Studies of Oat-Maize Hybrids Tolerance to Soil Drought Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
- Measurement of chlorophyll fluorescence parameters of plants at the beginning of heading (tip of inflorescence emerging from the sheath, first spikelet just visible) after reaching 20% of substrate moisture and collection of leaves for biochemical analysis.
- Measurement of chlorophyll fluorescence parameters of plants at the end of flowering (all spikelets have completed flowering) at the end of the drought stress (2 weeks after reaching 20% of substrate moisture) and collection of leaves for biochemical analysis.
- Harvesting mature shoots, weighing the biomass of the aboveground parts and the total mass of kernels from all shoots.
2.2. Methods
2.2.1. Chlorophyll Fluorescence Analysis
2.2.2. Analysis of the Content of Chlorophyll a and b and Carotenoids
2.2.3. Analysis of Aboveground Biomass and Selected Yield Elements
2.2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sadras, V.O.; Calderini, D.F. Crop Physiology Case Histories for Major Crops; Elsevier Inc.: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAOSTAT). Available online: https://www.fao.org/faostat/en/%3F%23data/ (accessed on 22 March 2022).
- Pisulewska, E.; Tobiasz-Salach, R.; Witkowicz, R.; Cieślik, E.; Bobrecka-Jamro, D. Effect of habitat conditions on content and quality of lipids in selected oat forms. Żywność Nauka Technologia Jakość 2011, 3, 66–77. [Google Scholar] [CrossRef]
- Oleksiak, T.; Spyroglou, I.; Pacoń, D.; Matysik, P.; Pernisová, M.; Rybka, K. Effect of drought on wheat production in Poland between 1961 and 2019. Crop Sci. 2021, 62, 728–743. [Google Scholar] [CrossRef]
- Barnabás, B.; Jäger, K.; Fehér, A. The effect of drought and heat stress on reproductive processes in cereals. Plant. Cell Environ. 2008, 31, 11–38. [Google Scholar] [CrossRef] [PubMed]
- Shakhatreh, Y.; Kafawin, O.; Ceccarelli, S.; Saoub, H. Selection of barley lines for drought tolerance in low rainfall areas. J. Agron. Crop Sci. 2001, 186, 119–127. [Google Scholar] [CrossRef]
- Samarah, N.; Alqudah, A.; Amayreh, J.; McAndrews, G. The Effect of Late-terminal Drought Stress on Yield Components of Four Barley Cultivars. J. Agron. Crop Sci. 2009, 195, 427–441. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P. Global Synthesis of Drought Effects on Maize and Wheat Production. PLoS ONE 2016, 11, e0156362. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.; Shiran, B.; Wan, J.; Lewis, D.C.; Jenkins, C.L.D.; Condon, A.G.; Richards, R.A.; Dolferus, R. Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. Plant Cell Environ. 2010, 33, 926–942. [Google Scholar] [CrossRef]
- Rao, D.E.; Chaitanya, K.V. Photosynthesis and antioxidative defense mechanisms in deciphering drought stress tolerance of crop plants. Biol. Plant. 2016, 60, 201–218. [Google Scholar] [CrossRef]
