]
- Fureix, C.; Benhajali, H.; Henry, S.; Bruchet, A.; Prunier, A.; Ezzaouia, M.; Coste, C.; Hausberger, M.; Palme, R.; Jego, P. Plasma cortisol and faecal cortisol metabolites concentrations in stereotypic and non-stereotypic horses: Do stereotypic horses cope better with poor environmental conditions? BMC Vet. Res. 2013, 9, 3. [Google Scholar]
- Raspa, F.; Tarantola, M.; Muca, E.; Bergero, D.; Soglia, D.; Cavallini, D.; Vervuert, I.; Bordin, C.; De Palo, P.; Valle, E. Does feeding management make a difference to behavioural activities and welfare of horses reared for meat production? Animals 2022, 12, 1740. [Google Scholar] [CrossRef]
- Raspa, F.; Tarantola, M.; Bergero, D.; Bellino, C.; Mastrazzo, C.M.; Visconti, A.; Valvassori, E.; Vervuert, I.; Valle, E. Stocking density affects welfare indicators in horses reared for meat production. Animals 2020, 10, 1103. [Google Scholar] [CrossRef]
- Raspa, F.; Tarantola, M.; Bergero, D.; Nery, J.; Visconti, A.; Mastrazzo, C.M.; Cavallini, D.; Valvassori, E.; Valle, E. Time-budget of horses reared for meat production: Influence of stocking density on behavioural activities and subsequent welfare. Animals 2020, 10, 1334. [Google Scholar] [CrossRef] [PubMed]
- Raspa, F.; Dinardo, F.R.; Vervuert, I.; Bergero, D.; Bottero, M.T.; Pattono, D.; Dalmasso, A.; Vinassa, M.; Valvassori, E.; Bruno, E.; et al. A Fibre-vs. cereal grain-based diet: Which is better for horse welfare? Effects on intestinal permeability, muscle characteristics and oxidative status in horses reared for meat production. J. Anim. Physiol. Anim. Nutr. 2022, 106, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Kędzierski, W.; Strzelec, K.; Cywińska, A.; Kowalik, S. Salivary Cortisol Concentration in Exercised Thoroughbred Horses. J. Equine Vet. Sci. 2013, 33, 1106–1109. [Google Scholar] [CrossRef]
- Schmidt, A.; Hodl, S.; Möstl, E.; Aurich, J.; Muller, J.; Aurich, C. Cortisol release, heart rate, and heart rate variability in transport-naïve horses during repeated road transport. Domest. Anim. Endocrinol. 2010, 39, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.; Möstl, E.; Wehnert, C.; Aurich, J.; Muller, J.; Aurich, C. Cortisol release and heart rate variability in horses during road transport. Horm. Behav. 2010, 57, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.; Aurich, J.; Möstl, E.; Muller, J.; Aurich, C. Changes in cortisol release and heart rate and heart rate variability during the initial training of 3-year-old sport horses. Horm. Behav. 2010, 58, 628–636. [Google Scholar] [CrossRef]
- Berghold, P.; Möstl, E.; Aurich, C. Effects of reproductive status and management on cortisol secretion and fertility of oestrous horse mares. Anim. Reprod. Sci. 2007, 102, 276–285. [Google Scholar] [CrossRef]
- Turner, L.C. Assessment of Horses for Therapeutic Riding Purposes: Comparison of Physiological and Behavioral Parameters; Honors College, Western Kentucky University: West Lafayette, IN, USA, 2014. [Google Scholar]
- Alexander, S.; Irvine, C.H.G. Stress in the racing horse: Coping vs. not coping. J. Equine Sci. 1998, 9, 77–81. [Google Scholar] [CrossRef]
- Anderson, M.K.; Friend, T.H.; Evans, J.W.; Bushong, D.M. Behavioral assessment of horses in therapeutic riding programs. Appl. Anim. Behav. Sci. 1999, 63, 11–24. [Google Scholar] [CrossRef]
- Kovac, M.; Vladimirovna Ippolitova, T.; Pozyabin, S.; Aliev, R.; Lobanova, V.; Drakul, N.; Rutland, C.S. Equine Stress: Neuroendocrine Physiology and Pathophysiology; IntechOpen: London, UK, 2022. [Google Scholar]
- Hart, K.A.; Barton, M.H. Adrenocortical insufficiency in horses and foals. Vet. Clin. N. Am. Equine Pract. 2011, 27, 19–34. [Google Scholar] [CrossRef]
- Kaushik, J.A.; Vasudev, A.; Arya, S.K.; Pasha, S.K.; Bhansali, S. Recent advances in cortisol sensing technologies for point-of-care application. Biosens. Bioelectron. 2014, 53, 499–512. [Google Scholar] [CrossRef]
- Henshall, C.; Randle, H.; Francis, N.; Francis, N. The effect of stress and exercise on the learning performance of horses. Sci. Rep. 2022, 12, 1918. [Google Scholar] [CrossRef]
- Keating, D.L.; Leshman, J.S.; Burk, S.V. Salivary Cortisol, Equine Characteristics, and Management Factors Associated with Strongyle-Type Egg Shedding of Ohio Horses. J. Equine Vet. Sci. 2021, 101, 103431. [Google Scholar] [CrossRef]
- Smith, S.M.; Vale, W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 2006, 8, 383–395. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 172464, 1,2,6,7-(3H)Cortisol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/1_2_6_7-_3H_Cortisol (accessed on 30 September 2023).
