How to Measure the Performance of Farms with Regard to Climate-Smart Agriculture Goals? A Set of Indicators and Its Application in Guadeloupe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Characterization of Farming Systems and Their Diversity
2.3. Define the Objectives and Boundaries
2.4. Construction of the Set of Indicators and Its Calculation
2.5. Indicators Selected and Calculation Methods
2.5.1. Food Security
2.5.2. Adaptation
2.5.3. Mitigation
2.6. Data Sources
3. Results and Discussion
3.1. Food Security Outcomes
3.2. Adaptation Outcomes
3.3. Mitigation Outcomes
3.4. Summary of Results and Limits of the Method
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ecosystems and Human Well-Being: Synthesis; Millennium Ecosystem Assessment (MEA); Island Press: Washington, DC, USA, 2005; ISBN 978-1-59726-040-4.
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Pörtner, H.-O.; Roberts, D.; Tignor, M.; Poloczanska, E.S.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. Climate Change 2022: Impacts, Adaptation and Vulnerability Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; 3056p. [Google Scholar] [CrossRef]
- FAO. “Climate-Smart” Agriculture. Policies, Practices and Financing for Food Security, Adaptation and Mitigation; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; p. 49. [Google Scholar]
- Lipper, L.; Zilberman, D. A Short History of the Evolution of the Climate Smart Agriculture Approach and Its Links to Climate Change and Sustainable Agriculture Debates. In Climate Smart Agriculture; Lipper, L., McCarthy, N., Zilberman, D., Asfaw, S., Branca, G., Eds.; Natural Resource Management and Policy; Springer International Publishing: Cham, Germany, 2018; Volume 52, pp. 13–30. ISBN 978-3-319-61193-8. [Google Scholar]
- Karlsson, L.; Naess, L.O.; Nightingale, A.; Thompson, J. ‘Triple wins’ or ‘triple faults’? Analysing the equity implications of policy discourses on climate-smart agriculture (CSA). J. Peasant Stud. 2018, 45, 150–174. [Google Scholar] [CrossRef]
- Newell, P.; Taylor, O. Contested landscapes: The global political economy of climate-smart agriculture. J. Peasant Stud. 2018, 45, 108–129. [Google Scholar] [CrossRef]
- Gasparatos, A.; El-Haram, M.; Horner, M. A critical review of reductionist approaches for assessing the progress towards sustainability. Environ. Impact Assess. Rev. 2008, 28, 286–311. [Google Scholar] [CrossRef]
- Schader, C.; Grenz, J.; Meier, M.S.; Stolze, M. Scope and precision of sustainability assessment approaches to food systems. Ecol. Soc. 2014, 19, art42. [Google Scholar] [CrossRef]
- Binder, C.R.; Feola, G.; Steinberger, J.K. Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture. Environ. Impact Assess. Rev. 2010, 30, 71–81. [Google Scholar] [CrossRef]
- de Olde, E.M.; Oudshoorn, F.W.; Sørensen, C.A.G.; Bokkers, E.A.M.; de Boer, I.J.M. Assessing sustainability at farm-level: Lessons learned from a comparison of tools in practice. Ecol. Indic. 2016, 66, 391–404. [Google Scholar] [CrossRef]
- Chopin, P.; Mubaya, C.P.; Descheemaeker, K.; Öborn, I.; Bergkvist, G. Avenues for improving farming sustainability assessment with upgraded tools, sustainability framing and indicators. A review. Agron. Sustain. Dev. 2021, 41, 19. [Google Scholar] [CrossRef]
- Velten, S.; Leventon, J.; Jager, N.; Newig, J. What Is Sustainable Agriculture? A Systematic Review. Sustainability 2015, 7, 7833–7865. [Google Scholar] [CrossRef] [Green Version]
- de Olde, E.M.; Bokkers, E.A.M.; de Boer, I.J.M. The Choice of the Sustainability Assessment Tool Matters: Differences in Thematic Scope and Assessment Results. Ecol. Econ. 2017, 136, 77–85. [Google Scholar] [CrossRef]