- Peng, Y.; Nguy-Robertson, A.; Arkebauer, T.; Gitelson, A.A. Assessment of canopy chlorophyll content retrieval in maize and soybean: Implications of hysteresis on the development of generic algorithms. Remote Sens. 2017, 9, 226. [Google Scholar] [CrossRef] [Green Version]
- Demirevska, K.; Zasheva, D.; Dimitrov, R.; Simova-Stoilova, L.; Stamenova, M.; Feller, U. Drought stress effects on Rubisco in wheat: Changes in the Rubisco large subunit. Acta Physiol. Plant. 2009, 31, 1129–1138. [Google Scholar] [CrossRef]
- Okagaki, R.J.; Kynast, R.G.; Livingston, S.M.; Russell, C.D.; Rines, H.W.; Phillips, R.L. Mapping maize sequences to chromosomes using oat-maize chromosome addition materials. Plant Physiol. 2001, 125, 1228–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rines, H.W.; Phillips, R.L.; Kynast, R.G.; Okagaki, R.J.; Galatowitsch, M.W.; Huettl, P.A.; Stec, A.O.; Jacobs, M.S.; Suresh, J.; Porter, H.L.; et al. Addition of individual chromosomes of maize inbreds B73 and Mo17 to oat cultivars Starter and Sun II: Maize chromosome retention, transmission, and plant phenotype. Theor. Appl. Genet. 2009, 119, 1255–1264. [Google Scholar] [CrossRef] [PubMed]
- Ananiev, E.V.; Phillips, R.L.; Rines, H.W. Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc. Natl. Acad. Sci. USA 1998, 95, 13073–13078. [Google Scholar] [CrossRef] [Green Version]
- Muehlbauer, G.J.; Riera-Lizarazu, O.; Kynast, R.G.; Martin, D.; Phillips, R.L.; Rines, H.W. A maize chromosome 3 addition line of oat exhibits expression of the maize homeobox gene liguleless3 and alteration of cell fates. Genome 2000, 43, 1055–1064. [Google Scholar] [CrossRef] [PubMed]
- Kowles, R.V.; Walch, M.D.; Minnerath, J.M.; Bernacchi, C.J.; Stec, A.O.; Rines, H.W.; Phillips, R.L. Expression of C4 photosynthetic enzymes in oat-maize chromosome addition lines. Maydica 2008, 53, 69–78. [Google Scholar]
- Walch, M.D. Expression of Maize Pathogenesis-Related and Photosynthetic Genes in Oat × Maize Addition Lines. Master’s Thesis, University of Minnesota, Minneapolis, MN, USA, 2007. [Google Scholar]
- Kynast, R.G.; Riera-Lizarazu, O.; Vales, M.I.; Okagaki, R.J.; Maquieira, S.B.; Chen, G.; Ananiev, E.V.; Odland, W.E.; Russell, C.D.; Stec, A.O.; et al. A complete set of maize individual chromosome additions to the oat genome. Plant Physiol. 2001, 125, 1216–1227. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; Yu, J.; Li, H.; Huang, W.; Xu, L.; Zhao, Y.; Zhang, T.; Xu, W.; Jiang, J.; Su, Z.; et al. Transcriptional and epigenetic adaptation of maize chromosomes in Oat-Maize addition lines. Nucleic Acids Res. 2018, 46, 5012–5028. [Google Scholar] [CrossRef]
- Bass, H.W.; Riera-Lizarazu, O.; Ananiev, E.V.; Bordoli, S.J.; Rines, H.W.; Phillips, R.L.; Sedat, J.W.; Agard, D.A.; Cande, W.Z. Evidence for the coincident initiation of homolog pairing and synapsis during the telomere-clustering (bouquet) stage of meiotic prophase. J. Cell Sci. 2000, 113, 1033–1042. [Google Scholar] [CrossRef]