- Morgan, R.A.; Keen, J.A.; Homer, N.; Nixon, M.; McKinnon-Garvin, A.M.; Moses-Williams, J.A.; Davis, S.R.; Hadoke, P.W.F.; Walker, B.R. Dysregulation of Cortisol Metabolism in Equine Pituitary Pars Intermedia Dysfunction. Endocrinology 2018, 159, 3791–3800. [Google Scholar] [CrossRef]
- Lee, H.; Hwang, Y.; Cheon, K.A.; Jung, H.I. Emotion-on-a-chip (EOC): Evolution of biochip technology to measure human emotion using body fluids. Med. Hypotheses 2012, 79, 827–832. [Google Scholar] [CrossRef]
- Debono, M.; Ghobadi, C.; Rostami-Hodjegan, A.; Huatan, H.; Campbell, M.J.; Newell-Price, J.; Darzy, P.; Merke, D.P.; Arlt, W.; Ross, R.J. Modified-release hydrocortisone to provide circadian cortisol profiles. J. Clin. Endocrinol. Metab. 2009, 94, 1548–1554. [Google Scholar] [CrossRef]
- Irvine, C.H.G.; Alexander, S.L. Factors affecting the circadian rhythm in plasma cortisol concentrations in the horse. Domest. Anim. Endocrinol 1994, 11, 227–238. [Google Scholar] [CrossRef]
- Kang, O.D.; Lee, W.S. Changes in Salivary Cortisol Concentration in Horses during Different Types of Exercise. Asian-Australas. J. Anim. Sci. 2016, 29, 747–752. [Google Scholar] [CrossRef]
- Marc, M.; Parvizi, N.; Ellendorff, F.; Kallweit, E.; Elsaesser, F. Plasma cortisol and ACTH concentrations in the warmblood horse in response to a standardized treadmill exercise test as physiological markers for evaluation of training status. J. Anim. Sci. 2000, 78, 1936–1946. [Google Scholar] [CrossRef]
- Ireland, J.; McGowan, C. Epidemiology of pituitary pars intermedia dysfunction: A systematic literature review of clinical presentation, disease prevalence and risk factors. Vet. J. 2018, 235, 22–33. [Google Scholar] [CrossRef]
- Haffner, J.; Fecteau, K.; Eiler, H.; Tserendorj, T.; Hoffman, R.; Oliver, J. Blood steroid concentrations in domestic Mongolian horses. J. Vet. Diagn. Investig. 2010, 22, 537–543. [Google Scholar] [CrossRef]
- Kirchmeier, A.; van Herwaarden, A.E.; van der Kolk, J.H.; Sauer, F.J.; Gerber, V. Plasma steroid profiles before and after ACTH stimulation test in healthy horses. Domest. Anim. Endocrinol. 2019, 72, 106419. [Google Scholar] [CrossRef]
- Van Der Kolk, J.H.; Nachreiner, R.F.; Scott, H.C.; Refsal, K.R.; Zanella, K.J. Salivary and plasma concentration of cortisol in normal horses and horses with Cushing’s disease. Equine Vet. J. 2001, 33, 211–213. [Google Scholar] [CrossRef]
- Pawluski, J.; Jego, P.; Henry, S.; Bruchet, A.; Palme, R.; Coste, C.; Hausberger, M. Low plasma cortisol and fecal cortisol metabolite measures as indicators of compromised welfare in domestic horses (Equus caballus). PLoS ONE 2017, 12, e0182257. [Google Scholar] [CrossRef]
- Peeters, M.; Sulon, J.; Beckers, J.F.; Ledoux, D.; Vandenheede, M. Comparison between blood serum and salivary cortisol concentrations in horses using an adrenocorticotropic hormone challenge. Equine Vet. J. 2011, 43, 487–493. [Google Scholar] [CrossRef]
- Peeters, M.; Closson, C.; Beckers, J.F.; Vandenheede, M. Rider and Horse Salivary Cortisol Levels during Competition and Impact on Performance. J. Equine Vet. Sci. 2013, 33, 155–160. [Google Scholar] [CrossRef]
- Massányi, M.; Halo, M.; Mlyneková, E.; Kováčiková, E.; Tokárová, K.; Greń, A.; Massányi, P.; Halo, M. The effect of training load stress on salivary cortisol concentrations, health parameters and hematological parameters in horses. Heliyon 2023, 9, 19037. [Google Scholar] [CrossRef]
- Olvera-Maneu, S.; Carbajal, A.; Serres-Corral, P.; López-Béjar, M. Cortisol Variations to Estimate the Physiological Stress Response in Horses at a Traditional Equestrian Event. Animals 2023, 13, 396. [Google Scholar] [CrossRef]
- Hughes, T.; Creighton, E.; Coleman, R. Salivary and fecal cortisol as measures of stress in horses. J. Vet. Behav. 2010, 5, 59–60. [Google Scholar] [CrossRef]
- Held, F.; Ekstrand, C.; Cvijovic, M.; Gabrielsson, J.; Jirstrand, M. Modelling of oscillatory cortisol response in horses using a Bayesian population approach for evaluation of dexamethasone suppression test protocols. J. Pharmacokinet. Pharmacodyn. 2019, 46, 75–87. [Google Scholar] [CrossRef]
- Saluti, G.; Ricci, M.; Castellani, F.; Colagrande, M.N.; Di Bari, G.; Vulpiani, M.P.; Cerasoli, F.; Savini, G.; Scortichini, G.; D’Alterio, N. Determination of hair cortisol in horses: Comparison of immunoassay vs. LC-HRMS/MS. Anal. Bioanal. Chem. 2022, 414, 8093–8105. [Google Scholar] [CrossRef]
- Medill, S.A.; Janz, D.M.; McLoughlin, P.D. Hair Cortisol Concentrations in Feral Horses and the Influence of Physiological and Social Factors. Animals 2023, 13, 2133. [Google Scholar] [CrossRef]
- Mazzola, S.M.; Colombani, C.; Pizzamiglio, G.; Cannas, S.; Palestrini, C.; Costa, E.D.; Gazzonis, A.L.; Bionda, A.; Crepaldi, P. Do You Think I Am Living Well? A Four-Season Hair Cortisol Analysis on Leisure Horses in Different Housing and Management Conditions. Animals 2021, 11, 2141. [Google Scholar] [CrossRef]
- Comin, A.; Veronesi, M.C.; Montillo, M.; Faustini, M.; Valentini, S.; Cairoli, F.; Prandi, A. Hair cortisol level as a retrospective marker of hypothalamic-pituitary-adrenal axis activity in horse foals. Vet. J. 2012, 194, 131–132. [Google Scholar] [CrossRef]