- Gaviglio, A.; Bertocchi, M.; Demartini, E. A Tool for the Sustainability Assessment of Farms: Selection, Adaptation and Use of Indicators for an Italian Case Study. Resources 2017, 6, 60. [Google Scholar] [CrossRef]
- Zahm, F.; Viaux, P.; Vilain, L.; Girardin, P.; Mouchet, C. Assessing farm sustainability with the IDEA method—from the concept of agriculture sustainability to case studies on farms. Sustain. Dev. 2008, 16, 271–281. [Google Scholar] [CrossRef]
- Talukder, B.; Blay-Palmer, A.; vanLoon, G.W.; Hipel, K.W. Towards complexity of agricultural sustainability assessment: Main issues and concerns. Environ. Sustain. Indic. 2020, 6, 100038. [Google Scholar] [CrossRef]
- Scialabba, N.; Grenz, J.; Henderson, E.; Nemes, N.; Sligh, M.; Stansfield, J.; Lee, S.; Brugère, C.; Bentacur, M.; Kneeland, D.; et al. Sustainability Assessment of Food and Agriculture systems (SAFA) Indicators; FAO: Rome, Italy, 2013. [Google Scholar]
- Pollesch, N.L.; Dale, V.H. Normalization in sustainability assessment: Methods and implications. Ecol. Econ. 2016, 130, 195–208. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Fan, L.-W.; Zhou, D.-Q. Data aggregation in constructing composite indicators: A perspective of information loss. Expert Syst. Appl. Int. J. 2010, 37, 360–365. [Google Scholar] [CrossRef]
- Schader, C.; Baumgart, L.; Landert, J.; Muller, A.; Ssebunya, B.; Blockeel, J.; Weisshaidinger, R.; Petrasek, R.; Mészáros, D.; Padel, S.; et al. Using the Sustainability Monitoring and Assessment Routine (SMART) for the Systematic Analysis of Trade-Offs and Synergies between Sustainability Dimensions and Themes at Farm Level. Sustainability 2016, 8, 274. [Google Scholar] [CrossRef] [Green Version]
- Hammond, J.; Fraval, S.; van Etten, J.; Suchini, J.G.; Mercado, L.; Pagella, T.; Frelat, R.; Lannerstad, M.; Douxchamps, S.; Teufel, N.; et al. The Rural Household Multi-Indicator Survey (RHoMIS) for rapid characterisation of households to inform climate smart agriculture interventions: Description and applications in East Africa and Central America. Agric. Syst. 2017, 151, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Torquebiau, E.; Rosenzweig, C.; Chatrchyan, A.M.; Andrieu, N.; Khosla, R. Identifying Climate-smart agriculture research needs. Cah. Agric. 2018, 27, 26001. [Google Scholar] [CrossRef] [Green Version]
- van Wijk, M.T.; Merbold, L.; Hammond, J.; Butterbach-Bahl, K. Improving Assessments of the Three Pillars of Climate Smart Agriculture: Current Achievements and Ideas for the Future. Front. Sustain. Food Syst. 2020, 4, 558483. [Google Scholar] [CrossRef]
- FAO Assessing Climate-Smart Farming: A New Framework. Eval Forward. Available online: https://www.evalforward.org/blog/CSA (accessed on 9 November 2021).
- Sierra, J.; Causeret, F.; Diman, J.L.; Publicol, M.; Desfontaines, L.; Cavalier, A.; Chopin, P. Observed and predicted changes in soil carbon stocks under export and diversified agriculture in the Caribbean. The case study of Guadeloupe. Agric. Ecosyst. Environ. 2015, 213, 252–264. [Google Scholar] [CrossRef]
- INSEE. Available online: https://www.insee.fr/fr/statistiques/4270716#tableau-figure1 (accessed on 15 Febrary 2022 ).
- European Comission Pilot Projects on Using IACS (Integrated Administration and Control System) for Agricultural Statistics. Available online: https://ec.europa.eu/eurostat/documents/749240/9013077/EurostatFinalReport-IACS.pdf/0f890f39-490c-435b-ada5-77ce2582d511 (accessed on 2 August 2022).