- Amarillo, F.I.E.; Bass, H.W. A transgenomic cytogenetic sorghum (Sorghum propinquum) bacterial artificial chromosome fluorescence in situ hybridization map of maize (Zea mays L.) pachytene chromosome 9, evidence for regions of genome hyperexpansion. Genetics 2007, 177, 1509–1526. [Google Scholar] [CrossRef] [Green Version]
- Li, L.J.; Arumuganathan, K.; Rines, H.W.; Phillips, R.L.; Riera-Lizarazu, O.; Sandhu, D.; Zhou, Y.; Gill, K.S. Flow cytometric sorting of maize chromosome 9 from an oat-maize chromosome addition line. Theor. Appl. Genet. 2001, 102, 658–663. [Google Scholar] [CrossRef]
- Kynast, R.; Okagaki, R.; Rines, H.; Phillips, R. Maize individualized chromosome and derived radiation hybrid lines and their use in functional genomics. Funct. Integr. Genom. 2002, 2, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Ohm, H.; Shaner, G. Breeding oat for resistance to diseases. In Oat Science and Technology; Marshall, H.G., Sorrells, M.E., Eds.; American Society of Agronomy: Madison, WI, USA, 1992; pp. 657–698. [Google Scholar]
- Rines, H.W.; Phillips, R.L.; Kynast, R.G.; Okagaki, R.; Odland, W.E.; Stec, A.O.; Jacobs, M.S.; Granath, S.R. Maize chromosome additions and radiation hybrids in oat and their use in dissecting the maize genome. In Proceedings of the International Congress In the Wake of the Double Helix: From the Green Revolution to the Gene Revolution, Bologna, Italy, 27–31 May 2003; pp. 427–441. [Google Scholar]
- Jastrzebska, M.; Kostrzewska, M.; Wanic, M. Wpływ deficytu wody i interakcji międzygatunkowych na wybrane parametry fizjologiczne roślin jęczmienia jarego i koniczyny czerwonej. Fragm. Agron. 2016, 33, 44–59. (In polish) [Google Scholar]
- Lawlor, D.W.; Tezara, W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: A critical evaluation of mechanisms and integration of processes. Ann. Bot. 2009, 103, 561–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akıncı, Ş.; Lösel, D.M. Plant water-stress response mechanisms. In Water Stress; Rahman, I.M.M., Hasegawa, H., Eds.; InTech: Rijeka, Croatia, 2012; pp. 15–42. [Google Scholar]
- Skrzypek, E.; Warzecha, T.; Noga, A.; Warchol, M.; Czyczylo-Mysza, I.; Dziurka, K.; Marcinska, I.; Kaploniak, K.; Sutkowska, A.; Nita, Z.; et al. Complex characterization of oat (Avena sativa L.) lines obtained by wide crossing with maize (Zea mays L.). PeerJ 2018, 6, e5107. [Google Scholar] [CrossRef] [Green Version]
- Strasser, B.J.; Strasser, R.J. Measuring fast fluorescencetransients to address environmental questions: The JIP-Test. In Photosynthesis: From Light to Biosphere; Mathis, R.P., Ed.; KAP Press: Dordrecht, The Netherlands, 1995; pp. 977–980. [Google Scholar]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Bocianowski, J.; Majchrzak, L. Analysis of effects of cover crop and tillage method combinations on the phenotypic traits of spring wheat (Triticum aestivum L.) using multivariate methods. Appl. Ecol. Environ. Res. 2019, 17, 15267–15276. [Google Scholar] [CrossRef]