- Gardela, J.; Carbajal, A.; Tallo-Parra, O.; Olvera-Maneu, S.; Álvarez-Rodríguez, M.; Jose-Cunilleras, E.; López-Béjar, M. Temporary Relocation during Rest Periods: Relocation Stress and Other Factors Influence Hair Cortisol Concentrations in Horses. Animals 2020, 10, 642. [Google Scholar] [CrossRef]
- Christensen, J.W.; Strøm, C.G.; Nicová, K.; de Gaillard, C.L.; Sandøe, P.; Skovgård, H. Insect-Repelling Behaviour in Horses in Relation to Insect Prevalence and Access to Shelters. Appl. Anim. Behav. Sci. 2022, 247, 105560. [Google Scholar] [CrossRef]
- Flauger, B.; Krueger, K.; Gerhards, H.; Möstl, E. Simplified Method to Measure Glucocorticoid Metabolites in Feces of Horses. Vet. Res. Commun. 2010, 34, 185–195. [Google Scholar] [CrossRef]
- Gorgasser, I.; Tichy, A.; Palme, R. Fecal Cortisol Metabolites in Quarter Horses during Initial Training under Field Conditions. Wien. Tierarztl. Monatsschrift 2007, 94, 226. [Google Scholar]
- van Vollenhoven, E.; Grant, C.C.; Fletcher, L.; Schulman, M.L.; Page, P.C.; Ganswindt, A. Salivary Glucocorticoid and Fecal Glucocorticoid Metabolite Concentrations in Pony Mares during Transrectal Palpation of the Reproductive Tract by Veterinary Students. J. Equine Vet. Sci. 2018, 70, 7–12. [Google Scholar] [CrossRef]
- Möstl, E.; Palme, R. Hormones as indicators of stress. Domest. Anim. Endocrinol. 2002, 23, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Janczarek, I.; Bereznowski, A.; Strzelec, K. The influence of selected factors and sport results of endurance horses on their saliva cortisol concentration. Pol. J. Vet. Sci. 2013, 16, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Casella, S.; Vazzana, I.; Giudice, E.; Fazio, F.; Piccione, G. Relationship between serum cortisol levels and some physiological parameters following reining training session in horse. Anim. Sci. J. 2016, 87, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Yarnell, K.; Hall, C.; Billett, E. An assessment of the aversive nature of an animal management procedure (clipping) using behavioral and physiological measures. Physiol. Behav. 2013, 118, 32–39. [Google Scholar] [CrossRef]
- Arfuso, F.; Acri, G.; Piccione, G.; Sansotta, C.; Fazio, F.; Giudice, E.; Giannetto, C. Eye surface infrared thermography usefulness as a noninvasive method of measuring stress response in sheep during shearing: Correlations with serum cortisol and rectal temperature values. Physiol. Behav. 2022, 250, 113781. [Google Scholar] [CrossRef]
- Becker-Birck, M.; Schmidt, A.; Lasarzik, J.; Aurich, J.; Möstl, E.; Aurich, C. Cortisol release and heart rate variability in sport horses participating in equestrian competitions. J. Vet. Behav. 2013, 8, 87–94. [Google Scholar] [CrossRef]
- Nagy, K.; Bodó, G.; Bárdos, G.; Bánszky, N.; Kabai, P. Differences in temperament traits between crib-biting and control horses. Appl. Anim. Behav. Sci. 2010, 122, 41–47. [Google Scholar] [CrossRef]
- Pell, S.M.; McGreevy, P.D. A study of cortisol and beta-endorphin levels in stereotypic and normal Thoroughbreds. Appl. Anim. Behav. Sci. 1999, 64, 81–90. [Google Scholar] [CrossRef]
- Hemmann, K.; Raekallio, M.; Kanerva, K.; Hänninen, L.; Pastell, M.; Palviainen, M.; Vainio, O. Circadian variation in ghrelin and certain stress hormones in crib-biting horses. Vet. J. 2012, 193, 97–102. [Google Scholar] [CrossRef]
- Schott, H.C. Pituitary pars intermedia dysfunction: Equine Cushing’s disease. Vet. Clin. N. Am. Equine Pract. 2002, 18, 237–270. [Google Scholar] [CrossRef] [PubMed]
- Kirkwood, N.C.; Hughes, K.J.; Stewart, A.J. Pituitary Pars Intermedia Dysfunction (PPID) in Horses. Vet. Sci. 2022, 9, 556. [Google Scholar] [CrossRef] [PubMed]
- Marik, P.E. Mechanisms and clinical consequences of critical illness associated adrenal insufficiency. Curr. Opin. Crit. Care 2007, 13, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, E.F.; Watterberg, K.L. Relative adrenal insufficiency in the preterm and term infant. J. Perinatol. 2009, 29, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Hart, K.; Barton, M.; Vandenplas, M.; Hurlay, D.J. Effects of Low-Dose Hydrocortisone Therapy on Immune Function in Neonatal Horses. Pediatr. Res. 2011, 70, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Durham, A.; McGowan, C.; Fey, K.; Tamzali, Y.; Van der Kolk, J. Pituitary pars intermedia dysfunction: Diagnosis and treatment. Equine Vet. Educ. 2014, 26, 216–223. [Google Scholar] [CrossRef]
- Horn, R.; Stewart, A.J.; Jackson, K.V.; Dryburgh, E.L.; Medina-Torres, C.E.; Bertin, F.R. Clinical implications of using adrenocorticotropic hormone diagnostic cutoffs or reference intervals to diagnose pituitary pars intermedia dysfunction in mature horses. J. Vet. Intern. Med. 2021, 35, 560–570. [Google Scholar] [CrossRef]
- McGowan, T.W.; Pinchbeck, G.P.; McGowan, C.M. Prevalence, risk factors and clinical signs predictive for equine pituitary pars intermedia dysfunction in aged horses. Equine Vet. J. 2013, 45, 74–79. [Google Scholar] [CrossRef]
- Ambrojo, K.S.; Corzano, M.M.; Poggi, J.C.G. Action Mechanisms and Pathophysiological Characteristics of Cortisol in Horses; IntechOpen: London, UK, 2018. [Google Scholar]