- Todoroff, P.; Gibon, C.; Abrassart, J. AGRIGUA: Pour Une Cartographie Dynamique et en Temps réel des Parcelles Agricoles Adaptée aux Spécificités d’un DOM; Ministere de l’agriculture et de la peche: Guadeloupe, France, 2006; p. 14. [Google Scholar]
- Chopin, P.; Blazy, J.-M.; Doré, T. A new method to assess farming system evolution at the landscape scale. Agron. Sustain. Dev. 2015, 35, 325–337. [Google Scholar] [CrossRef] [Green Version]
- Bockstaller, C.; Guichard, L.; Makowski, D.; Aveline, A.; Girardin, P.; Plantureux, S. Agri-environmental indicators to assess cropping and farming systems. A review. Agron. Sustain. Dev. 2008, 28, 139–149. [Google Scholar] [CrossRef]
- Bockstaller, C.; Feschet, P.; Angevin, F. Issues in evaluating sustainability of farming systems with indicators. OCL 2015, 22, D102. [Google Scholar] [CrossRef] [Green Version]
- Olper, A.; Raimondi, V.; Cavicchioli, D.; Vigani, M. Do CAP payments reduce farm labour migration? A panel data analysis across EU regions. Eur. Rev. Agric. Econ. 2014, 41, 843–873. [Google Scholar] [CrossRef]
- D’Antoni, J.; Mishra, A.K. Agricultural Policy and its Impact on Labor Migration from Agriculture. In Proceedings of the Southern Agricultural Economics Association Annual Meeting, Orlando, FL, USA, 6–9 February 2010; Louisiana State University: Baton Rouge, LA, USA. [Google Scholar]
- Riedl, B.M. How Farm Subsidies Harm Taxpayers, Consumers, and Farmers, Too. Backgrounder 2043. Herit. Found. 2007, 15. Available online: www.heritage.org/research/reports/2007/06/how-farm-subsidies-harm-taxpayers-consumers-and-farmers-too (accessed on 12 May 2022).
- Koo, W.W.; Kennedy, P.L. The impact of agricultural subsidies on global welfare. Am. J. Agric. Econ. 2006, 88, 1219–1226. [Google Scholar] [CrossRef]
- Petrick, M.; Zier, P. Regional employment impacts of Common Agricultural Policy measures in Eastern Germany: A difference-in-differences approach. Agric. Econ. 2011, 42, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Mayrand, K.; Dionne, S.; Paquin, M.; Ortega, G.A.; Marrón, L.F.G.; Piña, C.M.; Planter, M.R. The Economic and Environmental Impacts of Agricultural Subsidies: A Look at Mexico and Other OECD Countries. In Unisféra International Centre; The Centro Mexicano de Derecho Ambiental (CEMDA): Mexico City, Mexico, 2003. [Google Scholar]
- Gottschalk, T.K.; Diekötter, T.; Ekschmitt, K.; Weinmann, B.; Kuhlmann, F.; Purtauf, T.; Dauber, J.; Wolters, V. Impact of agricultural subsidies on biodiversity at the landscape level. Landsc. Ecol. 2007, 22, 643–656. [Google Scholar] [CrossRef]
- Minviel, J.-J.; Latruffe, L. Effect of public subsidies on farm technical efficiency: A meta-analysis of empirical results. Appl. Econ. 2017, 49, 213–226. [Google Scholar] [CrossRef] [Green Version]
- Imai, K.; Gaiha, R.; Bresciani, F. The Labor Productivity Gap between the Agricultural and Nonagricultural Sectors, and Poverty and Inequality Reduction in Asia. Asian Dev. Rev. 2019, 36, 112–135. [Google Scholar] [CrossRef]
- Polyzos, S.; Arabatzis, G. Labor Productivity of the Agricultural Sector in Greece: Determinant Factors and Interregional Differences Analysis. Development 2005, 1, 209–226. [Google Scholar]
- de Ponti, T.; Rijk, B.; van Ittersum, M.K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N. Many shades of gray—The context-dependent performance of organic agriculture. Sci. Adv. 2017, 3, e1602638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. Human Energy Requirements. Available online: http://www.fao.org/3/y5686e/y5686e08.htm (accessed on 25 Feruary 2021).
- Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a WHO-FAO Expert Consultation; [Joint WHO-FAO Expert Consultation on Diet, Nutrition, and the Prevention of Chronic Diseases, 2002, Geneva, Switzerland]; FAO (Ed.) WHO technical report series; World Health Organization: Geneva, Switzerland, 2003; ISBN 978-92-4-120916-8. [Google Scholar]
- Ickowitz, A.; Powell, B.; Rowland, D.; Jones, A.; Sunderland, T. Agricultural intensification, dietary diversity, and markets in the global food security narrative. Glob. Food Secur. 2019, 20, 9–16. [Google Scholar] [CrossRef]
- Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S.; Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (Eds.) Cambridge University Press: Cambridge, UK, 2007; ISBN 978-0-521-88009-1. [Google Scholar]
- Smith, J.B.; Schellnhuber, H.-J.; Mirza, M.M.Q. Vulnerability to Climate Change and Reasons for Concern: A Synthesis. Clim. Change 2001, 56, 913–967. [Google Scholar]
- Wall, E.; Marzall, K. Adaptive capacity for climate change in Canadian rural communities. Local Environ. 2006, 11, 373–397. [Google Scholar] [CrossRef]
- Selbonne, S. Conception et Experimentation d’une Micro-Ferme Climato-Intelligente et Evaluation par Modelisation des Conditions D’emergence a L’echelle du Territoire; application à la région du nord basse-terre en guadeloupe; Université des Antilles: Guadeloupe, France, 2022. [Google Scholar]
- Lin, B.B. Resilience in Agriculture through Crop Diversification: Adaptive Management for Environmental Change. BioScience 2011, 61, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Frison, E.A.; Cherfas, J.; Hodgkin, T. Agricultural Biodiversity Is Essential for a Sustainable Improvement in Food and Nutrition Security. Sustainability 2011, 3, 238–253. [Google Scholar] [CrossRef] [Green Version]
- Samuel, O.; Dion, S.; St-Laurent, L.; April, M.-H. Indicateur de risque des pesticides du Québec – IRPeQ – Santé et environnement. Québec: Ministère de l’Agriculture, des Pêcheries et de l’Alimentation/ministère du Développement durable, de l’Environnement et des Parcs/Institut national de santé publique du Québec, IRPeQ : St. Et Environ. 2013, p. 48. Available online: https://www.environnement.gouv.qc.ca/pesticides/indicateur.htm (accessed on 24 February 2022).
- Pierlot, F.; Marks-Perreau, J.; Real, B.; Carluer, N.; Constant, T.; Lioeddine, A.; Van Dijk, P.; Villerd, J.; Keichinger, O.; Cherrier, R.; et al. Predictive quality of 26 pesticide risk indicators and one flow model: A multisite assessment for water contamination. Sci. Total Environ. 2017, 605, 655–665. [Google Scholar] [CrossRef] [Green Version]
- Fagodiya, R.K.; Pathak, H.; Kumar, A.; Bhatia, A.; Jain, N. Global temperature change potential of nitrogen use in agriculture: A 50-year assessment. Sci. Rep. 2017, 7, 44928. [Google Scholar] [CrossRef] [Green Version]
- FAO. Agriculture, Forestry and Other Land Use Emissions by Sources and Removals by Sinks; FAO: Rome, Italy, 2014; p. 89. [Google Scholar]
- Tubiello, F.N.; Salvatore, M.; Rossi, S.; Ferrara, A.; Fitton, N.; Smith, P. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 2013, 8, 015009. [Google Scholar] [CrossRef]
- Odum, H.T. Environmental Accounting: EMERGY and Environmental Decision Making; Wiley: New York, NY, USA, 1996; p. 384. ISBN 978-0-471-11442-0. [Google Scholar]
- UFL. Available online: https://cep.ees.ufl.edu/emergy/index.shtml (accessed on 2 July 2020).