- Mahalanobis, P.C. On the generalized distance in statistics. Proc. Natl. Acad. Sci. USA 1936, 12, 49–55. [Google Scholar]
- Ishii, T.; Tanaka, H.; Eltayeb, A.; Tsujimoto, H. Wide hybridization between oat and pearl millet belonging to different subfamilies of Poaceae. Plant Reprod. 2013, 26, 25–32. [Google Scholar] [CrossRef]
- Matsuoka, R.; Furbank, R.; Fukayama, H.; Miyao, M. Molecular engineering of C4 photosynthesis. Annu. Rev. Plant Biology. 2001, 52, 297–314. [Google Scholar] [CrossRef]
- Vijayalakshmi, K.; Fritz, A.K.; Paulsen, G.M.; Bai, G.; Pandravada, S.; Gill, B.S. Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Mol. Breed. 2010, 26, 163–175. [Google Scholar] [CrossRef]
- Gholamin, R.; Khayatnezhad, M. Assessment of the Correlation between Chlorophyll Content and Drought Resistance in Corn Cultivars (Zea mays). Helix 2020, 10, 93–97. [Google Scholar] [CrossRef]
- Jaleel, C.; Manivannan, P.; Wahid, A.; Farooq, M.; Somasundaram, R.; Panneerselvam, R. Drought stress in plants: A review on morphological characteristics and pigments composition. Int. J. Agric. Biol. 2009, 11, 100–105. [Google Scholar]
- Kannan, N.; Kulandaivelu, G. Drought induced changes in physiological; biochemical and phytochemical properties of Withania somnifera Dun. J. Med. Plant Res. 2011, 5, 3929–3935. [Google Scholar]
- Pour-Aboughadareh, A.; Ahmadi, J.; Mehrabi, A.; Etminan, A.; Moghaddam, M.; Siddique, K. Physiological responses to drought stress in wild relatives of wheat: Implications for wheat improvement. Acta Physiol. Plant. 2017, 39, 106. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C.; Rinderle, U.; Schmuck, G. Application of chlorophyll fluorescence in ecophysiology. Radiat. Environ. Biophys. 1986, 25, 297–308. [Google Scholar] [CrossRef]
- Papageorgiou, G.C.; Govindjee. Photosystem II fluorescence: Slow changes—Scaling from the past. J. Photochem. Photobiol. B 2011, 104, 258–270. [Google Scholar] [CrossRef]
- Hura, T.; Hura, K.; Grzesiak, M.T. The usefulness of chlorophyll fluorescence parameters in harvest prediction in 10 genotypes of winter triticale under optimal growth conditions. Plant Biosyst. 2009, 143, 496–503. [Google Scholar] [CrossRef]
- Soltys-Kalina, D.; Plich, J.; Strzelczyk-Żyta, D.; Śliwka, J.; Marczewski, W. The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of ‘Katahdin’-derived potato cultivars. Breed. Sci. 2016, 66, 328–331. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Warzecha, T.; Skrzypek, E.; Sutkowska, A. Effect of Fusarium culmorum infection on the selected physiological and biochemical parameters of barley (Hordeum vulgare L.) DH lines. Physiol. Mol. Plant Pathol. 2015, 89, 62–69. [Google Scholar] [CrossRef]
- Warzecha, T.; Skrzypek, E.; Adamski, T.; Surma, M.; Kaczmarek, Z.; Sutkowska, A. Chlorophyll a fluorescence parameters of hulled and hull-less barley (Hordeum vulgare L.) DH lines inoculated with Fusarium Culmorum. Plant Pathol. J. 2019, 35, 112–124. [Google Scholar] [CrossRef] [PubMed]