- Breuhaus, B.A. Thyroid Hormone and Thyrotropin Concentrations and Responses to Thyrotropin-Stimulating Hormone in Horses with PPID Compared with Age-Matched Normal Horses. J. Equine Vet. Sci. 2019, 75, 35–40. [Google Scholar] [CrossRef]
- Weitzman, E.D.; Fukushima, D.; Nogeire, C.; Roffwarg, G.; Gallagher, T.F.; Hellman, L. Twenty-four hour pattern of the episodic secretion of cortisol in normal subjects. Endocrinology 1971, 33, 14–22. [Google Scholar] [CrossRef]
- Pryczek, T.; Stefaniak, T. Wykorzystanie oznaczania kortyzolu i jego pochodnych w ocenie stresu u psów służbowych. Życie Weter. 2013, 88, 136–141. [Google Scholar]
- Smith, C.J.; Norman, R.L. Influence of the gonads on cortisol secretion in female rhesus macaques. Endocrinology 1987, 121, 2192–2198. [Google Scholar] [CrossRef] [PubMed]
- Cordero, M.; Brorsen, B.W.; McFarlane, D. Circadian and circannual rhythms of cortisol, ACTH, and α-melanocyte-stimulating hormone in healthy horses. Domest. Anim. Endocrinol. 2012, 43, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.A. Circadian and Circannual Regulation in the Horse: Internal Timing in an Elite Athlete. J. Equine Vet. Sci. 2019, 76, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Palme, R. Monitoring stress hormone metabolites as a useful, non-invasive tool for welfare assessment in farm animals. Anim. Welf. 2012, 21, 331–337. [Google Scholar] [CrossRef]
- Mormede, P.; Andanson, S.; Auperin, B.; Beerda, B.; Guemene, D.; Malnikvist, J.; Manteca, X.; Manteuffel, G.; Prunet, P.; van Reenen, C.G.; et al. Exploration of the hypothalamic-pituitary-adrenal function as a tool to evaluate animal welfare. Physiol. Behav. 2007, 92, 317–339. [Google Scholar] [CrossRef]
- Alberghina, D.; Statelli, A.; Monteverde, V.; Vazzana, I.; Cascone, G.; Panzera, M. Serum Cortisol and Its Correlation with Leucocyte Profile and Circulating Lipids in Donkeys (Equus asinus). Animals 2022, 12, 841. [Google Scholar] [CrossRef]
- Burden, F.A.; Hazell-Smith, E.; Mulugeta, G.; Patrick, V.; Trawford, R.; Brownlie, H.W.B. Reference intervals for biochemical and haematological parameters in mature domestic donkeys (Equus asinus) in the UK. Equine Vet. Educ. 2016, 28, 134–139. [Google Scholar] [CrossRef]
- Sheriff, M.J.; Dantzer, B.; Delehanty, B.; Palme, R.; Boonstra, R. Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia 2011, 166, 869–887. [Google Scholar] [CrossRef]
- Waran, N.; Randle, H. What we can measure, we can manage: The importance of using robust welfare indicators in Equitation Science. Appl. Anim. Behav. Sci. 2017, 190, 74–81. [Google Scholar] [CrossRef]
- Contreras-Aguilar, M.D.; Hevia, M.L.; Escribano, D.; Lamy, E.; Tecles, F.; Cerón, J.J. Effect of food contamination and collection material in the measurement of biomarkers in saliva of horses. Res. Vet. Sci. 2020, 129, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Strzelec, K.; Kankofer, M.; Pietrzak, S. Cortisol concentration in the saliva of horses subjected to different kinds of exercise. Acta Vet. Brno 2011, 80, 101–105. [Google Scholar] [CrossRef]
- Moeller, B.A.; McCall, C.A.; Silverman, S.J.; McElhenney, W.E. Estimation of Saliva Production in Crib-Biting and Normal Horses. J. Equine Vet. Sci. 2008, 28, 85–90. [Google Scholar] [CrossRef]
- Holst, J.P.; Soldin, S.J.; Tractenberg, R.E.; Guo, T.; Kundra, P.; Verbalis, J.G.; Jonklaas, J. Use of steroid profiles in determining the cause of adrenal insufficiency. Steroids 2007, 72, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Sauer, F.J.; Bruckmaier, R.M.; Ramseyer, A.; Vidondo, B.; Scheidegger, M.D.; Gerber, V. Diagnostic Accuracy of Post-ACTH Challenge Salivary Cortisol Concentrations for Identifying Horses with Equine Glandular Gastric Disease. J. Anim. Sci. 2018, 96, 2154–2161. [Google Scholar] [CrossRef] [PubMed]
- Freymond, S.B.; Bardou, D.; Briefer, E.F.; Bruckmaier, R.; Fouché, N.; Fleury, J.; Maigrot, A.-L.; Ramseyer, A.; Zuberbühler, K.; Bachmann, I. The Physiological Consequences of Crib-Biting in Horses in Response to an ACTH Challenge Test. Physiol. Behav. 2015, 151, 121–128. [Google Scholar] [CrossRef] [PubMed]
- van der Kolk, J.H.; Fouché, N.; Gross, J.J.; Gerber, V.; Bruckmaier, R.M. A Comparison between the Equine and Bovine Hypothalamus-Pituitary-Adrenocortical Axis. Domest. Anim. Endocrinol. 2016, 56, S101–S111. [Google Scholar] [CrossRef]
- Dogra, P.; Vijayashankar, N.P. Dexamethasone Suppression Test; StatPearls Publishing: St. Petersburg, FL, USA, 2023. [Google Scholar]
- Dybdal, N.O.; Hargreaves, K.M.; Madigan, J.E.; Gribble, D.H.; Kennedy, P.C.; Stabenfeldt, G.H. Diagnostic testing for pituitary pars intermedia dysfunction in horses. J. Am. Vet. Med. Assoc. 1994, 204, 627–632. [Google Scholar]
- Frank, N.; Andrews, F.M.; Sommardahl, C.S.; Eiler, H.; Rohrbach, B.W.; Donnell, R.L. Evaluation of the combined dexamethasone suppression/thyrotropin-releasing hormone stimulation test for detection of pars intermedia pituitary adenomas in horses. J. Vet. Intern. Med. 2006, 20, 987–993. [Google Scholar]
- Sojka, J.E.; Johnson, M.A.; Bottoms, G.D. The Effect of Starting Time on Dexamethasone Suppression Test Results in Horses. Domest. Anim. Endocrinol. 1993, 10, 1–5. [Google Scholar] [CrossRef]
- McFarlane, D. Diagnostic Testing for Equine Endocrine Diseases. Vet. Clin. N. Am. Equine Pract. 2019, 35, 327–338. [Google Scholar] [CrossRef]