- Venema, H.D.; Rehman, I.H. Decentralized renewable energy and the climate change mitigation-adaptation nexus. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 875–900. [Google Scholar] [CrossRef]
- Cavalett, O.; de Queiroz, J.F.; Ortega, E. Emergy assessment of integrated production systems of grains, pig and fish in small farms in the South Brazil. Ecol. Model. 2006, 193, 205–224. [Google Scholar] [CrossRef] [Green Version]
- Ranganathan, J.; Bhatia, P. The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard; World Resources Institute: Washington, DC, USA, 2004; p. 116. [Google Scholar]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; National Greenhouse Gas Inventories Programme, Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Hayama, Japan, 2006; ISBN 978-4-88788-032-0. [Google Scholar]
- The projet 4/1000. Alliance Bioversity International–CIAT Agropolis International, 1000, Avenue Agropolis 34397 Montpellier Cedex 5 – France. Available online: www.4p1000.org (accessed on 13 April 2021).
- Soussana, J.-F.; Lutfalla, S.; Ehrhardt, F.; Rosenstock, T.; Lamanna, C.; Havlík, P.; Richards, M.; Wollenberg, E. (Lini); Chotte, J.-L.; Torquebiau, E.; et al. Matching policy and science: Rationale for the ‘4 per 1000—soils for food security and climate’ initiative. Soil Tillage Res. 2019, 188, 3–15. [Google Scholar] [CrossRef]
- Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. Greenhouse gas emissions from soils—A review. Geochemistry 2016, 76, 327–352. [Google Scholar] [CrossRef] [Green Version]
- Mutema, M.; Mafongoya, P. L.; Nyagumbo, I.; Chikukura, L. Effects of crop residues and reduced tillage on macrofauna abundance. J. Organic Syst. 2013, 8, 13. [Google Scholar]
- Brévault, T.; Bikay, S.; Naudin, K. Macrofauna Pattern in Conventional and Direct Seeding Mulch-Based Cropping Systems in North Cameroon. In Proceedings of the 3rd World Congress on Conservation Agriculture: Linking Production, Livelihoods and Conservation, Nairobi, Kenya, 3–7 October 2005; FAO: Rome, Italy, 2005; p. 7. [Google Scholar]
- Lavelle, P.; Dangerfield, M.; Fragoso, C.; Eschenbrenner, V.; Lopez-Hernandez, D.; Pashanasi, B.; Brussaard, L. The relationship between soil macrofauna and tropical soil fertility. Biol. Manag. Trop. Soil Fertil. 1994, 39, 137–169. [Google Scholar]
- ADEME [Base Carbone], Documentation des facteurs d'émissions de la Base Carbone. 2015. Available online: https://data.ademe.fr/datasets/base-carbone(r) (accessed on 2 June 2021).
- Brown, M.T.; Campbell, D.E.; De Vilbiss, C.; Ulgiati, S. The geobiosphere emergy baseline: A synthesis. Ecol. Model. 2016, 339, 92–95. [Google Scholar] [CrossRef]
- CAP expenditure: European Commission. Available online: https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/farming/documents/cap-expenditure-graph5_en.pdf (accessed on 4 September 2020).