Source of Variation | Treatment (T) | Generation (Gener) | Genotype (G) | T × Gener | T × G | Gener × G | T × Gener × G | |
---|---|---|---|---|---|---|---|---|
The number of degrees of freedom | 1 | 1 | 14 | 1 | 14 | 14 | 14 | |
First day of drought (20% of soil relative humidity) | Chlorophyll a content (µg/g of d.w.) | 45.06 *** | 7.54 ** | 12.5 *** | 0.09 | 5.5 *** | 3.34 *** | 3.89 *** |
Chlorophyll b content (µg/g of d.w.) | 176.64 *** | 3.7 | 6.22 *** | 2.12 | 5.32 *** | 1.44 | 4.62 *** | |
Chlorophyll a and chlorophyll b content (µg/g of d.w.) | 5.76 * | 6.98 ** | 10.15 *** | 0.28 | 5.89 *** | 2.12 * | 4.64 *** | |
Carotenoid content (µg/g of d.w.) | 578.97 *** | 0.6 | 12.8 *** | 2.49 | 7.29 *** | 3.73 *** | 2.76 *** | |
Fv/Fm (maximum photochemical efficiency of PS II) | 10.41 *** | 7.02 ** | 13.48 *** | 0.76 | 3.19 *** | 1.56 | 1.09 | |
Area (pool size of electron acceptors from PSII) | 91.19 *** | 0.57 | 6.04 *** | 1.65 | 2.22 ** | 1.42 | 0.34 | |
PI (overall performance index of PSII photochemistry) | 7.65 ** | 3.44 | 9.13 *** | 0.63 | 2.91 *** | 0.9 | 1.32 | |
ETo/CS (energy used for electron transport) | 5.18 * | 0.73 | 6.48 *** | 1.98 | 2.7 *** | 1.26 | 0.62 | |
RC/CSo (number of active reaction centers in the state of the fully oxidized PSII reaction center) | 2.68 | 2.42 | 6.12 *** | 0.68 | 2.93 *** | 1.23 | 0.51 | |
After two weeks of drought (maintaining 20% of soil relative humidity) | Chlorophyll a content (µg/g of d.w.) | 1749.63 *** | 17.53 *** | 8.42 *** | 0.85 | 9.46 *** | 1.46 | 0.59 |
Chlorophyll b content (µg/g of d.w.) | 1345.86 *** | 4.45 * | 3.02 *** | 1.66 | 4.71 *** | 0.87 | 0.96 | |
Chlorophyll a and chlorophyll b content (µg/g of d.w.) | 1735.11 *** | 13.28 *** | 6.23 *** | 1.16 | 7.78 *** | 1.06 | 0.63 | |
Carotenoids content (µg/g of d.w.) | 1985.13 *** | 2.6 | 7.28 *** | 1.87 | 10.64 *** | 1.46 | 1.11 | |
Fv/Fm (maximum photochemical efficiency of PS II) | 4.16 * | 8.32 ** | 11.66 *** | 0.52 | 2.84 *** | 2.59 ** | 0.99 | |
Area (pool size of electron acceptors from PSII) | 150.4 *** | 0.03 | 10.95 *** | 3.54 | 2.85 *** | 1.02 | 1.46 | |
PI (overall performance index of PSII photochemistry) | 69.23 *** | 4.08 * | 11.77 *** | 0.01 | 2.61 ** | 1.29 | 1.38 | |
ETo/CS (energy used for electron transport) | 65.91 *** | 0.99 | 7.71 *** | 0.73 | 5.55 *** | 1.63 | 1.08 | |
RC/CSo (number of active reaction centers in the state of the fully oxidized PSII reaction center) | 118.05 *** | 0.79 | 9.87 *** | 0.5 | 6.01 *** | 1.89 * | 1.96 * | |
Mass of stems/plant (g) | 318.02 *** | 1.24 | 10.41 *** | 1.34 | 3.58 *** | 1.66 | 0.82 | |
Number of grains | 38.79 *** | 0.67 | 35.12 *** | 0.29 | 4.48 *** | 4.56 *** | 0.4 | |
Mass of grains/plant (g) | 50.01 *** | 1.45 | 33.73 *** | 0.02 | 6.42 *** | 4.09 *** | 0.67 |
Trait | t [1] | t [2] | t [3] | t [4] | t [5] | t [6] | t [7] | t [8] | t [9] | t [10] | t [11] | t [12] | t [13] | t [14] | t [15] | t [16] | t [17] | t [18] | t [19] | t [20] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