- Sternberg, Z.; Grewal, P.; Cen, S.; DeBarge-Igoe, F.; Yu, J.; Arata, M. Blood pressure normalization post-jugular venous balloon angioplasty. Phlebology 2015, 30, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Hart, K.A.; Heusner, G.L.; Norton, N.A.; Barton, M.H. Hypothalamic-Pituitary-Adrenal Axis Assessment in Healthy Term Neonatal Foals Utilizing a Paired Low Dose/High Dose ACTH Stimulation Test. J. Vet. Intern. Med. 2009, 23, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.M.; Vo, D.T.; Alcott, C.J.; Stewart, A.J.; Peterson, A.D.; Sponseller, B.A.; Hsu, W.H. Adrenocorticotropic Hormone Stimulation Tests in Healthy Foals from Birth to 12 Weeks of Age. Can. J. Vet. Res. 2009, 73, 65–72. [Google Scholar] [PubMed]
- Stewart, A.J.; Behrend, E.N.; Wright, J.C.; Martin, L.G.; Kemppainen, R.J.; Busch, K.A.; Hanson, R.R. Validation of a Low-Dose ACTH Stimulation Test in Healthy Adult Horses. J. Am. Vet. Med. Assoc. 2011, 239, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Spelta, C. Equine Pituitary Pars Intermedia Dysfunction: Current Perspectives on Diagnosis and Management. Vet. Med. Res. Rep. 2015, 2015, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Ekstrand, C.; Ingvast-Larsson, C.; Olsen, L.; Hedeland, M.; Bondesson, U.; Gabrielsson, J. A quantitative approach to analysing cortisol response in the horse. J. Vet. Pharmacol. Ther. 2016, 39, 255–263. [Google Scholar] [CrossRef]
- Zhang, M.; Li, X.; Zhang, X.; Liu, H.; Li, J.; Bao, J. Effects of confinement duration and parity on stereotypic behavioral and physiological responses of pregnant sows. Physiol. Behav. 2017, 179, 369–376. [Google Scholar] [CrossRef]
- Roth, L.S.V.; Faresjö, Å.; Theodorsson, E.; Jensen, P. Hair cortisol varies with season and lifestyle and relates to human interactions in German shepherd dogs. Sci. Rep. 2016, 6, 19631. [Google Scholar] [CrossRef]
- Sauveroche, M.; Henriksson, J.; Theodorsson, E.; Svensson Holm, A.C.; Roth, L.S.V. Hair cortisol in horses (Equus caballus) in relation to management regimes, personality and breed. J. Vet. Behav. 2020, 37, 1–7. [Google Scholar] [CrossRef]
- Heimbürge, S.; Kanitz, E.; Otten, W. The use of hair cortisol for the assessment of stress in animals. Gen. Comp. Endocrinol. 2019, 270, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Hanis, F.; Chung, E.L.T.; Kamalludin, M.H.; Idrus, Z. Discovering the relationship between dietary nutrients and cortisol and ghrelin hormones in horses exhibiting oral stereotypic behaviors: A review. J. Vet. Behav. 2020, 39, 90–98. [Google Scholar] [CrossRef]
- Jolivald, A.; Ijichi, C.; Hall, C.; Yarnell, K. The mane factor: Compliance is associated with increased hair cortisol in the horse. Appl. Anim. Behav. Sci. 2023, 258, 105819. [Google Scholar] [CrossRef]
- Russell, E.; Koren, G.; Rieder, M.; Van Uum, S. Hair Cortisol as a Biological Marker of Chronic Stress: Current Status, Future Directions and Unanswered Questions. Psychoneuroendocrinology 2012, 37, 589–601. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.S.; Novak, M.A. Minireview: Hair Cortisol: A Novel Biomarker of Hypothalamic-Pituitary-Adrenocortical Activity. Endocrinology 2012, 153, 4120–4127. [Google Scholar] [CrossRef]
- Novak, M.A.; Hamel, A.F.; Kelly, B.J.; Dettmer, A.M.; Meyer, J.S. Stress, the HPA Axis, and Nonhuman Primate Well-Being: A Review. Appl. Anim. Behav. Sci. 2013, 143, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Cattet, M.; Stenhouse, G.B.; Boulanger, J.; Janz, D.M.; Kapronczai, L.; Swenson, J.E.; Zedrosser, A. Can Concentrations of Steroid Hormones in Brown Bear Hair Reveal Age Class? Conserv. Physiol. 2018, 6, coy001. [Google Scholar] [CrossRef]
- Del González-de-la-Vara, M.R.; Valdez, R.A.; Lemus-Ramirez, V.; Vázquez-Chagoyán, J.C.; Villa-Godoy, A.; Romano, M.C. Effects of Adrenocorticotropic Hormone Challenge and Age on Hair Cortisol Concentrations in Dairy Cattle. Can. J. Vet. Res. Rev. Can. Rech. Vet. 2011, 75, 216–221. [Google Scholar]
- Stalder, T.; Steudte, S.; Miller, R.; Skoluda, N.; Dettenborn, L.; Kirschbaum, C. Intraindividual Stability of Hair Cortisol Concentrations. Psychoneuroendocrinology 2012, 37, 602–610. [Google Scholar] [CrossRef]
- Harkey, M.R. Anatomy and Physiology of hair. Forensic Sci. Int. 1993, 63, 9–18. [Google Scholar] [CrossRef]
- Duran, M.C.; Janz, D.M.; Waldner, C.L.; Campbell, J.R.; Marques, F.J. Hair Cortisol Concentration as a Stress Biomarker in Horses: Associations with Body Location and Surgical Castration. J. Equine Vet. Sci. 2017, 55, 27–33. [Google Scholar] [CrossRef]
- Russell, E.; Kirschbaum, C.; Laudenslager, M.L.; Stalder, T.; de Rijke, Y.; van Rossum, E.F.C.; van Uum, S.; Koren, G. Toward standardization of hair cortisol measurement. Ther. Drug. Monit. 2015, 37, 71–75. [Google Scholar] [CrossRef] [PubMed]
- D’Anna-Hernandez, K.L.; Ross, R.G.; Natvig, C.L.; Laudenslager, M.L. Hair cortisol levels as a retrospective marker of hypothalamic-pituitary axis activity throughout pregnancy: Comparison to salivary cortisol. Physiol. Behav. 2011, 104, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Anielski, P. Hair analysis of anabolic steroids in connection with doping control—Results from horse samples. J. Mass Spectrom. 2008, 43, 1001–1008. [Google Scholar] [CrossRef]