- Paul, B.K.; Frelat, R.; Birnholz, C.; Ebong, C.; Gahigi, A.; Groot, J.C.J.; Herrero, M.; Kagabo, D.M.; Notenbaert, A.; Vanlauwe, B.; et al. Agricultural intensification scenarios, household food availability and greenhouse gas emissions in Rwanda: Ex-ante impacts and trade-offs. Agric. Syst. 2018, 163, 16–26. [Google Scholar] [CrossRef]
- OECD. Environmental Performance of Agriculture in OECD Countries Since 1990; OECD: Paris, France, 2008; ISBN 978-92-64-04092-2. [Google Scholar]
- Lamichhane, J.R.; Dachbrodt-Saaydeh, S.; Kudsk, P.; Messéan, A. Toward a Reduced Reliance on Conventional Pesticides in European Agriculture. Plant Dis. 2016, 100, 10–24. [Google Scholar] [CrossRef] [Green Version]
- Quemada, M.; Lassaletta, L.; Jensen, L.S.; Godinot, O.; Brentrup, F.; Buckley, C.; Foray, S.; Hvid, S.K.; Oenema, J.; Richards, K.G.; et al. Exploring nitrogen indicators of farm performance among farm types across several European case studies. Agric. Syst. 2020, 177, 102689. [Google Scholar] [CrossRef]
- Ulgiati, S.; Odum, H.T.; Bastianoni, S. Emergy use, environmental loading and sustainability an emergy analysis of Italy. Ecol. Model. 1994, 73, 215–268. [Google Scholar] [CrossRef]
- Zhang, L.X.; Song, B.; Chen, B. Emergy-based analysis of four farming systems: Insight into agricultural diversification in rural China. J. Clean. Prod. 2012, 28, 33–44. [Google Scholar] [CrossRef]
- Asgharipour, M.R.; Amiri, Z.; Campbell, D.E. Evaluation of the sustainability of four greenhouse vegetable production ecosystems based on an analysis of emergy and social characteristics. Ecol. Model. 2020, 424, 109021. [Google Scholar] [CrossRef]
- Aillery, F.; Antoni, V.; Aouir, C.; Arnaud, M.; Bonnet, A.; Besancon, M.; Bonnard, P.; Boughaba, J.; Colas, S.; Denoyer, G.; et al. Environnement & agriculture—Les chiffres clés—Édition. 2018, 2018; 2018, 124. [Google Scholar]
- Brunetière, J.-R.; Alexandre, S.; d’Aubreby, M.; Debiesse, G.; Guérin, A.-J.; Perret, B.; Schwartz, D. Le facteur 4 en France: La division par 4des émissions de gaz à effet de serre à l’horizon 2050; Report CGEDD n°008378-01; Conseil général de l’environnement et du développement durable: Paris, France, 2013; p. 136. [Google Scholar]
- Citepa. Inventaire des émissions de polluants atmosphériques et de gaz à effet de serre en France—Format Secten. Report n°2071sec, Paris, France. Available online: https://www.citepa.org/fr/2020_06_a07/ (accessed on 10 October 2020).
- Sommer, R.; Bossio, D. Dynamics and climate change mitigation potential of soil organic carbon sequestration. J. Environ. Manage. 2014, 144, 83–87. [Google Scholar] [CrossRef]
- Ramachandran Nair, P.K.; Nair, V.D.; Mohan Kumar, B.; Showalter, J.M. Carbon Sequestration in Agroforestry Systems. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2010; Volume 108, pp. 237–307. ISBN 978-0-12-381031-1. [Google Scholar]
- Ramachandran Nair, P.K.; Mohan Kumar, B.; Nair, V.D. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 2009, 172, 10–23. [Google Scholar] [CrossRef]
- Perrin, A.; Milestad, R.; Martin, G. Resilience applied to farming: Organic farmers’ perspectives. Ecol. Soc. 2020, 25, 18. [Google Scholar] [CrossRef]
- Allen, M.R.; Dube, O.P.; Solecki, W.; Aragón-Durand, F.; Cramer, W.; Humphreys, S.; Kainuma, M.; Kala, J. Global Warming of 1.5 °C. Framing and Context. In: Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; Geneva, Switzerland.