t [2] | 0.69 | |||||||||||||||||||
t [3] | 0.94 | 0.90 | ||||||||||||||||||
t [4] | 0.57 | −0.11 | 0.30 | |||||||||||||||||
t [5] | −0.02 | −0.17 | −0.09 | 0.26 | ||||||||||||||||
t [6] | 0.21 | 0.44 | 0.34 | −0.28 | −0.83 | |||||||||||||||
t [7] | 0.05 | 0.02 | 0.04 | 0.12 | 0.91 | −0.54 | ||||||||||||||
t [8] | −0.37 | −0.19 | −0.31 | −0.41 | −0.60 | 0.43 | −0.62 | |||||||||||||
t [9] | −0.31 | −0.12 | −0.25 | −0.41 | −0.66 | 0.50 | −0.67 | 0.85 | ||||||||||||
t [10] | 0.72 | 0.74 | 0.79 | 0.22 | 0.14 | 0.06 | 0.22 | −0.51 | −0.41 | |||||||||||
t [11] | 0.47 | 0.42 | 0.49 | 0.27 | 0.31 | −0.01 | 0.42 | −0.67 | −0.66 | 0.76 | ||||||||||
t [12] | 0.69 | 0.71 | 0.76 | 0.24 | 0.18 | 0.05 | 0.27 | −0.56 | −0.48 | 0.99 | 0.84 | |||||||||
t [13] | 0.63 | 0.73 | 0.73 | 0.10 | 0.04 | 0.08 | 0.08 | −0.26 | −0.20 | 0.85 | 0.53 | 0.82 | ||||||||
t [14] | −0.02 | −0.25 | −0.13 | 0.47 | 0.74 | −0.66 | 0.58 | −0.22 | −0.43 | 0.06 | 0.14 | 0.08 | 0.01 | |||||||
t [15] | 0.43 | 0.62 | 0.56 | 0.01 | −0.59 | 0.75 | −0.38 | −0.05 | 0.13 | 0.45 | 0.38 | 0.45 | 0.33 | −0.51 | ||||||
t [16] | 0.18 | 0.15 | 0.18 | 0.35 | 0.40 | −0.19 | 0.40 | −0.14 | −0.38 | 0.40 | 0.39 | 0.41 | 0.29 | 0.80 | −0.04 | |||||
t [17] | 0.07 | 0.45 | 0.25 | −0.45 | −0.53 | 0.54 | −0.42 | 0.29 | 0.41 | 0.33 | 0.15 | 0.31 | 0.45 | −0.57 | 0.63 | −0.22 | ||||
t [18] | −0.09 | 0.34 | 0.10 | −0.52 | −0.39 | 0.37 | −0.36 | 0.36 | 0.49 | 0.30 | 0.09 | 0.26 | 0.44 | −0.40 | 0.42 | −0.12 | 0.94 | |||
t [19] | 0.01 | −0.18 | −0.08 | 0.16 | 0.04 | −0.19 | −0.02 | −0.34 | −0.27 | −0.18 | −0.01 | −0.15 | −0.41 | −0.30 | 0.10 | −0.48 | −0.12 | −0.29 | ||
t [20] | −0.63 | −0.52 | −0.63 | −0.36 | −0.10 | −0.25 | −0.29 | 0.26 | 0.16 | −0.52 | −0.35 | −0.51 | −0.25 | −0.16 | −0.45 | −0.37 | 0.06 | 0.17 | 0.05 | |
t [21] | −0.66 | −0.59 | −0.69 | −0.32 | −0.05 | −0.31 | −0.25 | 0.23 | 0.16 | −0.56 | −0.39 | −0.55 | −0.31 | −0.13 | −0.50 | −0.39 | 0.01 | 0.13 | 0.08 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warzecha, T.; Bathelt, R.; Skrzypek, E.; Warchoł, M.; Bocianowski, J.; Sutkowska, A. Studies of Oat-Maize Hybrids Tolerance to Soil Drought Stress. Agriculture 2023, 13, 243. https://doi.org/10.3390/agriculture13020243
Warzecha T, Bathelt R, Skrzypek E, Warchoł M, Bocianowski J, Sutkowska A. Studies of Oat-Maize Hybrids Tolerance to Soil Drought Stress. Agriculture. 2023; 13(2):243. https://doi.org/10.3390/agriculture13020243
Chicago/Turabian StyleWarzecha, Tomasz, Roman Bathelt, Edyta Skrzypek, Marzena Warchoł, Jan Bocianowski, and Agnieszka Sutkowska. 2023. "Studies of Oat-Maize Hybrids Tolerance to Soil Drought Stress" Agriculture 13, no. 2: 243. https://doi.org/10.3390/agriculture13020243
APA StyleWarzecha, T., Bathelt, R., Skrzypek, E., Warchoł, M., Bocianowski, J., & Sutkowska, A. (2023). Studies of Oat-Maize Hybrids Tolerance to Soil Drought Stress. Agriculture, 13(2), 243. https://doi.org/10.3390/agriculture13020243