- Webb, E.; Thomson, S.; Nelson, A.; White, C.; Koren, G.; Rieder, M.; Van Uum, S. Assessing individual systemic stress through cortisol analysis of archaeological hair. J. Archaeol. Sci. 2010, 37, 807–812. [Google Scholar] [CrossRef]
- Webb, E.C.; White, C.D.; Van Uum, S.; Longstaffe, F.J. Integrating cortisol and isotopic analyses of archeological hair: Reconstructing individual experiences of health and stress. Am. J. Phys. Anthropol. 2015, 156, 577–594. [Google Scholar] [CrossRef]
- Mercer-Bowyer, S.; Kersey, D.C.; Bertone, J.J. Use of Fecal Glucocorticoid and Salivary Cortisol Concentrations as a Measure of Well-Being of New York City Carriage Horses. J. Am. Vet. Med. Assoc. 2017, 250, 316–321. [Google Scholar] [CrossRef]
- Merl, S.; Scherzer, S.; Palme, R.; Möstl, E. Pain Causes Increased Concentrations of Glucocorticoid Metabolites in Horse Feces. J. Equine Vet. Sci. 2000, 20, 586–590. [Google Scholar] [CrossRef]
- Yarnell, K.; Hall, C.; Royle, C.; Walker, S.L. Domesticated Horses Differ in Their Behavioural and Physiological Responses to Isolated and Group Housing. Physiol. Behav. 2015, 143, 51–57. [Google Scholar] [CrossRef]
- Seeley, K.E.; Proudfoot, K.L.; Edes, A.N. The Application of Allostasis and Allostatic Load in Animal Species: A Scoping Review. PLoS ONE 2022, 17, e0273838. [Google Scholar] [CrossRef]
- Chandler, K.J.; Dixon, R.M. Urinary cortisol:creatinine ratios in healthy horses and horses with hyperadrenocorticism and non-adrenal disease. Vet. Rec. 2002, 150, 773–776. [Google Scholar] [CrossRef]
Objectives | Demographic Data | Time of Day and Method | Results | Reference |
---|---|---|---|---|
Correlates of oral and motor stereotypic behaviors and glucocorticoid concentration | 55 horses (41 geldings, 14 mares) 5 to 20 years old | Blood sampling between 18:00 and 19:00 RIA method | Plasma cortisol concentration varied from 7 to 112 nmol/L | [8] |
The use of plasma sampling for the determination of cortisol concentration in relation to the intensity of exercise in horses during race training | 12 horses (6 stallions, 6 mares) 2 to 3 years old | Blood sampling between 7:00 and 9:00 ELISA method | Plasma cortisol concentration varied from 249 nmol/L at rest, 335 nmol/L immediately after exercise, and 281 nmol/L 30 min after exercise | [13] |
Plasma cortisol and ACTH concentrations in the warmblood horse in response to standardized treadmill exercise test | 10 horses (10 geldings) 3 years old | Time not reported EIA method | Plasma cortisol concentration before exercise varied from 41 to 185 nmol/L | [33] |
Database for steroid reference values for domestic Mongolian horses | 123 horses (18 colts, 34 stallions, 25 geldings, 17 fillies, 29 mares) 2 months to 17 years old | Blood sampling twice on 10:00 and 14:00 RIA method | Serum cortisol concentration varied in groups, with 64 nmol/L for colts, 158 nmol/L for stallions, 193 nmol/L for geldings, 102 nmol/L for fillies, 171 nmol/L for mares, 140 nmol/L for all horses | [35] |
Steroid profiles in equine plasma before ACTH-stimulation test | 11 horses (8 geldings, 3 mares) 6 to 14 years old | Time not reported LC-MS/MS method | Plasma cortisol concentration was 138 ± 54 nmol/L before the ACTH-stimulation test | [36] |
Determine the use of plasma cortisol concentrations in the diagnosis of the ECD | 7 horses (5 geldings, 2 mares) 5 to 15 years old | Blood sampling twice on 06:00 and 18:00 RIA method | Plasma cortisol concentration varied from 251 nmol/L at 06:00 and 142 nmol/L at 18:00 | [37] |
Relation between compromised welfare, such as chronic pain and hematological anomalies, and cortisol concentration in domestic horses | 49 horses (44 geldings, 15 mares) 5 to 20 years old | Blood sampling twice a day in the morning (between 08:00 and 09:00) and in the evening (between 18:00 and 19:00) RIA method | Plasma cortisol concentration varied from 80 nmol/L in the morning, 42 nmol/L in the evening (day of work), and 35 nmol/L in the evening (day of rest) | [38] |
Develop a sensitive and specific RIA to measure cortisol concentration precisely in serum | 5 horses (2 geldings, 3 mares) 9 to 17 years old | Time not reported RIA method | Serum cortisol concentration varied from 137.84–256.92 nmol/L at rest and 146–222 nmol/L during catheter placement | [39] |
Objectives | Demographic Data | Time of Day and Method | Results | Reference |
---|---|---|---|---|
The use of saliva sampling for the determination of cortisol concentration in relation to the intensity of exercise in horses during race training | 12 horses (6 stallions, 6 mares) 2 to 3 years old | Saliva sampling between 7:00 and 9:00 ELISA method | Salivary cortisol concentration varied from 1.63 nmol/L at rest, 2.57 nmol/L immediately after exercise, and 3.82 nmol/L 30 min after exercise. | [13] |
Evaluation of salivary cortisol concentration for association with strongyle-type egg shedding levels | 200 horses (132 geldings, 3 stallions, 65 mares) 1 to 30 years old | Saliva sampling between 11:00 and 13:00 ELISA method | Salivary cortisol concentration was 2.7 nmol/L | [25] |