- Coteur, I.; Marchand, F.; Debruyne, L.; Dalemans, F.; Lauwers, L. A framework for guiding sustainability assessment and on-farm strategic decision making. Environ. Impact Assess. Rev. 2016, 60, 16–23. [Google Scholar] [CrossRef]
- Eksvärd, K.; Rydberg, T. Integrating Participatory Learning and Action Research and Systems Ecology: A Potential for Sustainable Agriculture Transitions. Syst. Pract. Action Res. 2010, 23, 467–486. [Google Scholar] [CrossRef]
- Selbonne, S.; Guindé, L.; Belmadani, A.; Bonine, C.; Causeret, F.L.; Duval, M.; Sierra, J.; Blazy, J.M. Designing scenarios for upscaling climate-smart agriculture on a small tropical island. Agric. Syst. 2022, 199, 103408. [Google Scholar] [CrossRef]
- Vereijken, P. A methodical way of prototyping integrated and ecological arable farming systems (I/EAFS) in interaction with pilot farms. Eur. J. Agron. 1997, 7, 235–250. [Google Scholar] [CrossRef]
Indicators | Unit/Year | Spe. Sugarcane Producers N = 3 | Livestock Producers N = 3 | Div. Producers Lo./Ex. Market N = 3 | Div. Producers Lo. Market N = 3 | Regional Values | |
---|---|---|---|---|---|---|---|
Food Security | Autonomy | % | −42% | 7% | 2% | 57% | −20% |
Investment Cost | US$/Ha | 5.9 × 103 | 3.0 × 103 | 1.7 × 104 | 1.7 × 104 | 8.6 × 103 | |
Gross Margin | US$/Ha | 2.1 × 103 | 1.8 × 103 | 5.5 × 103 | 4.2 × 103 | 3.3 × 103 | |
Labor Requirement | Fte/Ha | 0.0 | 0.1 | 0.3 | 0.2 | 0.1 | |
Labor Productivity | US$/Hr | 32 | 17 | 25 | 15 | 23 | |
Complex Carb. | Pers./Ha | 0 | 0 | 4 | 4 | 1 | |
Simple Carb. | Pers./Ha | 0 | 0 | 55 | 50 | 15 | |
Saturated Lipids | Pers./Ha | 0 | 1 | 1 | 2 | 1 | |
Unsaturated Lipids | Pers./Ha | 0 | 1 | 2 | 3 | 1 | |
Proteins | Pers./Ha | 0 | 1 | 4 | 6 | 1 | |
Av. Nut. Perf. | Pers./Ha | 0 | 0 | 13 | 13 | 3 | |
Adaptation | Climate Potential Impact | % | 30% | 28% | 33% | 27% | 28% |
Economic Diversity | - | 0.3 | 1.5 | 1.1 | 1.5 | 0.8 | |
Active Ingredients | Kg/Ha | 4.7 | 2.6 | 2.7 | 1.7 | 4.4 | |
Inorganic Nitrogen | Kg/Ha | 64 | 34 | 91 | 55 | 70 | |
Irrigation/Rainfall | % | 5% | 3% | 11% | 0% | 6% | |
%Renewable | % | 23% | 35% | 22% | 33% | 25% | |
Mitigation | Ghg Emissions | Tco2eq/Ha | 1.7 | 3.4 | 1.9 | 1.0 | 1.9 |
Soc Variation | Tco2eq/Ha | −0.4 | -0.1 | −0.8 | +0.2 | −0.5 | |
Ghg Balance | Tco2eq/Ha | +2.1 | +3.6 | +2.6 | +0.8 | +2.4 | |
Plowing | Number/Ha | 0.5 | 0.3 | 1.6 | 1.2 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selbonne, S.; Guindé, L.; Causeret, F.; Chopin, P.; Sierra, J.; Tournebize, R.; Blazy, J.-M. How to Measure the Performance of Farms with Regard to Climate-Smart Agriculture Goals? A Set of Indicators and Its Application in Guadeloupe. Agriculture 2023, 13, 297. https://doi.org/10.3390/agriculture13020297
Selbonne S, Guindé L, Causeret F, Chopin P, Sierra J, Tournebize R, Blazy J-M. How to Measure the Performance of Farms with Regard to Climate-Smart Agriculture Goals? A Set of Indicators and Its Application in Guadeloupe. Agriculture. 2023; 13(2):297. https://doi.org/10.3390/agriculture13020297
Chicago/Turabian StyleSelbonne, Stan, Loïc Guindé, François Causeret, Pierre Chopin, Jorge Sierra, Régis Tournebize, and Jean-Marc Blazy. 2023. "How to Measure the Performance of Farms with Regard to Climate-Smart Agriculture Goals? A Set of Indicators and Its Application in Guadeloupe" Agriculture 13, no. 2: 297. https://doi.org/10.3390/agriculture13020297
APA StyleSelbonne, S., Guindé, L., Causeret, F., Chopin, P., Sierra, J., Tournebize, R., & Blazy, J.-M. (2023). How to Measure the Performance of Farms with Regard to Climate-Smart Agriculture Goals? A Set of Indicators and Its Application in Guadeloupe. Agriculture, 13(2), 297. https://doi.org/10.3390/agriculture13020297