Estimation of the change of stress level in horses based on saliva cortisol concentration | 61 horses (28 geldings, 33 mares) 5 to 20 years old | Saliva sampling at 7:00, 11:00, 14:00, and 16:00 EIA method | Salivary cortisol concentration varied from 2.44 nmol/L in tourist riding group, 3.07 nmol/L in resting group, and 2.76 nmol/L in education horse-riding group. | [32] |
Develop a sensitive and specific RIA to measure cortisol concentration precisely in saliva | 5 horses (2 geldings, 3 mares) 9 to 17 years old | Time not reported RIA method | Salivary cortisol concentration varied from 0.58–1.77 nmol/L at rest and 0.59–2.21 nmol/L during catheter placement | [39] |
Quantification of the stress levels in competition using salivary cortisol concentration | 23 horses (11 geldings, 12 mares) 6 to 11 years old | Saliva sampling at 9:00 and just before competition, and 20, 40, and 60 min after RIA method | Salivary cortisol concentration varied from 1.01 nmol/L at rest to 1.56 nmol/L after whole day of competition | [40] |
Analyze the salivary cortisol concentration in horses related to stressors | 14 horses (9 geldings, 3 stallions, 2 mares) 3 to 7 years old | Saliva sampling at 15:00 EIA method | Salivary cortisol concentration varied from 9 nmol/L to 9.5 nmol/L | [41] |
ACTH Dose and Route of Administration | Timeline | Changes in Concentrations Over Time | Reference |
---|---|---|---|
IV, 1 μg/kg BW of ACTH (Synacthen tetracosactidum 0.25 mg/mL equivalent to 25 IU/mL) | Tests performed from 1 p.m. to 4 p.m. Saliva samples were collected before, and 30, 60, 90, 120, 150, and 180 min after ACTH administtration | Salivary baseline 0.83–6.34 nmol/L (2.2 ± 0.83 nmol/L) significant increase after 30 min the peak reached after 122 ± 22 min mean percentage increase: 1620% ± 760 | [4] |
IV, bolus injection of 250 µg ACTH per horse | Net plasma cortisol measurement every 10 min before administration, starting from 60 min prior; control after 30 min from administration | Plasma baseline: not reported cortisol net increases above 275.86 nmol/L plasma were observed in six out of seven horses. mean percentage increase: not calculable % | [33] |
IV, 1 μg/kg BW of ACTH (Synacthen tetracosactidum 0.25 mg/mL equivalent to 25 IU/mL) | Blood collection directly before ACTH administration, and 60 min after | Plasma baseline: 138 ± 54 nmol/L mean percentage increase 60 min after: 196% | [36] |
IV, 1 μg/kg BW of ACTH (Synacthen tetracosactidum 0.25 mg/mL) | Collection 30 and 15 min before ACTH injection and the following at 10, 20, 30, 40, 60, 80, 100,120, 140, 160, 180, 200, 220, 240, 280, 320, 260, 400 and 500 min after ACTH injection | Serum baselline: 125–224 nmol/L (148.14 ± 42.69 nmol/L) Significant increase after 10 min The peak reached after 96 ± 16.7 min Return to baseline after 280 min 400 min after ACTH administration concentration dropped to 62.39 ± 16.14 nmol/L Mean percentage increase in serum: 225% Salivary baseline: 0.46–3.14 nmol/L (1.23 ± 1.08 nmol/L) Significant increase after 30 and 40 min (20–30 min later than in serum) The peak reached after 124 ± 8.9 min Return to baseline after 180 min (100 min earlier than in serum) Mean percentage increase in saliva: 2150% | [39] |
IV, 10 μg and 100 μg of ACTH (cosyntropin) | Collection before 10 μg ACTH injection, 30 min later, 90 min later followed by 100 μg ACTH injection, 30 min and 90 min after second ACTH injection, protocol performed at birth, 12–24 h, 36–48 h, 5–7 days | Plasma baseline at birth: 281.38 ± 63.45 nmol/L, 12–24 h: 99.31 ± 44.14 nmol/L, 36–48 h: 71.72 ± 27.59 nmol/L, 5–7 days: 55.17 ± 22.07 nmol/L Mean percentage increase in plasma after 10 μg of ACTH at birth: 140% ± 20, 12–24 h: 290% ± 100, 36–48 h: 280% ± 160%, 5–7 days: 180% ± 50, 30 min after injection Mean percentage increase in plasma after 100 μg of ACTH at birth: 160% ± 40, 12–24 h: 400% ± 170, 36–48 h: 450% ± 280%, 5–7 days: 320% ± 150, 90 min after injection | [97] |
IV, 0.1 μg/kg BW of ACTH (cosyntropin 250 μg/mL) | Collection before ACTH injection, 30 min and 60 min after, performed at birth, 3, 5, 7, 10, 14, 21, 28, 42, 56, and 84 days | Average plasma baseline: 75.31 nmol/L Average 30 min after: 114.21 nmol/L Average 60 min after: 79.72 nmol/L Mean percentage increase in plasma at birth: 192.5% ± 63.1 Mean percentage increase in plasma 3–56 days old: 37.7% ± 9.4 Mean percentage increase in plasma 84 days old: 52.5% ± 18.7 | [98] |
IV, 0.02, 0.1, 0.25, and 0.5 μg/kg (cosyntropin) | Collection before ACTH injection, 30, 60, 90, 120, 180, and 240 min after | Plasma baseline 76 to 264 nmol/L (mean ± SD, 172.4 ± 44.8 nmol/L) Peak percentage increase after 0.02 μg/kg ACTH: 150% 30 min after injection Peak percentage increase after 0.1 μg/kg ACTH: 190% 30 min after injection Peak percentage increase after 0.25 μg/kg ACTH: 200% 90 min after injection Mean percentage increase after 0.5 μg/kg ACTH: 230% 90 min after injection | [99] |
Objectives | Demographic Data | Time of Day and Method | Results | Reference |
---|---|---|---|---|
Determination of hair cortisol concentration in horses | 47 horses (9 geldings, 38 mares) age not reported | Time not reported Mane hair with bulbs from mid-neck region ELISA and LC-HRMS/MS methods | Hair cortisol concentration varied from 2.0 to 17.9 pg/mg by ELISA and 1.3 to 8.8 pg/mg by LC-HRMS/MS | [45] |
Determination of hair cortisol concentrations in feral horses | 282 horses (135 stallions, 113 mares) known-age up to 6 years old and a unknown-age | Time not reported Hair collected from tail by hair snags EIA method | Hair cortisol concentration varied from 2.17 pg/mg in stallions to 1.64 pg/mg in mares | [46] |
Monitoring of hair cortisol concentrations during a one-year time-lapse | 47 horses (26 geldings, 21 mares) 6 to 20 years old | Time not reported Hair collected from neck region by shaving ELISA method | Hair cortisol concentration varied from 290 pg/mg in feale to 230 pg/mg in gelding male | [47] |
Verification of the reliability of a hair cortisol assay. Measuring of hair cortisol at birth and at 30 and 60 days old | 204 horses (102 foals, 102 mares) birth day to 17 years old | Time not reported hair collected from withers by shaving RIA method | Hair cortisol concentration varied from 18.02 to 156.51 pg/mg at birth to 40.56 pg/mg in the first quartile to 62.88 pg/mg in the third quartile | [48] |
Determination of the effect of a relocation period and the multiple factors associated with a rest period on hair cortisol concentrations in horses | 13 horses (13 stallions) 5 to 13 years old | Time not reported hair collected from ventral abdomen area by shaving EIA method | Hair cortisol concentration varied from 5.34 pg/mg in control group to 3.09 pg/mg in relocated horses | [49] |
Determination of the mane hair and body hair cortisol concentration in horses | 153 horses 3 to 28 years old | Time not reported Mane hair cut with scissors, hair from above the scapula obtained with clippers from the left side UHPLCMS/MS method | Hair cortisol concentration varied from 6.0 pg/mg in the mane to 6.1 pg/mg in the body hair | [104] |
Objectives | Demographic Data | Time of Day and Method | Results | Reference |
---|---|---|---|---|
Correlates of oral and motor stereotypic behaviors and glucocorticoid concentration | 55 horses (41 geldings, 14 mares) 5 to 20 years old | Feces sampling between 12:00 and 13:00, from bedding, directly after defecation EIA method | Fecal cortisol metabolite concentration varied from 2.4 to 37.6 ng/g | [8] |
Evaluation of the influence of reproductive status and reproductive procedures on cortisol secretion | 50 horses (50 mares) 6 to 16 years old | Feces sampling three times a day at 0:00, 8:00, 16:00 sampling method not reported EIA methods | Fecal 3α,11-oxo-A concentration varied from 3.8 ± 0.6 ng/g in teaching mares to 12.7 ± 4.0 ng/g in maiden mares | [17] |
Relation between compromised welfare, such as chronic pain and hematological anomalies, and cortisol concentration in domestic horses | 49 horses (44 geldings, 15 mares) 5 to 20 years old | Feces sampling between 12:00 and 13:00, from bedding, directly after defecation EIA method | Fecal cortisol metabolite concentration varied from 5.0 ± 0.3 ng/g in the working day, 4.9 ± 0.4 ng/g in the day of rest. | [38] |
Evaluation of the influence of insects on stress reaction | 39 horses (8 geldings, 1 stallion, 30 mares) 1 to 21 years old | Feces sampling between 12:00 and 14:00 or between 14:00 and 16:00, from pasture, immediately after defecation EIA method | Fecal 3α,11-oxo-A concentration varied from 38.1 ± 2.8 ng/g to 45.6 ± 2.7 ng/g | [50] |
Validation of method for glucocorticoid metabolites measurement in feces | 10 horses (5 stallions, 5 mares) 3 to 14 years old | In the morning (hour not reported) and in the evening (hour not reported), feces removed from the rectum EIA method | Fecal 3α,11-oxo-A concentration baseline was 49.91 ± 21.13 ng/g fecal Extr-DOA baseline was 3.48 ± 1.65 ng/g | [51] |
Evaluation of exercise and psychological endocrine responses to a new environment and initial training | 40 horses (12 geldings, 9 stallions, 19 mares) 2 years old | Fecal sampling twice a day in the morning (between 07:00 and 09:00) and in the evening (between 16:00 and 19:00), from bedding, within 30 min after defecation EIA method | Fecal 11-oxoetiocholanolone concentration varied from 1.3 and 20.1 ng/g | [52] |
Quantification of the stress response of transrectal palpation | 36 horses (36 mares) 5 to 14 years old | Time not reported Feces removed from the rectum EIA method | Fecal 3α,11-oxo-A concentration was 25.5 ng/g with ranges 16.3–121.4 ng/g | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikorska, U.; Maśko, M.; Ciesielska, A.; Zdrojkowski, Ł.; Domino, M. Role of Cortisol in Horse’s Welfare and Health. Agriculture 2023, 13, 2219. https://doi.org/10.3390/agriculture13122219
Sikorska U, Maśko M, Ciesielska A, Zdrojkowski Ł, Domino M. Role of Cortisol in Horse’s Welfare and Health. Agriculture. 2023; 13(12):2219. https://doi.org/10.3390/agriculture13122219
Chicago/Turabian StyleSikorska, Urszula, Małgorzata Maśko, Anna Ciesielska, Łukasz Zdrojkowski, and Małgorzata Domino. 2023. "Role of Cortisol in Horse’s Welfare and Health" Agriculture 13, no. 12: 2219. https://doi.org/10.3390/agriculture13122219
APA StyleSikorska, U., Maśko, M., Ciesielska, A., Zdrojkowski, Ł., & Domino, M. (2023). Role of Cortisol in Horse’s Welfare and Health. Agriculture, 13(12), 2219. https://doi.org/10.3390/agriculture13122219